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Abstract

Graph (structure) augmentation aims to perturb the graph structure through heuristic1

or probabilistic rules, enabling the nodes to capture richer contextual information2

and thus improving generalization performance. While there have been a few3

graph structure augmentation methods proposed recently, none of them are aware4

of a potential negative augmentation problem, which may be caused by overly5

severe distribution shifts between the original and augmented graphs. In this paper,6

we take an important graph property, namely graph homophily, to analyze the7

distribution shifts between the two graphs and thus measure the severity of an8

augmentation algorithm suffering from negative augmentation. To tackle this prob-9

lem, we propose a novel Knowledge Distillation for Graph Augmentation (KDGA)10

framework, which helps to reduce the potential negative effects of distribution11

shifts, i.e., negative augmentation problem. Specifically, KDGA extracts the knowl-12

edge of any GNN teacher model trained on the augmented graphs and injects it13

into a partially parameter-shared student model that is tested on the original graph.14

As a simple but efficient framework, KDGA is applicable to a variety of existing15

graph augmentation methods and can significantly improve the performance of16

various GNN architectures. For three popular graph augmentation methods, namely17

GAUG, MH-Aug, and GraphAug, the experimental results show that the learned18

student models outperform their vanilla implementations by an average accuracy of19

4.6% (GAUG), 4.2% (MH-Aug), and 4.6% (GraphAug) on eight graph datasets.20

1 Introduction21

In many real-world applications, including social networks, chemical molecules, and citation net-22

works, data can be naturally modeled as graphs. Recently, the emerging Graph Neural Networks23

(GNNs) [5, 13, 22, 45, 23, 25, 47, 59] have demonstrated their powerful capability due to their24

superior performance in various graph-related tasks, including link prediction [55], node classifica-25

tion [22], and graph classification [7]. Despite their great success, GNNs usually suffer from weak26

generalization due to its heavy reliance on the quantity of annotated labels and the quality of the graph27

structure. To boost generalization capabilities, a natural solution is to increase the amount of training28

data by creating plausible variations of existing data, which have been widely adopted in fields such29

as computer vision [31, 28, 9, 37, 26, 29, 4, 15] and natural language processing [44, 1, 34, 6, 32].30

The data augmentation on graphs can be mainly divided into two branches: node feature augmentation31

and graph structure augmentation. While the former has been well studied by directly extending32

existing approaches for image and text data to graph data [51, 20, 16], comparatively little work has33

been done to study graph structure augmentation [33, 2, 58, 30]. Following the nomenclature of34

existing works [58, 30], we directly abbreviate graph (structure) augmentation to graph augmentation35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



for the sake of brevity in this paper. The purpose of graph augmentation is to reasonably perturb the36

graph structure through heuristic or probabilistic rules, enabling the nodes to capture richer contextual37

information and thus improving generalization performance. For example, DropEdge [33] randomly38

removes a fraction of edges before each training epoch, in an approach reminiscent of dropout [38].39

Besides, AdaEdge [2] iteratively adds (removes) edges between nodes predicted to have the same40

(different) labels with high confidence. In contrast to these heuristic methods, GAUG [58] proposes to41

optimize the graph augmentation and GNN parameters in an end-to-end manner. Similarly, MH-Aug42

[30] proposes a novel framework that draws a sequence of augmented graphs from an explicit target43

distribution, which enables flexible control of the strength and diversity of augmentation.44

In this paper, we identify a potential negative augmentation problem for existing graph augmentation45

methods, i.e., the augmentation may cause overly severe distribution shift between the augmented46

graphs used for training and the original graph used for testing, which leads to suboptimal general-47

ization. Moreover, we conduct extensive experiments to demonstrate the existence and hazard of48

distribution shifts and find that the direction of distribution shifts may be opposed on homophily49

and heterophily graphs. We propose a solution to the identified problem by adopting a Knowledge50

Distillation for Graph Augmentation (KDGA) framework, which helps to reduce the potential nega-51

tive effects of distribution shifts. Specifically, it extracts the knowledge of any GNN teacher model52

trained on the augmented graphs and injects it into a partially parameter-shared student model that is53

tested on the original graph. As a general framework, KDGA can significantly improve the vanilla54

implementations of various popular graph augmentation methods and GNN architectures.55

Our contributions are summarized as follows: (1) We are the first to identify a potential negative56

augmentation problem for graph augmentation, and more importantly, we have described in detail57

what it represents, how it arises, what impact it has, and how to deal with it. (2) We proposes a novel58

