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ABSTRACT

Recent studies have started to explore the integration of logical knowledge into deep
learning via encoding logical constraints as an additional loss function. However,
we observe that existing approaches tend to vacuously satisfy logical constraints
through shortcuts, failing to fully exploit the knowledge. In this paper, we present
a new framework for learning with logical constraints. Specifically, we address the
shortcut satisfaction issue by introducing dual variables for logical connectives,
encoding how the constraint is satisfied. We further propose a variational framework
where the logical constraint is expressed as a distributional loss that is compatible
with the model’s original training loss. Theoretical analysis shows that the proposed
approach bears some nice properties, and experimental evaluations demonstrate its
superior performance in both model generalizability and constraint satisfaction.

1 INTRODUCTION

There have been renewed interests in equipping deep neural networks (DNNs) with symbolic knowl-
edge such as logical constraints/formulas (Hu et al.| [2016} [ Xu et al 2018; [Fischer et al., 2019
Nandwani et al.,[2019; |Li and Srikumar, [2019; Awasthi et al.| [2020; Hoernle et al., [2021). Typically,
existing work first translates the given logical constraint into a differentiable loss function, and
then incorporates it as a penalty term in the original training loss of the DNN. The benefits of this
integration have been well-demonstrated: it not only improves the performance, but also enhances
the interpretability via regulating the model behavior to satisfy particular logical constraints.

Despite the encouraging progress, existing approaches tend to suffer from the shortcut satisfaction
problem, i.e., the model overfits to a particular (easy) truth assignment of the given logical constraint
without discriminating the subtle semantics behind. An illustrative example is given in Figure
Essentially, the example considers a logical constraint P — ), which holds when (P, Q) = (T, T
or (P,Q) = (F,F)/(F, T). However, it is observed that existing approaches tend to simply satisfy
the constraint via assigning F to P for all inputs, even when the real meaning of the logic constraint
is (P,Q) = (T, T) for certain inputs (e.g., class ‘6’ in the example).

To escape from the trap of shortcut satisfaction, we propose to consider ~ow a logical constraint is
satisfied by distinguishing between different truth assignments of the constraint for different inputs.
The challenge here is the lack of direct supervision information of how a constraint is satisfied other
than its truth value. However, our insight is that, by addressing this “harder” problem, we can make
more room for the conciliation between logic information and training data, and achieve better model
performance and logic satisfaction at the same time. To this end, when translating a logical constraint
into a loss function, we introduce a dual variable for each operand of the logical connectives in the
CNF of the logical constraint. The dual variables, together with the softened truth values for logical
variables, provide a working interpretation for the satisfaction of the logical constraint. Still use
Figure[I] as an example. For the satisfaction of P — @), we consider its CNF =P V () and introduce
two variables 71 and 7 to indicate the weights of the softened truth values of =P and @), respectively.
The blue dotted lines in the right part of Figure T|(the P-Satisfaction and @Q-Satisfaction subfigues)
indicate that the dual variables gradually converge to the intended weights for class ‘6’.

Based on the dual variables, we then convert logical conjunction and disjunction into convex combi-
nations of individual loss functions, which not only improves the training robustness, but also ensures
monotonicity with respect to logical entailment, i.e., the smaller the loss, the higher the satisfaction.
Note that most existing logic to loss translations do not enjoy this property but only ensure that the
logical constraint is fully satisfied when the loss is zero; however, it is virtually infeasible to make
the logical constraint fully satisfied in practice, rendering an unreliable training process towards
constraint satisfaction.



Under review as a conference paper at ICLR 2023

DL2: Shortcut satisfaction Ours: Useful satisfaction

100 100
89.3% 98.8%
50
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000
100 m
) -M
0
0 500 1000 1500 2000

Training data:

Classification
o[\ [2[3]

Si6l71219

Labels for class “6” removed

Accuracy
8
Accuracy

0 500 1000 1500 2000

Logic Knowledge: P — (, where

P:f(R(x)) =9,

Q:fx) =6 9]

R: image rotation

00

50 7

Q-Satisfaction ~ P-Satisfaction
g
Q-Satisfaction P-Satisfaction

Q = False Q = True
0

o 500 1000 1500 2000 0 500 1000 1500 2000
Iteration Iteration

Accuracy and logic satisfaction for images in class “6”

Figure 1: We consider a semi-supervised classification task of handwritten digit recognition. For
the illustration purpose, we remove the labels of training images in class ‘6’, but introduce a logical
rule (P := f(R(x)) =9) — (Q := f(x) = 6) to predict ‘6’, where R(x) stands for rotating the
image x by 180°. The ideal truth assignments should be (P, Q) = (T, T) for class ‘6’. However,
existing methods (e.g., DL2 (Fischer et al.| 2019)) tend to vacuously satisfy the rule by discouraging
the satisfaction of P for all inputs, including those actually in class ‘6’. In contrast, our approach
successfully learns to satisfy () when P holds for class ‘6’, even achieving comparable accuracy
(98.8%) to the fully supervised setting.

Another limitation of existing approaches lies in the incompatibility during joint training. That is,
existing work mainly treats the translated logic loss as a penalty under a multi-objective learning
framework, whose effectiveness strongly relies on the weight selection of each objective, and may
suffer when the objectives compete (Kendall et al.| [2018; |Sener and Koltun, [2018)). In contrast, we
introduce an additional random variable for the logical constraint to indicate its satisfaction degree,
and formulate it as a distributional loss which is compatible with the neural network’s original training
loss under a variational framework. We cast the joint optimization of the prediction accuracy and
constraint satisfaction as a game and propose a stochastic gradient descent ascent algorithm with
partial min-oracle (Lin et al., |2020) to solve it. Theoretical results show that the algorithm can
successfully converge to a superset of local Nash equilibria, and thus settles the incompatibility
problem to a large extent.

In summary, the main contributions of this paper include:

e A new approach for training deep models with logical constraints, considering how the constraints
are satisfied, in particular, to avoid shortcut satisfaction.

e A logic encoding method that translates logical constraints to loss functions with guaranteed
monotonicity of constraint satisfaction.

e A variational framework that jointly and compatibly trains both the translated logic loss and the
original training loss with theoretically guaranteed convergence.

e Extensive empirical evaluations on various tasks demonstrating the superior performance in both
accuracy and constraint satisfaction, confirming the efficacy of the proposed approach.

2 LocIc To LoSS FUNCTION TRANSLATION
2.1 LOGICAL CONSTRAINTS

For a given neural network model, we denote the data point by (x,y) € X’ x ), and use w to represent
the model parameters. We use variable v to denote the model’s behavior of interest (e.g., the output,
the representation), which is represented as a function fy (x,y) parameterized by w. We require
fw(x,y) to be differentiable with respect to w. An atomic formula a is in the form of v > ¢ where
e {<, <, >,>,=,7#} and cis a constant. For instance, suppose we are interested in py (y = 1 | x)
denoting the (predictive) confidence of y = 1 given x. We can use pyw (y = 1 | x) > 0.95 to specify
that the confidence should be no less than 95%. We express a logical constraint in the form of a
logical formula, consisting of usual conjunction, disjunction, and negation of atomic formulas. Note
that v = ¢ can be written as v > ¢ A v < ¢, so henceforth for simplicity, we only have atomic
formulas of the form v < c.

We use U to indicate a state of v, which is a concrete instantiation of v over the current model
parameters w and data point (x,y). We say a state ¢ satisfies a logical formula «, denoted by ¥ |= «,
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if o holds under 9. For two logical formulas « and 3, we say o |= (3 if any © that satisfies « also
satisfies 5. Moreover, we write « = (3 if « is logically equivalent to £, i.e., they entail each other.