Knowledge Distillation for Graph Augmentation (KDGA) framework for the identified problem by59

directly distilling contextual information from augmented graphs. (3) We provide comprehensive60

experimental results showing that KDGA is applicable to a variety of graph augmentation methods61

and GNN models; it substantially outperforms the vanilla implementations across various datasets.62

2 Background and Related Work63

Structure Augmentation for Graphs. Data augmentation is an effective technique to improve64

generalization. Despite the great progress on node feature augmentation [51, 20, 16], comparatively65

little work study graph (structure) augmentation [33, 2, 58, 30] due to the non-Euclidean property of66

structures. For graph data, the mainstream algorithms for structure augmentation are divided into two67

categories: heuristic and learning-based. As a typical heuristic algorithm, DropEdge [33] randomly68

remove edges according to the hand-crafted probability. In a similar way, AdaEdge [2] iteratively69

adds (removes) edges between nodes predicted to have the same (different) labels. Different from the70

above heuristic methods, GAUG [58] propose to optimize the graph augmentation and learnable GNN71

parameters in an end-to-end manner. Instead, MH-Aug [30] proposes a sampling-based augmentation,72

where a sequence of augmented graphs are directly drawn from an explicit target distribution.73

Graph Structure Learning and Graph Contrastive Learning. Two closely related topics to graph74

augmentation are Graph Structure Learning [19, 24, 53, 21, 3] and Graph Contrastive Learning75

[20, 16, 52, 27, 60, 54], but they are quite different in terms of learning objectives and evaluation76

protocols. The learning goal of structure learning is to estimate a new structure with high quality77

[10, 8]. Instead, graph augmentation aims to reasonably perturb the graph structure during training to78

produce a set of augmented graphs, enabling nodes to receive richer contextual information; such79

augmentations allow the model to generalize better across those variations. As for the evaluation80

protocol, the augmented graphs are only used during training and are not available during testing. In81

contrast, for graph structure learning, the learned structure is used during both training and testing.82

There are also some recent works [39, 62, 50] exploring how to perform data augmentation for graph83

contrastive learning, but they focus on automatically selecting the most appropriate transformations84

from a given pool to improve contrastive learning, rather than learning customized augmentation85

strategies for GNNs. More importantly, graph contrastive learning aims to learn transferable knowl-86
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edge from abundant unlabeled data in an unsupervised setting and then generalize the learned87

knowledge to downstream tasks. Instead, graph augmentation usually works in a semi-supervised88

setting, i.e., the label information is available during training. The graph structure learning and89

contrastive learning are not newly born topics, and we refer readers to the recent surveys [46, 61].90

3 Preliminaries91

Notions. Given a graph G = (V, E), where V is the set of N = |V| nodes with features X =92

[x1,x2, · · · ,xN ] ∈ RN×d and E denotes the edge set. Each node vi ∈ V is associated with a93

d-dimensional features vector xi, and each edge ei,j ∈ E denotes a connection between node vi and94

vj . The graph structure can also be denoted by an adjacency matrix A ∈ [0, 1]N×N with Ai,j = 195

if ei,j ∈ E and Ai,j = 0 if ei,j /∈ E . Consider a semi-supervised node classification task where96

only a subset of node VL with corresponding labels YL are known, we denote the labeled set as97

DL = (VL,YL) and unlabeled set as DU = (VU ,YU ), where VU = V\VL. The node classification98

task aims to learn a mapping Φ : V → Y on labeled data DL, so that it can be used to infer labels YU .99

Background on Graph Homophily Ratio. The homophily ratio is an important graph property that100

reflects the extent to which the graph structure adheres to the "label smoothness" criterion. The graph101

homophily ratio r can be defined as the fraction of intra-class edges in the graph, as follows102

r =
|{(i, j) : (i, j) ∈ E ∧ yi = yj}|

|E|
(1)

where yi and yj are the ground-truth labels of node vi and vj . In practice, the distribution space103

size of a discrete graph structure A ∈ [0, 1]N×N is 2N
2

, making it tractable to directly estimate104

the distribution differences between two discrete graph structures. In this paper, we take the graph105

homophily as a desirable option to analyze the distribution shifts between the original and augmented106

graphs, thus measuring the severity of an algorithm suffering from the negative augmentation problem.107

4 Methodology108

In this section, we first make problem statements for graph augmentation in Sec. 4.1, highlight109

our motivations by analyzing the distribution shift between the original and augmented graphs110

in Sec. 4.2, then present a novel teacher-student Knowledge Distillation for Graph Augmentation111

(KDGA) framework in Sec. 4.3, and finally provide one of its specific instantiations in Sec. 4.4.112

4.1 Problem Statement113

Graph Representation Learning. From the perspective of statistical learning, the key of node114

classification is to learn a mapping p(Y | X,A) based on node features X and graph structure A.115

The learned mapping can be used to infer labels YU on the graph structure A as shown in Fig. 1(a).116

Graph Structure Learning. The goal of graph structure learning is to estimate a more accurate117

structure Â by another mapping p(Â | X,A) and then feed it into the mapping p(Y | X, Â) along118

with node features X. Finally, the learned mapping p(Y | X, Â) can be used to infer labels YU on119

the estimated (high-quality) structure Â instead of the original strucute A as shown in Fig. 1(b).120

Graph Augmentation. Instead of directly working with the original graph, we would like to121

leverage graph augmentation to reasonably perturb the graph structure and learn more generalizable122

representations. In other words, we are interested in the following variant, as follows123

p(Y | X,A) =
∑

Â∈[0,1]N×N

p(Y | X, Â)p(Â | X,A) (2)

where Â ∈ [0, 1]N×N is the augmented graph (structure). In practice, the distribution space size of124

Â is 2N
2

, and it is intractable to enumerate all possible Â as well as estimate the exact values of the125

mappings p(Y | X, Â) and p(Â | X,A). Therefore, we approximate them by tractable functions as126

p(Y | X,A) =
∑

Â∈[0,1]N×N

qθ(Y | X, Â)qϕ(Â | X,A) (3)
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Figure 1: Illustrations of graph representation learning, graph structure learning, graph augmentation,
and the proposed KDGA framework. For the sake of chart brevity, we omitted the node features X.

where qθ(·) and qϕ(·) are approximation functions for p(Y | X, Â) and p(Â | X,A) parameterized127

by θ and ϕ, respectively. In practice, the function qθ(Y | X, Â) can be generally implemented by128

GNNs, and the function qϕ(Â | X,A) can be implemented by graph augmentation methods to model129

the distributions of augmented graph structures. Once the model training is finished, the mapping130

qθ(Y | X,A) can be used to infer labels YU on the original structure A as shown in Fig. 1(c).131

In summary, unlike graph representation and graph structure learning that leverage the same struc-132

ture (A or Â) for both training and testing, the graph structures for training and testing in graph133

augmentation are completely different, which may lead to a potential negative augmentation problem.134

4.2 Motivation: Potential Negative Augmentation Problem135

One may create a model by specifying specific implementations for functions qθ(Y | X, Â) and136

qϕ(Â | X,A) and then optimize it by maximizing the posterior p(Y | X,A) defined in Eq. (3). As137

we will explain here, however, this model may suffer from a potential negative augmentation problem138

caused by overly severe distribution shifts between the original and augmented graphs.139
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Figure 2: Illustrations of how the distribution shift is arising and how it behaves on different datasets.

The distribution shift itself is not necessarily harmful; it is actually a neutral phenomenon. A proper140

distribution shift helps the model “see" more different graphs, enabling the nodes to receive more141

contextual information, thus improving generalization; however, an overly severe distribution shift142

can lead to a potential negative augmentation problem. To illustrate it, we consider a node vi (id143

129) of class C1 from the real-world Wisconsin dataset in Fig. 2(a), it is initially connected to a node144

with the same class C1 and three nodes from another class C2 in the original structure A. During the145
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training process, the original structure A and node features X are fed together into qϕ(Â | X,A)146

to generate an augmented structure Â. Under the downstream supervision, it disconnects from147

three nodes from class C2 and reconnects with three nodes from the same class C1, resulting in an148

augmented structure Â with a much higher homophily ratio, that is, an overly severe distribution149

shift between the original and augmented graphs from the perspective of graph homophily property.150

As a result, a model trained on the augmented structure Â can successfully predict node i as class C1,151

but make a wrong prediction C2 for node i when tested on the original structure A, which is termed152

as "negative augmentation". Furthermore, we plot the homophily ratios of the original structure A153

and augmented structure Â on eight datasets in Fig. 2(b), from which we can observe significant154

distribution shifts between the two graphs. Moreover, while the above analysis is developed on a155

heterophily (Wisconsin) graph, we find that the identified distributional shift also exists in homophily156

graphs, only in a different direction. Please see Sec. 5.3 for detailed experimental settings and results.157