2.2 LOGICAL CONSTRAINT TRANSLATION

(A) Atomic formulas. For an atomic formula a := v < ¢, our goal is to learn the model parameters
w* to encourage that the current state 9* = fy,+(x,y) can satisfy the formula for the given data point
(x,y). For this purpose, we define a cost function

Sa(v) := max(v — ¢,0), (D)

and switch to minimize it. It is not difficult to show that the atomic formula holds if and only if w* is
an optimal solution of miny, S(w) = max(fw(x,y) — ¢,0) with S(w*) = 0.

For example, for the predictive confidence pyw (y = 1 | x) > 0.95 introduced before, the correspond-
ing cost function is defined as max(0.95 — pyw (y = 1 | x), 0), which is actually the norm distance
between the current state ¥ and the satisfied states of the atomic constraint. Such translation not only
allows to find model parameters w* efficiently by optimization, but also paves the way to encode
more complex logical constraints as discussed in the following.

(B) Logical conjunction. For the logical conjunction [ := v1 < ¢1 Avg < ¢g, Where v; = fy (X, y)
for ¢ = 1, 2, We first substitute the atomic formulas by their corresponding cost functions as defined
in equation|[1] and rewrite the conjunction as (S(vy) = 0) A (S(v2) = 0). Then, the conjunction can
be equivalently converted into a maximization form, i.e., max(S(v1), S(v2)) = 0. Based on this
conversion, we may follow the existing work and define the cost function of logical conjunction as
Sa(l) :== max(S(v1), S(v2)). However, directly minimizing this cost function is less effective as
it cannot well encode how the constraints are satisfied, and it is also not efficient since only one of
S(v1) and S(v2) can be optimized in each iteration. Therefore, we introduce the dual variable 7; for
each atomic formula, and further extend it to the general conjunction case for [ := /\i—“zlvi <vg¢; as

k
S(v) = L max_ > 7S(vi). 2)
Tt Te=1 i=1

(C) Logical disjunction. Similar to conjunction, the logical disjunction [ := \/levi < ¢;. can be
equivalently encoded into a minimization form. Hence, the corresponding cost function is as follows,

k
S (v) = _min_ > nS(vi). (3)
Tt =1 =1

(D) General formulas. In general, for logical formula o = A;ez Ve s vij < ¢;; in the conjunctive
normal form (CNF), the corresponding cost function can be defined as

Sa(v)= maxminz Z Wi - vij - max(vi; — ¢5,0)

Hi  Vij

i€T jeg® @
s.t. Zm =1, Z vij =1, i, v 20,
i€z JjeT®

where p;(i € Z) and vy (j € J (*)) are the dual variables for conjunction and disjunction, respectively.
The proposed cost function establishes an equivalence between the logical formula and the optimiza-
tion problem. This is summarized in the following theorem, whose proof is included in Appendix
Theorem 1. Given the logical formula o = Niez Vje g Vij < ¢ij, if the dual variables {ji;,i € T}
and {vij,j € J} of Sa(v) converge to {u;,i € I} and {v;;, j € J}, then the cost function of a can
be computed as S, (v) = max;ez min;e 7{S;; := max(v;; — ¢;;,0)}. Furthermore, the sufficient
and necessary condition of 0* = fw~(X,y) | « is that w* is the optimal solution of miny, S, (W),
with the optimal value S, (w*) = 0.

2.3 ADVANTAGES OF OUR TRANSLATION

Monotonicity. As shown in Theorem [I} the optimal w* ensures that model’s behavior v* =
fw+(x,¥) can satisfy the target logical constraint . Unfortunately, w* usually cannot achieve the
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optimum due to the coupling between the cost function S, (v) and the original training loss as well
as the fact that S, (v) is usually non-convex. This essentially reveals the main rationale of our logical
encoding, and we conclude it in the following theorem with the proof given in Appendix [B]

Theorem 2. For two logical formulas o = Nicz Vjeg aE?) and 8 = Niez Vjeg a'? . we have

ij
a = B ifand only if S (v) > Sg(v) holds for any state of v.

Remarks. Theorem [2] essentially states that, when dual variables converge, we can progressively
achieve a higher satisfaction degree of the logical constraints, as the cost function continues to
decrease. This is especially important in practice since it is usually infeasible to make the logical
constraint fully satisfied.

Interpretability. The introduced dual variables control the satisfaction degree of each individual
atomic formula, and gradually converge towards the best valuation. In addition to boosting the training
efficiency, the dual variables essentially learn how the given logical constraint can be satisfied for each
data point, which resembles the structural parameter used inBengio et al.[(2020) to disentangle causal
mechanisms. Namely, the optimal dual variables 7* disentangle the satisfaction degree of the entire
logical formula into individual atomic formulas, and reveal the probability of a causal relationship
between atomic constraints and the entire logical constraint in a discriminative way. Consider the
cost function Sj(v) = max,¢jp,1] 75(v1) + (1 — 7)S(v2) for I := ay V as. The expectation E, [77]
estimates the probability of p(a; — [ | x), and a larger F,[7*] indicates a greater probability that the
first atomic constraint is met.

Robustness improvement. The dual variables also improve the stability of numerical computations.
First, compared with some classic fuzzy logic operators (e.g., directly adopting max and min
operators to replace the conjunction and disjunction (Zadeh, 1965} Elkan et al., |1994; Hajek, 2013))),
the dual variables alleviate the sensitivity to the initial point. Second, compared with other commonly-
used translation strategies (e.g., using addition and multiplication in DL2 (Fischer et al., [2019)), the
dual variables balance the magnitude of the cost function, and further avoid some bad stationary
points. Some concrete examples are included in Appendix [C]

3 A VARIATIONAL LEARNING FRAMEWORK

3.1 DISTRIBUTIONAL LOSS FOR LOGICAL CONSTRAINTS

Existing work mainly adopts a multi-objective learning framework to integrate logical constraints into
DNNSs, which is sensitive to the weight selection of each individual loss. In this work, we propose a
variational learning framework to achieve better compatability between the two loss functions without
the need of weight selection. Generally speaking, the original training loss for a neural network is
usually a distributional loss (e.g., cross entropy), which aims to construct a parametric distribution
pw (¥ | x) that is close to the target distribution p(y | x). To keep the compatibility, we extend the
distributional loss to the logical constraints. More concretely, we define an additional m-dimensional
random variable z for the target logical constraint @ and define z = S, (v), where v = fy (X,y).
Here, we use vector z to indicate the combination of multiple variables (e.g., v1,- -+ , ;) in the
logical constraint for training efficiency. Note that z can be considered as a random variable even
when the data point (x,y) is given because there usually exists randomness when training the model
(e.g., dropout, batch-normalization, etc.).

Next, we frame the training as the distributional approximation between the parametric distribution
and target distribution over y and z, and choose the KL divergence as the distributional loss,

N
H}},nZKL(p(Yz‘,Zi | %) [pw (yir 2i | xi))- o)

i=1

By using Bayes’ theorem, p(y, z | x) can be decomposed as p(y,z | x) = p(z | (x,y)) - p(y | X).
Therefore, we can reformulate equation [5] as:

N
Q&nZKL(p(Yi | %) [lpw (yi | %)) + By, x, [KL(p(2i | %5, 53)llpw (2 | %,5:))]- (©)
i=1

The detailed derivation can be found in Appendix [D} In equation [} the first term is the original
training loss, and the second term is the distributional loss of the logical constraint.
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The remaining question is how to model the conditional probability distribution of the random
variable z. Note that z = 0 indicates that the target logical constraint « is satisfied. Thus, the target
distribution of z can be defined as a Dirac delta distribution (Diracl |1981} Sec. 15), i.e., p(z | x,y)
is a zero-centered Gaussian with variance tending to zero (Morse and Feshbach, [1954, Chap. 4.8).
Furthermore, considering the non-negativity of z, we form the Dirac delta distribution as the limit of
the sequence of truncated normal distributions on [0, +00):

2 /
_ 1 . 271\ — 1; Zymo o2
p(z | x,y) = lim TN(2;0,0°T) = lim ()™ (=),
where ¢(+) is the probability density function of the standard multivariate normal distribution. For the

parametric distribution of z, we model pyw (z | x,y) as the truncated normal distribution on [0, +00)
with mean g = S, (w) and covariance diag(d?),

1 e
[diag(d?)] 1 — @(~5)’
where ®(-) is the cumulative distribution function of the standard multivariate normal distribution,

and & denotes element-wise division of vectors p and . Therefore, the final optimization problem
of our learning framework is

pw(z | X,y)

N
. . 1 i
min > KL(p(y: | x:))[pw(yi | x:) +log|diag(8)] + 5|15 |* +log(1 — &(=75)), (D
o i
where p; = So(vi), Vi = fw(Xi,yi), 4 = 1,..., N. The variance 62 actually loosens the

logical constraint in form of probability. Different from the probabilistic soft logic that estimates the
probability for each atomic formula, we establish the probability distribution 7N (z; p, diag(8?))
of the target logical constraint. This allows to directly determine the variance of the entire logical
constraint rather than analyzing the correlation between atomic constraints.

Moreover, the minimizations of w and & can be viewed as an non-zero-sum game (Roughgarden),
2010; |Schaefer and Anandkumar, [2019). Roughly speaking, they first cooperate to achieve both
higher model accuracy and higher degree of logical constraint satisfaction, and then compete between
these two sides to finally reach a (local) Nash equilibrium (even though it may not exist). The
local Nash equilibrium means that the model accuracy and logical constraint satisfaction cannot be
improved at the same time, which shows a compatibility in the sense of game theory.

3.2 OPTIMIZATION PROCEDURE

To solve equation we denote the objective function by L(w, §; TA, Tv ), where 74 and 7, are dual
variables of logical conjunction and disjunction, respectively. The dual variables of the cost function
also need to be optimized during training. Thus, we obtain the following optimization problem,

mitrsl {maxminL(w,S;‘rA,Tv)} . (8)

TA Y%

The details of the training algorithm is summarized in Appendix |F, where we utilize a stochas-
tic gradient descent ascent (SGDA) algorithm (with min-oracle) (Lin et al., [2020) to solve the
optimization problem. Specifically, we update w and 7, through gradient descent, update 7,
through gradient ascent, and update § by its approximate min-oracle, i.e., via its upper bound
KL(p(z | x,y)|lpw(z | x,y)) < log|diag(d)| + 3||%|* + const. Thus, the update of & in each

iteration is 62 = % Ef\il pi = % Z@Z\; So(vi).

The update of § plays an important role in our algorithm, because the classic SGDA algorithm (i.e.,
direct alternating gradient descent on w and §) may converge to limit cycles. Therefore, updating
4 via its approximate min-oracle not only makes the iteration more efficient, but also ensures the
convergence of our algorithm as summarized in Theorem 3]

Theorem 3. Let v(-) = mins L(-,8), and assume L(-) is L-Lipschitz. Algorithm[I|with step size
Nw = 7/V 1T + 1 ensures the output W of T iterations satisfies

L2+ A
E[||Vey 0. (W)]2] < O "M)’
I¥ewmu(e)l?) < 0 (220

where e, (+) is the Moreau envelop of v(-).



Under review as a conference paper at ICLR 2023

Remarks. Theorem [3| states that the proposed algorithm with suitable stepsize can successfully
converge to a point (w*, 8%, 7%, 7), where (w*,d*) is an approximate stationary point[] and
(1%, 7y) is a global minimax point. More detailed analysis and proofs are provided in Appendix

4 EXPERIMENTS AND RESULTS

We carry out experiments on four tasks, i.e., handwritten digit recognition, handwritten formula
recognition, shortest distance prediction in a weighted graph, and CIFAR100 image classification. For
each task, we train the model with normal cross-entropy loss on the labeled data as the baseline result,
and compare our approach with PD (Nandwani et al.| 2019) and DL2 (Fischer et al.,2019), which are
the state-of-the-art approaches that incorporate logical constraints into the trained models. For PD,
there are two choices (Choice 1 and Choice 2 named by the authors) to translate logical constraints
into loss functions which are denoted by PD; and PDs, respectively. We also compare with SL (Xu
et al.[ [2018) and DPL (Manhaeve et al.| 2018]) in the first task. These two methods are intractable in
the other three tasks as they both employ the knowledge compilation (Darwiche and Marquis, [2002)
to translate logical constraint, which involves the enumeration of all truth assignments. Each reported
experimental result is derived by computing the average of five repeats. For each atomic formula
a = v < ¢, we consider it is satisfied if o < ¢ — tol where tol is a predefined tolerance threshold to
relax the strict inequalities. We set tol = 0.01 on the three classification tasks and tol = 1 on the
regression task (shortest distance prediction), respectively.

We implemented our approach via the PyTorch DL framework. For PD and DL2, we use the code
provided by the respective authors. More setup details can be found in Appendix [H} The experiments
were conducted on a GPU server with two Intel Xeon Gold 5118 CPU@2.30GHz, 400GB RAM,
and 9 GeForce RTX 2080 Ti GPUs. The server ran Ubuntu 16.04 with GNU/Linux kernel 4.4.0.
The code, together with the experimental data, is available at https://figshare.com/s/
9358d95545fa25823fbcl

4.1 HANDWRITTEN DIGIT RECOGNITION

In the first experiment, we construct a semi-supervised classification task by removing the labels
of ‘6’ in the MNIST dataset (LeCun et al.| [1989) during training. We then apply a logical rule to
predict label ‘6’ using the rotation relation between ‘6’ and ‘9’ as f(X) =9 — f(x) = 6, where x
is the input, and x denotes the result of rotating x by 180 degrees. We rewrite the above rule as the
disjunction (f(x) #9) V (f(x) = 6). We train the LeNet model on the MNIST dataset, and further
validate the transferability performance of the model on the USPS dataset (Hull, |1994).

The classification accuracy and logical constraint satisfaction results of class ‘6’ are shown in Table[T}
The —P-Sat. and Q-Sat. in the table indicate the satisfaction degrees of f(X) # 9 and f(x) = 6,
respectively. At first glance, it is a bit strange that our approach significantly outperforms some
alternatives on the accuracy, but achieves almost the same logic rule satisfaction. However, taking a
closer look at how the logic rule is satisfied, we find that alternatives are all prone to learn an shortcut
satisfaction (i.e., f(X) # 9) for the logical constraint, and thus cannot further improve the accuracy.
In contrast, our approach learns to satisfy f(x) = 6 when f(R(x)) = 9, which is supposed to be
learned from the logical rule.