4.3 Knowledge Distillation for Graph Augmentation (KDGA)158

The distribution shift is essentially a trade-off between better generalizability and higher risks of159

negative augmentation. However, the optimal distribution shift may vary from dataset to dataset, or160

even from node to node, making it challenging to directly control the levels of distribution shifts. In161

this paper, we have not attempted to control or prevent distribution shifts. Instead, we allow for the162

existence of any level of distribution shifts, but we reduce their negative impact, i.e., the potential163

negative augmentation problem, by the proposed KDGA framework, which gradually distills the164

contextual information from the augmented graphs into a student model tested on the original graph.165

The idea of KDGA is straightforward, yet as we will see, extremely effective. In our case, we first166

generate soft distributions zTi and zSi for node vi with the teacher and student models, respectively.167

The knowledge distillation is first introduced in [14], where knowledge was transferred from a168

cumbersome teacher to a simpler student by optimizing the following objective function, as follows169

LKD =
1

|V|
∑
i∈V

DKL

(
softmax

(
zTi

)
, softmax

(
zSi

))
(4)

In this paper, not to get a simpler student model, we adopt the knowledge distillation framework170

to address the identified negative augmentation problem caused by overly severe distribution shifts171

between the two graphs. In short, we extract the knowledge of any teacher model trained on the172

augmented graphs and inject it into a student model tested on the original graph as in Fig. 1(d).173

Teacher Model. The teacher model can be implemented by any GNN, which takes node features X174

and augmented structure Â as input and learn latent node representations via neighborhood feature175

aggregation. Considering a L-layer GNN fθ(X, Â), the formulation of the l-th layer is as follows176

h
(l+1)
i,T = UPDATE(l)

(
h
(l)
i,T ,AGGREGATE(l)

({
h
(l)
j,T : vj ∈ N Â

i

}))
(5)

where 0 ≤ l ≤ L− 1, h(0)
i,T = xi is the input feature, and N Â

i is the neighborhood of node vi in the177

augmented structure Â. After L message-passing layers, the final node embedding h
(L)
i,T is passed to178

a linear prediction head gT (·) to obtain logits zTi = gT (h
(L)
i,T ), and the model is trained by a cross-179

entropy loss H(·) with ground-truth labels YL, given by LT
SUP =

∑
i∈VL

H
(
yi; softmax

(
zTi

))
.180

Student Model. The student model fθ(X,A) shares the parameters θ with the teacher model, but181

differs in that the it takes the original structure A as input, as shown in Fig. 3(c). Besides, an additional182

linear prediction head gS(·) is used to map the node embedding h
(L)
i,S to logits zSi = gS(h

(L)
i,S ). As183

already explained earlier, the augmented graphs enable the teacher model to receive richer contextual184

information, which helps to improve model generalization. To allow the student model tested on the185

original structure to also benefit from it, we consider the contextual neighborhood information from186

both original and augmented structures and distill them into the student model, defined as187

LGKD =
τ21
|V|

∑
i∈V

∑
j∈(NA

i ∩N Â
i )∪i

DKL

(
softmax

(
zTj /τ1

)
, softmax

(
zSi /τ1

))
(6)

5



where τ1 is the distillation temperature, and τ21 is used to keep the gradient stability of this loss [14].188

Discussions. While a large number of methods on graph knowledge distillation [57, 48, 56] have189

been proposed, most of them adopt the standard teacher-student knowledge distillation framework190

as shown in Fig. 3(a), where the inputs to both teacher and student models are the same (structure).191

Despite many progresses, their contributions have mostly focused on the special design of the teacher192

or student models. For example, CPF [49] proposes to distill knowledge from a teacher GNN to a193

student MLP, but it specifically incorporates label propagation [17] into the student model to improve194

performance. In contrast, GDK [11] utilizes label propagation in the teacher model to fully exploit195

both feature and topological information. In our proposed KDGA framework, the graph structures fed196

to the teacher and student models are completely different. Moreover, unlike the scheme in Fig. 3(b)197

where two parameter-independent teacher and student models are used, we adopt the architecture198

shown in Fig. 3(c) where the GNN parameters are shared but with two independent prediction heads199

to increase discriminability. The behind motivation is that a parameter-independent student model has200

the risk of quickly fitting with the original structure under the optimization of downstream supervision,201

while failing to take full advantage of rich contextual information from the augmented graphs. A202

detailed comparison of parameter-independent and parameter-shared schemes is reported in Table. 2.203
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Figure 3: (a) standard teacher-student distillation; (b) distillation with parameter-independent teacher
and student models; (c) distillation with parameter-shared teacher and student models.