On the USPS dataset, we additionally train a reference model with full labels, and it achieves 82.1%
accuracy. Observe that the domain shift deceases the accuracy of all methods, but our approach still
obtains the highest accuracy (even comparable with the reference model) and constraint satisfaction.
This is due to the fact that our approach better learns the prior knowledge in the logical constraint and
thus yields better transferability. An additional experiment of a transfer learning task on the CIFAR10
dataset showing the transferability of our approach can be found in Appendix[l|

4.2 HANDWRITTEN FORMULA RECOGNITION

We next evaluate our approach on a handwritten formula (HWF) dataset, which consists of 10K
training formulas and 2K test formulas (L1 et al., | 2020). The task is to predict the formula from the
raw image, and then calculate the final result based on the prediction. We adopt a simple grammar
rule in the mathematical formula, i.e., four basic operators (4, —, X, <) cannot appear in adjacent

!The set of stationary points contains local Nash equilibria (Jin et al.,2020). In other words, all local Nash
equilibria are stationary points, but not vice versa.
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Table 1: Results (%) of the handwritten digit recognition task. The proposed approach learns how the
logical constraint is satisfied (i.e., the Q-Sat.) while the existing methods fail.

MNIST USPS
Acc. Sat. —P-Sat. Q-Sat. Acc. Sat. —P-Sat. Q-Sat.

Baseline 89.4 274 274 0.0 754 8I.1 81.1 0.0
SL 855 970 97.0 0.0 48.7 98.8 98.8 0.0
DPL 88.0 78.0 78.0 00 256 88 8.8 0.0
PD; 89.2 442 44.2 0.0 737 870 87.0 0.0
PD, 89.3 63.1 63.1 0.0 743 87.6 87.6 0.0
DL2 89.3 913 91.3 00 699 9838 98.8 0.0

Ours 98.8 98.9 49.7 97.7 80.2 98.8 90.5 75.2

Method

Table 2: Results (%) of the handwritten formula
recognition task. The proposed approach achieves  Taple 3: Results on the shortest distance pre-

the best results. diction task. The proposed approach achieves
o P the best results.
Method 2/80* Split ~ 5/20* Split
Acc. Sat. Acc. Sat. Method MSE/MAE Sat. (%)
Baseline 574 640 756 815 Baseline  8.90/2.07 43.9
PD, 62.1 632 765 78.6 PD, 9.11/2.11 46.1
PD, 625 625 764 784 DL2 14.21/2.68 65.3
DL2 629 575 793 86.6 Ours 7.09/1.87 69.0

Ours 651 824 795 928

* It refers to the proportion of labeled and unlabeled data used from the training set.

positions. For example, “3 4+ x9” is not a valid formula according to the grammar. Hence, given a
formula with k& symbols, the target logical constraint is formulated as [ := /\f;f (a;1 V aia), with
a1 = pdigits(xi) + Pdigits (XiJrl) =2and a;2 == pops(xi) + pops(XiJrl) = 1, where Pdigits (X) and
Pops (X) represent the predictive probability that x is a digit or an operator, respectively. This logical
constraint emphasizes that either any two adjacent symbols are both numbers (encoded by a;1), or
only one of them is a basic operator (encoded by a;2).

To show the efficacy of our approach, we cast this task in a semi-supervised setting, in which only a
very small part of labeled data is available, but the logical constraints of unlabeled data can be used
during the training process. The calculation accuracy and logical constraint satisfaction results are
provided in Table 2 In the table, we consider two settings of data splits, i.e., using 2% labeled data
and 80% unlabeled data, as well as using 5% labeled data and 20% unlabeled data in the training set.
It is observed that our approach achieves the highest accuracy and logical constraint satisfaction in
both cases, demonstrating the effectiveness of the proposed approach.

We also investigate whether the logical knowledge can boost the training efficiency. In details, we use
the labeled data only (i.e., 2% and 5% of training data) to train the model with/without the logical
constraints. Figure 2] plots of training and test accuracy with different iterations. The results illustrate
the high efficiency of our logical training algorithm compared with the plain training.

4.3 SHORTEST DISTANCE PREDICTION

We next consider a regression task, i.e., to predict the length of the shortest path between two
vertices in a weighted connected graph G = (V, E). Basic properties should be respected by the
model’s prediction f(-), i.e., for any v;,v;,vy € V, the prediction should obey (1) symmetry:
f(vi,vj) = f(v;,v;) and (2) triangle inequality: f(v;,v;) < f(vs,v) + f(vk,v;). We train an
MLP that takes the adjacency matrix of the graph as the input, and outputs the predicted shortest
distances from the source node to all the other nodes. In the experiment, the number of vertices is
fixed to 15, and the weights of edges are uniformly sampled among {1, 2, ...,9}.

The results are shown in Table[3] We do not include the results of PD; as it does not support this
regression task (PD; only supports the case when the softened truth value belongs to [0, 1]). It is
observed that our approach achieves the lowest MSE/MAE with the highest constraint satisfaction.
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(a) The training and test curves using 2% labeled data. (b) The training and test curves using 5% labeled data.

Figure 2: The learning curves of different settings. Our algorithm with logical constraints (the red
curves) significantly boosts the training efficiency compared to the plain case (the blue curves).

5
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Accuracy (%)
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(a) Accuracy of class classification (b) Accuracy of superclass classification

Figure 3: The accuracy results (%) of image classification on the CIFAR100 dataset. The proposed
approach outperforms the competitors in all the three cases for both class and superclass classification.

We further investigated the reason of the performance gain, and found that models trained by the
existing methods easily overfit to the training set (e.g., training MSE/MAE nearly vanished). In
contrast, the model trained by our method is well regulated by the required logical constraints, making
the test error more consistent with the training error.

4.4 IMAGE CLASSIFICATION

We finally evaluate our method on the classic CIFAR100 image classification task. The CIFAR100
dataset contains 100 classes which can be further grouped into 20 superclasses (Krizhevsky et al.,
[2009). Hence, we use the logical constraint proposed by [Fischer et al.| (2019), i.e., if the model
classifies the image into any class, the predictive probability of corresponding superclasses should
first achieve full mass. For example, the people superclass consists of five classes (baby, boy, girl,
man, and woman), and thus ppeopie(x) should have 100% probability if the input x is classified as
girl. We can formulate this logical constraint as /\ ¢, perclasses (Ps(X) = 0.0% V ps(x) = 100.0%),
where the probability of the superclass is the sum of its corresponding classes’ probabilities (for

example, ppeople(x) = pbaby (X) + pboy (X) + pgirl (X) + Pman (X) + Pwoman (X))

We construct a labeled dataset of 10,000 examples and an unlabeled dataset of 30,000 examples by
randomly sampling from the original training data, and then train three different models (VGG16,
ResNet50, and DenseNet100) to evaluate the performance of different methods. The results of
classification accuracy and constraint satisfaction are shown in Figure 3]and Table ] respectively. We
can observe significant enhancements in both metrics of our approach.

5 RELATED WORK

Learning with constraints. Research studies linking learning and logical reasoning have emerged
for years (Roth and Yih, 004|; [Chang et al.l 2008}, [Cropper and Dumandéid}, 2020). Early research
mostly concentrated on mining well-generalized logical relations (Muggleton, |1992), i.e., inducing a
set of logical (implication) rules on the basis of some given logical atoms and examples Recently,
several work switched to training the model with deterministic logical constraints that are explicitly
provided (Kimmig et al.}[2012; [Giannini et al., 2019; Nandwani et al.} 2019; [van Krieken et al.|
They usually use an interpreter to soften the truth value, and borrow the operators in fuzzy logic Zadeh
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Table 4: The constraint satisfaction results (%) of image classification on the CIFAR100 dataset. The
proposed approach outperforms the competitors in all the three cases.