4.4 Instantiating KDGA with GraphAug204

In practice, any existing graph augmentation method can be used to instantiate the proposed KDGA205

framework and achieve consistent improvements over the vanilla implementations, as shown in206

Table. 1. In this subsection, we adopt a probabilistic generative-based graph augmentation method to207

model the function qϕ(Â | X,A), termed GraphAug, and use it to instantiate our KDGA framework.208

Specifically, we introduce a set of discrete variables Λ = {λi,j}Ni,j=1 to model the distribution of the209

augmented graph, where λi,j ∈ {0, 1} denotes the augmentation probability between node vi and210

vj . Moreover, we avoid estimating the probability p (λi,j | µi,j) using independent local parameter211

µi,j and instead fits a shared neural network to estimate it. Specifically, we first transform the input212

to a low-dimensional hidden space, done by multiplying the node features with a parameter matrix213

W ∈ RF×d, that is, ei = Wxi. Then, we directly parameterize the probability λi,j as214

p (λi,j | X,A) = σ
(
eie

T
j

)
(7)

where σ(·) is an element-wise sigmoid function. Next, to sample discrete augmented graphs from the215

learned augmentation distribution and make the sampling process differentiable, we adopt Gumbel-216

Softmax sampling [18]. Specifically, the sampling process can be formulated as217

Âi,j =

⌊
1

1 + exp−
(
logMi,j+G

)
/τ2

+
1

2

⌋
,where Mi,j = αp (λi,j | X,A) + (1− α)Ai,j (8)

where α ∈ [0, 1] is the fusion factor to control the intensity of the graph augmentation, τ2 is the218

augmentation temperature, and G ∼ Gumbel(0, 1) is a gumbel random variate.219

To warm-up the proposed GraphAug module, we first pre-train it with loss LAug = 1
N2H(Ai,j , Âi,j),220

where H(·) denotes the cross-entropy loss. Besides, we use classification loss LCla =221
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Table 1: Accuracy ± std (%) on eight datasets (as well as their homophily ratios), with three GNN
architectures and five graph augmentation methods considered. The best metrics are marked by bold.

BaseGNN Method Cora Citeseer Cornell Chameleon Squirrel Actor Wisconsin Texas
0.81 0.74 0.30 0.23 0.22 0.22 0.21 0.11

GCN

Vanilla 81.5±0.8 71.6±0.3 57.0±4.7 59.8±2.6 36.9±1.3 30.3±0.8 59.8±7.0 59.5±5.3

DropEdge [33] 82.2±0.7 71.9±0.3 59.3±3.9 61.2±1.8 38.1±1.5 30.9±1.0 61.8±5.4 62.3±4.6

AdaEdge [2] 82.3±0.8 69.7±0.9 57.8±4.3 59.5±2.3 37.6±1.4 31.4±1.2 60.4±4.7 58.8±4.0

SSL [60] 83.8±0.7 72.9±0.6 58.8±3.2 60.4±2.1 39.5±1.9 30.5±1.2 62.8±4.5 63.3±4.6

GraphMix [42] 83.9±0.6 74.7±0.6 60.5±3.7 61.2±2.3 41.1±1.5 31.4±0.9 62.4±5.0 62.3±4.6

GAUG [58] 83.6±0.5 73.3±1.1 55.8±4.0 59.3±1.4 36.3±0.8 29.7±0.9 57.5±5.1 58.0±4.2

GAUG (w/ KDGA) 85.4±0.7 73.6±0.6 63.2±3.6 63.0±1.2 46.2±0.9 33.3±0.8 65.0±2.5 67.4±3.8

∆Acc 1.8 0.3 7.4 3.7 9.9 3.6 7.5 9.4

MH-Aug [30] 83.6±0.3 73.0±0.5 58.4±3.5 59.2±2.0 35.9±1.0 31.2±0.7 58.1±5.3 58.9±3.9

MH-Aug (w/ KDGA) 85.0±0.5 73.8±0.8 63.5±2.7 63.3±1.7 45.4±1.1 34.8±1.0 65.7±2.7 67.2±2.6

∆Acc 1.4 0.8 5.1 4.1 9.5 3.6 7.6 8.3

GraphAug 83.2±0.9 73.2±0.8 56.6±2.4 58.8±1.8 37.2±1.2 28.8±0.9 59.3±2.6 59.4±3.3

GraphAug (w/ KDGA) 85.2±0.7 73.9±0.7 63.8±3.2 62.7±1.5 46.9±0.6 32.5±0.6 66.3±1.9 68.0±2.3
∆Acc 2.0 0.7 7.2 3.9 9.7 3.7 6.9 8.6

SAGE

Vanilla 79.8±0.7 71.1±0.6 76.0±5.0 58.7±1.7 41.6±0.7 34.2±1.0 81.2±5.6 82.4±6.1

DropEdge [33] 80.4±0.8 71.5±0.6 77.4±3.6 60.2±2.0 42.5±1.3 36.4±1.3 82.7±4.4 83.0±4.8

AdaEdge [2] 80.2±1.2 69.4±0.8 76.5±4.6 59.5±1.6 40.3±1.6 34.9±0.8 82.0±5.3 81.6±5.3

SSL [60] 82.5±0.8 71.2±0.5 76.8±3.4 59.1±1.8 42.0±1.5 35.2±1.2 82.4±3.6 82.6±4.4

GraphMix [42] 82.3±0.6 69.6±0.4 78.0±4.2 59.9±2.0 42.6±1.6 35.8±1.0 83.1±4.1 83.5±3.9

GAUG [58] 82.0±0.5 72.7±0.7 74.8±4.2 58.2±1.3 40.5±0.9 34.4±1.1 80.7±4.6 82.0±4.5

GAUG (w/ KDGA) 84.5±0.8 73.4±0.7 80.6±3.5 61.8±1.6 46.4±1.1 36.4±0.7 85.5±3.2 84.5±3.6

∆Acc 2.5 0.7 5.8 3.6 5.9 2.0 4.8 2.5

MH-Aug [30] 82.6±0.7 72.1±1.0 75.3±3.9 59.4±1.5 41.0±0.8 33.8±0.8 80.5±5.0 81.2±5.2

MH-Aug (w/ KDGA) 84.3±0.7 73.7±0.8 80.3±3.2 62.1±1.3 45.9±1.4 35.9±0.7 84.9±4.0 83.8±4.4

∆Acc 1.7 1.6 5.0 2.7 4.9 2.1 4.4 2.6

GraphAug 82.4±1.0 72.4±0.9 75.8±3.0 58.8±1.4 40.2±1.3 33.2±0.7 79.9±4.2 81.9±4.6

GraphAug (w/ KDGA) 84.8±0.8 73.5±0.5 81.4±2.8 61.0±1.8 45.6±0.9 36.9±1.4 84.5±3.3 84.8±3.8
∆Acc 2.4 1.1 5.6 2.2 5.4 3.7 4.6 2.9

GAT

Vanilla 82.2±0.5 71.4±0.9 58.9±3.3 54.7±2.0 30.6±2.1 26.3±1.7 55.3±8.7 58.4±4.5

DropEdge [33] 83.0±0.4 72.2±0.9 60.2±3.8 55.6±2.5 34.1±1.7 28.2±1.5 57.8±5.5 60.5±3.8

DropEdge [33] 77.9±2.0 69.1±0.8 57.7±4.5 54.0±2.2 32.8±2.0 27.5±1.4 56.4±6.1 57.8±4.2

SSL [60] 83.7±0.6 72.7±0.7 60.6±3.2 55.8±2.2 35.0±1.3 27.6±1.3 57.2±5.1 60.5±3.3

GraphMix [42] 83.3±0.2 73.1±0.2 61.0±4.1 56.4±1.7 35.6±1.0 28.7±0.9 58.5±4.5 61.1±2.8

GAUG [58] 82.2±0.8 71.6±1.1 57.6±3.8 53.4±1.4 30.1±1.5 25.8±1.0 54.8±5.7 56.9±3.6

GAUG (w/ KDGA) 84.2±1.1 73.0±0.7 62.2±3.4 58.2±1.1 39.1±1.3 31.3±1.2 60.9±5.3 63.1±3.2

∆Acc 2.0 1.4 4.6 4.8 9.0 5.5 6.1 6.2

MH-Aug [30] 83.5±0.7 72.8±1.0 58.0±4.0 55.3±1.8 29.5±1.1 25.7±1.2 55.8±4.0 57.8±4.0

MH-Aug (w/ KDGA) 84.5±0.9 73.4±0.8 62.7±2.8 59.5±1.6 37.3±0.8 30.8±0.9 61.4±5.0 64.4±2.8
∆Acc 1.0 0.6 4.7 4.2 7.8 5.1 5.6 6.6