Method VGG16 ResNet50 DenseNet100

Baseline 63.0 48.5 39.7
PD; 57.7 63.9 53.5
PD, 57.5 69.2 54.9
DL2 31.2 78.4 62.2
Ours 81.1 87.2 88.2

(1965)); Wierman|(2016) to encode the logical connectives. However, such conversion is usually quite
costly, as they necessitate the use of an interpreter, which should be additionally constructed by the
most probable explanation (Bach et al., 2017). Moreover, the precise logical meaning is lost due to
the introduction of the interpreter and it is also unclear if such encoding bears important properties
such as monotonicity. To address this issue, |Fischer et al.|(2019) abandon the interpreter, and use
addition/multiplication to encode logical conjunction/disjunction, which still lacks the monotonicity
property. [ Xu et al.|(2018)) propose a semantic loss to impose Boolean constraints on the output layer
to ensure the monotonicity property. However, its encoding rule does not discriminate different truth
assignments, causing the shortcut satisfaction problem. [Hoernle et al.|(2021) aim at training a neural
network that fully satisfies logical constraints, and hence directly restrict the model’s output to the
constraint. Although they introduce a variable to choose which constraint should be satisfied, the
variable is categorical and thus limited to mutually exclusive disjunction.

Neuron-symbolic learning. Our work is related to neuro-symbolic computation (Garcez et al.,[2019;
Marra et al.} 2021)). In this area, integrating learning into logic has been explored in several directions
including neural theorem proving (Rocktischel and Riedel, 2017; Minervini et al., 2020), extending
logic programs with neural predicates (Manhaeve et al.l 2018), encoding algorithm layers such as
satisfiability solver into DNNs (Wang et al.,|2019; Chen et al., 2020), as well as incorporating neural
networks into logic reasoning (Yang et al.,[2017; [Evans and Grefenstettel 2018};|Dong et al.,|2019).
Along this direction, there are other ways to integrate logical knowledge into learning, e.g., knowledge
distillation (Hu et al.,|2016)), learning embeddings for logical rules (Xie et al.| 2019), treating rules
as noisy labels (Awasthi et al., [2020), etc. Some of the existing work combines neural learning and
logic reasoning in a compositional way (Dai et al.| 2019; [Tsamoura et al., [2021]) and explores the
integration of symbolic knowledge into reinforcement learning (Li et al., [2020).

Multi-objective learning. Training model with logical constraints is essentially a multi-objective
learning task, and there are two typical solutions (Marler and Aroral, |2004), i.e., the e-constraint
method and the weighted sum method. The former rewrites objective functions into constraints,
i.e., solving min, f(z),s.t.,g(z) < e instead of the original problem min, (f(x),g(z)). For ex-
ample, Donti et al.[(2021]) directly solve the learning problem with (hard) logical constraints via
constraint completion and correction. However, this method may not be sufficiently efficient for
deep learning tasks considering the high computational cost of Hessian-vector computation and the
ill-conditionedness of the problem. The latter method is relatively more popular, and it minimizes
a proxy objective, i.e., a weighted average min, w; f(x) + wag(z). Nevertheless, such method
strongly depends on the weights of the two terms, and may be highly ineffective when the two losses
conflict (Kendall et al., [2018};|Sener and Koltun, [2018)).

6 CONCLUSION

In this paper, we have presented a new approach for better integrating logical constraints into deep
neural networks. The proposed approach encodes logical constraints into a distributional loss that
is compatible with the original training loss, guaranteeing monotonicity for logical entailment,
significantly improving the interpretability and robustness, and avoiding shortcut satisfaction of
the logical constraints at large. Under a variational framework, we have put forward new training
algorithms based on gradient descent ascent with theoretically guaranteed convergence. The proposed
approach has been shown to be able to improve both model generalizability and logical constraint
satisfaction by extensive experiments. One limitation of the current work lies in the computational
cost when a large number of logical constraints are provided, and we leave this as the future work.
Additionally, our approach relies on the quality of the manually inputted logical formulas, and
complementing it with automatic logic induction from raw data is an interesting future direction.
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A PROOF OF THEOREM [I]

A.1 TRANSLATION EQUIVALENCE OF LOGICAL CONJUNCTION

The following proposition shows the equivalence of our translation and the original expression of
logical conjunction.

Proposition 1. Given | := /\f:1 v; < ¢; where v; = fyw.i(x,y) and S; := max(v; — ¢;,0) for
i=1,...,k if {t7}£_, are the optimal solution of the cost function S (l),

k
Z 778 (v;) = max(S(vy),...,S(v)).
i=1
Furthermore, 0* = fy+«(X,y) =l if and only if w* is the optimal solution of miny, Sx(w), with the
optimal value

Sa(w*) = max(Sy(w*),...,Sk(w")) =0.

Proof. For the minimization of the cost function S (w)

min Sy (w) := max(S1(w),...,Sk(w)), )
we introduce a slack variable ¢, and rewrite Eq. equation 9] as
mi? t, st,t>S;(w),i=1,... k. (10)

The Lagrangian function of Eq. equation|[I0]is

k
L(w,t;my,...,7) =t+ ZTi(Si(W) —t),
i=1

where 7; > 0,7 = 1,..., k. Let the gradient of ¢ vanish, we can obtain the dual problem:
max min 7157 (w) + -+ + 765k (W),
T1yeeny Tk W

S.t. 44 =1,
0<r<1li=1,...,k
By using the max-min inequality, we have

max min7yS1(w) + -+ + 7%Sk(w) < min max 7151(w) + - + 7Sk (W).
TlyeesTk W W T1,..3Tk

Therefore, the cost function S (w) of the logical conjunction can be computed by introducing the
dual variables 7;,7 = 1,..., k:

Sa(w)= max 751 (W) + -+ 7Sk(wW).
71,7k €[0,1]
T1t- =1

The Karush Kuhn-Tucker (KKT) condition of Eq. equation[I0]is

VS (w) + -+ 7 VSi(w) =0,

4., =1,

t>Si(w),7; >0, i=1,...,k,

Ti(t —Si(w))=0, i=1,...,k.
We denote the index set of the largest element in the set {S;}*_, by Z. Suppose dual variables
{7;}¥_, converge to {7}*_,, then 7 = 0forany j ¢ Z, and thus } ;- 7 = 1. Since S;(w) =
max(S1(w),...,Sp(w)) for any i € Z, we have

Sa(w) =717S1(w) + -+ 7 Sk(w)

=7 Si(w) = max(Sy(w), ..., Sk(w)).

€T
Furthermore, if w* is the optimal solution and S, (w*) = 0, we have
Si(w*) =+ = Sp(w*) =0,

which implies that w* ensures the satisfaction of the constraint /\f=1 v; < ¢
On the other hand, if v* = fy«(x,y) entails the logical conjunction /\f:1 v; < ¢;, then we have

Si(w*) = 0fori = 1,...,k. Therefore, we have w* is the optimal solution of Sx(w*) with

13
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A.2 TRANSLATION EQUIVALENCE OF LOGICAL DISJUNCTION

We also have the following proposition demonstrating the equivalence between the cost function
Sy (1) and the original expression of logical disjunction.

Proposition 2. Given | := \/f:1 v; < ¢, where v; = fw,i(X,y) and S; := max(v; — ¢;,0) for
i=1,...k if {1} le are the optimal solution of the cost function S\ (1), we have

k
Z 7S (v;) = min(S(vy),. . ., S(vx)).