GraphAug 83.2±0.8 72.5±0.7 58.6±3.4 54.0±1.7 29.8±1.6 24.8±1.3 54.4±3.6 57.1±4.4

GraphAug (w/ KDGA) 84.7±0.7 73.2±0.8 63.1±2.5 58.8±1.3 38.9±1.4 30.0±1.0 61.8±4.7 62.7±2.0

∆Acc 1.5 0.7 4.5 4.8 9.1 5.2 7.4 5.6

1
|VL|

∑
i∈VL

(
H

(
yi, softmax(zTi )

)
+H

(
yi, softmax(zSi )

) )
to pre-train the teacher and student mod-222

els until it converges. Finally, the total loss to train the whole framework is defined as follows223

Ltotal = LCla + λLAug + κLGKD (9)

where λ and κ are the weights to balance the influence of the two losses LAug and LGKD.224

5 Experiments225

Datasets. The effectiveness of the proposed KDGA framework is evaluated on eight datasets. We use226

two commonly used homophily graph datasets, namely Cora [36] and Citeseer [12] as well as six227

heterophily graph datasets: Cornell, Texas, Wisconsin, Aactor [40], Chameleon and Squirrel [35]. A228

statistical overview of these datasets is available in Appendix A. We defer the implementation details229

and the best hyperparameter settings for each dataset to Appendix B and supplementary material.230

Baselines. As a general framework, KDGA can be combined with any GNN architecture and231

existing graph augmentation methods. In this paper, we consider three GNN architectures, GCN232

[22], GraphSAGE [13], and GAT [41]. Besides, to demonstrate the applicability of KDGA to various233

graph augmentation methods in addition to the proposed GraphAug, we also consider two state-234

of-the-art learning-based baselines, GAUG [58] and MH-Aug [30]. In particular, two heuristics235

methods, DropEdge and AdaEdge, are also included in the comparison as baselines. Moreover, we236

also compare KDGA with two semi-supervised methods: (1) GraphMix [42], a regularization method237
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that performs linear interpolation between two data on graphs, and (2) SSL [60], that proposes two238

self-supervised tasks to fully exploit available information embedded in the graph structure. Each set239

of experiments is run five times with different random seeds, and the average performance is reported.240

5.1 Comparative Results241

To evaluate the powerful capabilities of the proposed KDGA framework, we instantiate it with three242

learning-based graph augmentation methods, GAUG, MH-Aug, and GraphAug. The experiments are243

conducted on eight datasets with three different GNN architectures. From the experimental results244

shown in Table. 1, we can make the following observations: (1) Two heuristic graph augmentation245

methods, DropEdge and AdaEdge, can improve the performance of the vanilla GNNs overall.246

However, such improvements are usually very limited and do not work for all datasets and GNN247

architectures. For example, on the Citeseer dataset, the performance of AdaEdge drops over the248

vanilla GNNs by 1.9% (GCN), 1.7% (GraphSAGE), and 2.3% (GAT), respectively. (2) There are249

huge gaps in the effectiveness of three learning-based augmentation methods on homophily and250

heterophily graphs. While these methods can significantly improve performance on homophily251

graphs, their performance gains on heterophily graphs are greatly reduced and even detrimental. For252

example, with GCN as the GNN architecture, the performance of GAUG improves by 2.1% on Cora,253

but drops by 1.5% and 1.2% on Texas and Cornell. Such negative augmentation is mainly caused254

by the overly severe distribution shift between the original and augmented graphs as analyzed in255

Sec. 4.2. (3) The proposed KDGA framework can consistently improve the performance of vanilla256

graph augmentation methods across three GNN architectures on all eight datasets, especially for those257

heterophily graphs. For example, with GCN as the GNN architecture, the performance of GraphAug258

can be improved by 9.7% and 8.6% on the Squirrel and Texas datasets. (4) Two semi-supervised259

approaches, SSL and GraphMix, can achieve comparable or even better performance than learning-260

based graph augmentation, especially on heterophily graphs. However, by combining with KDGA,261

GAUG, MH-Aug, and GraphAug outperform both SSL and GraphMix by a large margin overall.262

Original  
Graph

Augmented
Graph

Cora (id 1617) Citeseer (id 1945) Wisconsin (id 129) Actor (id 2554) Chameleon (id 1088) Squirrel (id 1516)

Figure 4: Case studies for each dataset, where we pick a node with the most drastic neighborhood
variations and visualize its neighborhood on the original graph structure (top) and augmented graph
structure (bottom), where each node is colored according to its ground-truth label.