Furthermore, 0* = fw-(x,y) =l if and only if w* is the optimal solution of miny, S\ (W), with the
optimal value
Sy(w*) = min(Sy(w*),...,Sk(w")) =0.

Proof. For the minimization of the cost function Sy (w)

min Sy (w) := min(Sy(w), ..., Sk(w)), (11)
we introduce a slack variable ¢, and rewrite Eq. equation [TT] as
minmtax t, st,t<S;(w),i=1,... k. (12)

The corresponding dual problem is

min min 7157 (w) + -+ + 765k (W),
T1yeeny Tk W

s.t. n+-+T1=1,
0<<1l,i=1,... k.

Therefore, the cost function S\ (w) of the logical disjunction can be computed by introducing the
dual variables 7;,¢ = 1,..., k:

Sy(w)= min 7S (W) + -+ 7Sk(wW).
T1,...,Tk€[0,1]
TittTe=1

Similar to the proof of Proposition [T} by using the KKT condition of Eq. equation T2} and supposing
dual variables {7;}¥_; converge to {77 }%X_,, we can obtain that

Sv(w) =1 S1(w) + -+ 4 73 Sk (W)
= 77Si(w) = min(S1(w), ..., Sk(w)).
i€T
If w* is the optimal solution and S, (w*) = 0, there exists S;(w*) = 0, which implies that w*
ensures the satisfaction of the constraint \/f:1 v; < ¢

On the other hand, if w* entails the logical disjunction \/f:1 v; < ¢4, then there exists S;(w*) = 0.
Therefore, we have w* is the optimal solution of Sy (w*) with Sy (w*) = 0. O

A.3 PROOF OF THEOREM[I]

The proof can be directly derived from Proposition[T]and Proposition 2}

B PROOF OF THEOREM 2]

Proof. We first denote all variables v, . .., vy involved in the logical constraint by a vector v, and in
this sense the corresponding constants ¢;,7 = 1, ..., k, in the logical constraint should be extended
to R U {+00} such that the constraints o and § can be written as

(ﬁ)).

o= Niez Vies (0 < el), Bi=Aier Vies (v < cf]

For the sufficient condition, suppose that v* |= «. Then, we have S, (v*) = 0 by using Theorem

Since S, (v) > Sg(v) holds for any v € V, and the cost function is non-negative, we can obtain that
S(v*) = 0, which implies that v* |= 3.

For the necessary condition of Theorem [2] we introduce the following proposition.

14
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Proposition 3. Given the underlying space V, for any point v € V and subset C' C V), we define the
distance of v from C as

dist(v, C) = inf{dist(v,u) | u € C}.
Moreover, let A and B be two closed subsets of V, if A is not an empty set, then the sufficient and
necessary condition for A C B is that

dist(v, A) > dist(v, B), Yv e V.
Therefore, let A and B be two sets implied by « and S, i.e.,
A=Niez Ujeg {v|v < CZ(»?)}, B =NiezUjeg {v|v < CE?L

by using Proposition [3| we can obtain that o = 3 if and only if dist(v, A) > dist(v, B) for any
v eV

Given atomic formulas a; := v < ¢; and a2 := v < 3, the corresponding cost functions are
S1(v) = max(v — ¢1,0) and S3(v) = max(v — ¢g, 0), respectively. Then, the cost functions are
essentially the (Chebyshev) distances of v to the constraints {v | v < ¢;} and {v | v < ¢},
respectively. (It should be noted that v < ¢ can be decomposed into the conjunction of v; < ¢;,7 =
1,..., k). Hence, through Proposition the sufficient and necessary condition of a; = as is that
Say (V) > Sg,(v) forany v € V.

Now, the rest is to prove that the cost functions of logical conjunction and disjunction are still the
distance of v from the corresponding constraint, and it is not difficult to derive the results through
a few calculations of linear algebra. One can also obtain a direct result by using Martinén| (2004,
Theorem 1). O

C CONCRETE EXAMPLES IN ROBUSTNESS IMPROVEMENT

(1) Let us consider a logical constraint (v? < —1) V (3v > 2), the corresponding cost function based
on the min and max operators is S(v) = min(v? + 1, max(2 — 3v, 0)). If we directly minimize S(v)
and set the initial point by vy = 0, we will have S(vg) = v3+1 = 1 and VS (vg) = 2vy = 0. Hence,
vo has already been an optimal solution of min .S(v). In this case, the conventional optimization
technique is not effectual, and cannot find a feasible solution that entails the disjunction even though
it exists. Nevertheless, with the dual variable 7, the minimization problem is min,, , 7'(’U2 +1)+
(1 — 7)(max(2 — v,0)). Given initial points vy = 0 and 75 = 0.5, one can easily obtain a feasible
solution v* = 1.5 via the coordinate descent algorithm.

(2) For translation strategy used in DL2, the cost functions of conjunction a; A a9 and disjunction
ay V as are defined by Sx(v) = S(v1) + S(vz) and S\ (v) = S(v1) - S(va), respectively. The
conjunction translation is essentially a special case of our encoding strategy (i.e., 71 and 7o are fixed
to 0.5). For the disjunction, the multiplication may ruin the magnitude of the cost function, making
it no longer a reasonable measure of constraint satisfaction. Moreover, this translation method also
brings more difficulties to numerical calculations. For example, considering the disjunction constraint
(v=1)V(w=2)V(v=3),S/(v) =S(v1)-S(ve)-S(v3)induces two more bad stationary points
(i.e., v = 1.5 and v = 2.5) compared with min, , S\ (v) = 71.5(v1) + 725 (v2) + 735 (v3).

D THE COMPUTATION OF KL DIVERGENCE

For input-output pair (x, y), with the logical variable z, the KL divergence is

KL(p(y,z | x) | pw(y,z | x))

,Z | x
-/ Py, | x)log 221X
Y,z

, Pw(y,2z | %)
_ 2150 (10e PO 1) 0 p(z] %)
‘/y,,p("” | )(l B @ 12 gpw<z|x,y>>

For the first term in RHS,

/y by | %)l m — KL(p(y | %)llpw(y | %)),

)
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and for the second term in RHS,

/ (y,zlx)long/ Py | ¥)p(z | x,y) log L1 XY)

(z | x,y) 7 pw(z | x,y)
=Eyx [/p(z | x,y)logm
=Eyx[KL(p(z | x,y)|lpw(z | x,¥))].

)

It follows that
KL(p(y,z | x)|lpw(y,z | x)) = KL(p(y | x)[|lpw(y | X)) + Eyx[KL(p(z | x,¥)|lpw(z | x,¥))].

E KL DIVERGENCE OF TRUNCATED GAUSSIANS

Given two normal distributions truncated on [0, +0c) with means j; and p5 and variances 0% and
o3, the KL divergence can be computed as (Choudrey, 2002)[ Appendix A.5]

1 2 2 )2
KL(TAG|TA) = 5 KO; - ) —log 2L 4 (’“2“2)}
93 93 93
1 1 2/,&2 g1 1
g+ - 2
ot o3 o3 " V2m exp(g—)(l — erf(— )
1- erf(—\/%;)
+log | ———— .~ |
1- erf(—\/%l)
where erf(-) is the Gauss error function.
Let ;11 = 0 and o4 limit to zero. We can obtain that
2
lim KL(TA1(0,01)[ TN 2 (12, 02)) = —log o2 + L2 1 log(1 — erf(——£2-)).
010 203 \[02

F THE ALGORITHM OF LOGICAL TRAINING

Algorithm 1 Logical Training Procedure

Initialize: w° randomly; 77 and 70 uniformly; §° = 1.
fort=0,1,...,do
Draw a collection of i.i.d. data samples {(x;,y:)}Y ;.
witl « wt — g - Vo L(W, 8; Ta, 7).

N
Ot /(2L mi)/N.
H'l — T/\ +na - Vo, L(w,8; 75, 7).
H'l — 7L —ny Vo, L(W,8;TA, 7).
end for

In practice, we set a lower bound (0.01) for the variance 2 considering the numerical stability.

G OPTIMALITY OF ALGORITHM [T

We first discuss the optimality of dual variables (7, 7). Since p is convex w.r.t. to 74 and Ty,
and L(w,d;7Tx,Ty) is strictly increasing and convex w.r.t. p; on [0,+00), we can derive that
L(w,d;Th, Tv) is convex w.r.t. T4 and Ty, via the convexity of composite functions (Boyd et al.,
2004, Sec. 3.2). Hence, min,, max,, L(w,d; Tx, Tv) is in fact a convex-concave optimization, and
the NC-PL assumption is satisfied (Yang et al.| 2021)), thus the GDA algorithm with suitable step size
can achieve a global minimax point (i.e., saddle point) in O(z~2) iterations (Nedi¢ and Ozdaglar,
2009; |Adolphs, 2018). Some more properties of (X, 7) are also detailed in Proposmon' ' and
TheoremlIl
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For the minimization of L(w, §; Tx, 7y) W..t. w and d, it can be viewed as a competitive optimization
with
H‘li‘i,n Ktraining(w) + glogic(wa 5)7 main glogic (W7 6),

where Ciraining (W) and £iogic (W, 8) are training loss and logical loss, i.e.,

N
Ciraining (W) = Y KL(p(ys | %) |[pw (vi | %2),
i=1
N
glogic (W, 5) = Z ]Ey,i |x; [KL(p(Zl | X, Yi) ||pw (Zi ‘ Xi, yz))]
i=1
Thus, directly alternating gradient descent on w and § may converge to limit cycles (Schaefer and
Anandkumar] [2019). However, Algorithm [I|can indeed ensure w* to be an approximately stationary

point (i.e., the norm of its gradient is small). Follow the proof of |Davis and Drusvyatskiy| (2018
Theorem 2.1), we present the convergence guarantee as follows.

We start with the weakly convexity of function miny, f(-,y).

Proposition 4. Suppose f: X x Y — R is £-smooth, and ¢ (-) = arg miny, f(-,y) is continuously
differentiable with Lipschitz constant Ly, then v(-) = miny f(-,y) is o-weakly convex, where
0= ff(l + Lw).

Proof. Lety’ =1 (x’) and ¥ = ¢(x). Since f is £;-smooth, we can obtain that
v(x') = f(X,¥) = f(x,9) + (VxS (x,9), X — %)

R T, -
+(Vy [(x,5).¥ - ¥) (Ix" = xI* + 5" = 51 (13)

_
2

l ¢
> 0(x) + (Vv (x), X =) = e = || = =% = x|,

which finishes the proof. O

The p-weakly convexity of v(+) implies that v(x) + (0/2)]|x||? is a convex function of x. Next, we
introduce the Moreau envelope, which plays an important role in our proof.

Proposition 5. For a given closed convex function f from a Hibert space H, the Moreau envelope of
f is defined by
. 1 9
cesa) =i { 706+ g7l = o1

where || - || is the usual Euclidean norm. The minimizer of the Moreau envelope e, ¢(x) is called the
proximal mapping of f at x, and we denote it by

. 1
Prox;;(x) = argmin {f(y) + 2—||y — x||2} .
yeH t

It is proved in |Rockafellar| (2015| Theorem 31.5) that the envelope function e.s(-) is convex and
continuously differentiable with

1
Ves(z) = ;(.2? — Proxyf(z)). (14)

The following theorem bridges the Moreau envelope and the subdifferential of a weakly convex
function (Jin et al., 2020, Lemma 30). For details, a small gradient || Ve, (x)|| implies that x is close
to a nearly stationary point X of v(-).

Theorem 4. Assume the function v is p-weakly convex. For any A < 1/p, let X = Proxy,(x). If
Ve (x)]| <€ then

IXx—x|| <Xe, and min_ |g|| <e.
geov(X)

This theorem is an immediate result of the fact that stationary points of v(-) coincide with those of

the smooth function ey, (), and one can refer toDrusvyatskiy and Paquette| (2019, Lemma 4.3) for
more details. Now, we are ready to prove the convergence of Algorithm|[I]
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Theorem 5. Suppose f is {s-smooth and L-Lipschitz, define v(-) = miny f(-,y) and ¢(-) =
argminy, f(-,y). The iterative updating of minimization miny y f(x,y) is

Xip1 = Xt — NV f(X,¥),

Yir1 = 0(Xez1), st [[yerr — ()| < e
Assume that 1(-) and ¢(-) are Lipschitzian with modules L., and L, and let o = £;(1 + Ly,) and
p=1Ls(1+ QLZ). Then, with step size n = v/\/T + 1, the output X of T iterations satisfies

v /2,(X0) — ming v(x)) + py2L2
<( /2;2( 0) ( )) %% f—&-p@é),

E[Hvev/2p )H ] 7\/1—,7_’_1

(p + 0)
when p > o, and

E[IVey/2,(%)|] <

4Q2 (ev/QQ(Xo)—min ( ))+Q’7 L + 0oe
o(30 = p) WT+1 e

otherwise.
Proof. We have

- - n ! -
v) = (< 5) 2 f yi) — (Ve S5y = §) = Sy =)
14 —
= [y = o lye =¥
1 14 ,
> FOxeye) + (Vo (30, ¥0) X = x0) = L = |* = Fllye = 51

1 ¢ -
> w(xe) + (Ve (%0, y0). % = 30) = L =l = FHllye =3I

Since
lye =517 = llye = v (I* < 2(lye — o) + o) = v (x)]])?
< 2(|lye — ()P + €) = 2([lo(xe) = o(X)I* +€) < 2(L [1xe — x'||* +¢),
where the second inequality is derived by using the Cauchy-Schwarz inequality. Hence, we have

lf +2efL2

v(x') > v(xe) — lre+ (Ve f(xe,y1), X — %) — ( 2)|x" = x| (15)

Letp=4{;+2¢ fL?a- Next, we discuss two cases of p > pand p < p, respectwely.
o If p > p, then let X; = Prox,, /2, (x;) = arg miny v(x) + p||x — x¢|?. We can obtain that
€u/2p(Xe41) = min {v(x) + pllx = x|}
< 0(Xe) + pllxeen — X
= 0(X) + pllxe = nVaf (%0, ¥1) — Xu?
= 0(Xe) + plIxe — RelI” + 200 (Vacf (X2, y1), Xt — %0) + 102 pl| VS (%1, y20) |12
= €y 2p(Xt) + 20 (Vs f (x4, 51), Kt — X¢) + 177 pl| Vi f (%1, 32) |2
< euyaplxe) + 2mp (v(%e) = v(xe) + Lye+ Blxi = Rl?) + %L,

and the last inequality is derived by Eq. equation[T3] Taking a telescopic sum over ¢, we have

eu/20(XT) < €4/25(X0) + QUPZ ( v(Xe) —v(xe) + Lpe+ *th =l ) + 0’ pL3T.
t=0

Rearranging this, we obtain that

2

T .
1 Xg) — miny v(x L
o) ) e TI ae

ey Py 2 2><ev/2p
71 2 (00 — o) Gl — ) < )
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Since v(x) is (0/2)-weakly convex, and thus v(x) + p||x — x;||? is (0/2) strongly convex when
p > p. Therefore, we can obtain that

v(x) = v(&e) = Slxe = el

=v(x¢) + pllx¢ — xt|| v(X¢) — plIXe — Xt||2 + g”xt - itHQ

(v0xe) + plixe = x| = min {w() + pllx = xal|*} ) + £l — %

p+o =~ p+o
9 Xt||2 802 (Xt)HQ)

where the last equation holds by using Eq. equation[I4} One can prove the result by combining this
with Eq. equation [16]

v

¢ —

o If p < p, then let X; = Prox,, 2,(x;) = arg miny v(x) + ol|x — x;[|*>. We can obtain that
€v/20(Xe41) = min {v() + ollx — xi41 (1}
<o(Re) + ollxes1 — Xe?
=v(Xy) + ol|xe — NV f (X, y1) — X ?
= 0(Ry) + ollxe — Rel|* + 200 (Vi f (%0, y1), Re — X¢) + 020l Ve f (%1, 30) |12
= €y/20(Xe) + 210 (Vi f(Xe,¥1), Xe — X¢) + 00|\ Vs f (x¢, yo)|?

< euyag(x1) + 200 (V(R0) = () + Lye+ Sllxe = %i[[2) +n’oL}.

Taking a telescopic sum over ¢, we have

T

v/20(XT) < €4y /20(X0) + 277@2 ( Xy) —v(xy) + lpe + *HXt — x| ) + UZQL?”T'
t=0
Rearranging this, we obtain that
T . 2
1 % P 2 €v/20(X0) — miny v(x) nLy
I ; (v6xe) = v(®) = Slxe = %ell?) < T, +het =L an

Since v(x) is (0/2)-weakly convex, v(x) + o||x — x¢||? is (0/2) strongly convex. Then, we can
obtain that

v(x) = v(&e) = Slxe = el

~ ~ p ~
=v(x¢) + ollx¢ — Xt||2 —v(Xt) — ollX: — XtH2 +(0— §)th - XtH2

(U(Xt) + ollx¢ — x4 — min {v(x) + ollx — Xt|\2}) + (0 — g)HXt —%e|l?

o—p < 30—
> (0+ =5 )Ixe = %|” = S0 2V ew 20 (x) 1%,
and we finish the proof with plugging this into Eq. equation O

To ensure the Lipschitz continuity of L(w,d) in our problem, we practically impose an interval
[O1ower; Oupper]. Furthermore, although we can obtain the closed-form expression of p(w), i.e.,

1
:N;Hiy

it is difficult to compute the closed-form expression of 1)(w) = argming L(w, d) in our work.
However, for any = ¢)(w), it holds that
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where o means the Hadamard product. Since p1; o ¢(—4*) is bounded, we can obtain that 1)(w) — &
is also bounded, and thus satisfies the assumption in Theorem E}

We finally prove that, the NC-PL holds when the logical constraints are not sufficiently satisfied.
Since L(w, d; T, ) is strictly increasing and convex w.r.t. u; on [0, +00), we instead analyze the
cost function, i.e., pt; = Sq (V).

Proposition 6. Given logical constraint o, assume its corresponding cost function is S, (v), and
max,, Min., S, (v) > k with constant k > 0. Then, the NC-PL property for any T, i.e.,

IVr Sa(ws 7a, ) I* = [max So (v; 7a, 73v) = Sa(v;7a, 7))

holds for any Th.

Proof. Let t;; = max(v;; — ¢;j,0), we have

IV, Sa(o3 Ta, 7P = D (Y vigtiy)?,

i€ jeJ
and
max Sq (v; Th, Tv) = max( E vijti;).
TA €L 4
JjET
Since

max g v;it;; > maxmint;; > K
iel L= = et jeg Y ’
JjeT

we can obtain that

HV,.ASQ(I);‘I'A,7'\/)||2 > (max g Vijtij)Q > Kk max g Vijti; = kmax Sy (v; Ta, TV).
i€l €T TA
jeTJ jeTg

Now, we can complete the proof by using the non-negativity of S, (v; Ta, Tv ). [

H ADDITIONAL DETAILS FOR EXPERIMENTS

Handwritten Digit Recognition. For this experiment, we used the LeNet-5 architecture, set the
batch size to 128, the number of epochs to 60. For the baseline, DL2, and our approach, we optimized
the loss using Adam optimizer with learning rate le-3. For the PD method, we direct follow the
hyper-parameters provided in its Github repository. For the SL method, we set the weight of constraint
loss by 0.5, and optimized the loss using Adam optimizer with learning rate Se-4 (which is used in its
Github repository).

Handwritten Formula Recognition. For this experiment, we used the LeNet-5 architecture, set the
batch size to 128, and fixed the number of epochs to 600. For the baseline, DL2, and our approach,
we optimized the loss using Adam optimizer with learning rate 1e-3 and weight decay le-5. For the
PD method, we direct follow the hyper-parameters provided in its Github repository.

Shortest Path Distance Prediction. We used the multilayer perceptron with |V'| x |V| input neurons,
three hidden layers with 1,000 neurons each, and an output layer of |V'| neurons. We used the first
node (with the smallest index) as the source node. The input is the adjacency matrix of the graph and
the output is the distance from the source node to all the other nodes. We applied ReL.U activations
for each hidden layer and output layer (to make the prediction non-negative). The batch size and the
number of epochs were set to 128 and 300, respectively. The network was optimized using Adam
optimizer with learning rate le-4 and weight decay Se-4.

CIAFR100 Image Classification. In this task, we set batch size by 128, and the number of epochs
by 3,600. We trained the baseline model by SGD algorithm with learning rate 0.1, and set the learning
rate decay ratio by 0.1 for each 300 epochs. For other methods, we used Adam optimizer with
learning rate Se-4.
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I RESULTS OF TRANSFER LEARNING EXPERIMENT

To show the robustness of the proposed approach in transfer learning, we use the STL10 dataset to
evaluate a ResNet18 model trained on the CIFAR10 dataset. We set the batch size of 100, and the
number of epochs by 300. For both baseline and our approach, we remove the data augmentation
operators in training process, and optimize the loss by Adam optimizer with learning rate 1e-3. The
model is trained using 3,000 labeled images and 3,000 unlabeled images (only used for our approach).
We design a similar logical constraint to that in the CIFAR100 experiment. For details, we define two
superclasses for CIFAR10 dataset, i.e., machines (denoted by m) and animals (denoted by a), and the
constraint is formulated as

(Pm (x) = 0.0% V pp(x) = 100.0%) A (pa(x) = 0.0% V pa(x) = 100.0%) .

The results are shown in Table[5] We do observe that the logical rule is more stable compared with
model accuracy. Moreover, although such weak logical constraint only slightly improve the model
(class and superclass) accuracy on CIFAR10, this increment is still preserved when domain shift
occurs.

Table 5: Results from CIFAR10 to STL10.

Datasets  Class Acc. (%) Superclass Acc. (%) Sat. (%)
Baseline 65.8 —32.6 927 — 1764 90.1 — 884
Ours 68.1 - 354 939 —-78.1 92.6 —+91.9
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