5.2 Analysis on the Distribution Shift and Negative Augmentation263

Next, we qualitatively and quantitatively analyze the distribution shift between the original and264

augmented graphs and explain how it can cause a potential negative augmentation. Without loss of265

generality, we consider GCN as the GNN architecture and GraphAug as the augmentation method.266

Visualizations of Neighborhood Variations . First, we pick a node with the most drastic neighbor-267

hood variations and visualize its neighborhood of the original and augmented graphs in Fig. 4, where268

each node is colored according to its ground-truth label. The visualizations show that there would be269

a huge gap between the neighborhoods of the original and augmented graphs, which causes a model270

that is well trained on the augmented graph to predict poorly on the original graph during testing.271

Taking the Wisconsin dataset as an example, the selected node is connected to four nodes from the272

same class in the augmented graph, so it can be well trained to make correct predictions. However,273

its neighborhood context is completely changed in the original graph, where the node is connected to274

three nodes from different classes, so it will be predicted with high confidence to an incorrect class.275
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Figure 5: Training curves (w/o GKD Loss) of homophily ratios in the original and augmented graphs.

Training Curves of Homopgily Ratios. We plot in Fig. 5 the training curves (w/o GKD Loss) of276

the homophily ratios of the original and augmented graphs during training. It can be seen that their277

gaps are enlarged as training proceeds, which indicates that the distribution of the augmented graphs278

is gradually shifting from the original graph. This shift may even reach 0.5 for some datasets (e.g.,279

Texas), in which case the graph homophily property is completely reversed. More importantly, we280

find that the direction of distribution shifts may be completely opposite for homophily and heterophily281

graphs, which makes it more challenging to solve the negative augmentation problem. Moreover, due282

to space limitations, we have placed the training curves (trained with GKD Loss) in Appendix C.283

5.3 Ablation Study and Parameter Sensitivity284

Table 2: Ablation study on student model designs.
Method Cora Citeseer Chameleon Squirrel Actor

Vanilla GCN 81.5±0.8 71.6±0.3 59.8±2.6 36.9±1.3 30.3±0.8

GraphAug 83.2±0.9 73.2±0.8 58.8±1.8 37.2±1.2 28.8±0.9

KDGA w/ Param-S 85.2±0.7 73.9±0.7} 62.7±1.5 46.9±0.6} 32.5±0.6

∆Acc 2.0 0.7 3.9 9.7 3.7

KDGA w/ Param-I 84.0±0.6 72.7±0.5} 60.6±1.7 40.5±1.0} 30.7±0.9

∆Acc 0.8 -0.5 1.8 3.3 1.9

Vanilla MLP 55.2±0.5 46.5±0.5 46.4±2.5 29.7±1.8 35.8±1.0

KDGA w/ MLP 83.2±1.1 73.5±0.7} 58.1±1.0 38.8±0.7} 38.1±0.8

∆Acc 28.0 27.0 11.7 9.1 2.3

Ablation on Student Model Designs. The285

parameter-shared GNN shown in Fig. 3(c)286

is adopted as the student model by default287

in this paper for a fair comparison. In this288

subsection, we delve into the applicability289

of the proposed KDGA framework to dif-290

ferent student model designs. Specifically,291

with the vanilla GCN as the base architecture292

and GraphAug as the graph augmentation293

method, we compare the performance of the parameter-shared model (w/ Param-S) in Fig. 3(c) and294

the parameter-independent model (w/ Param-I) in Fig. 3(b) on five datasets. It can be seen from Ta-295

ble. 2 that although the Param-I model can also improve the performance of GraphAug overall, it may296

fail on a few datasets, such as a 0.5% accuracy drop on Citeseer; more importantly, its performance297

gain falls far behind the Param-S model on all five datasets. The reason behind this may be that a298

parameter-independent model may be quickly fitted with the original graph structure while failing to299

take full advantage of the rich contextual information embedded in the augmented graphs. Moreover,300

we also consider a variant of the Param-I model by directly taking a parameter-independent MLP (w/301

MLP) as the student mode. We find from Table. 2 that even with a simple MLP, it can still benefit302

from the augmented graphs and achieves performance beyond that of its vanilla implementations.303

Sensitivity Analysis on Hyperparameters. We have evaluated the parameter sensitivity w.r.t two304

key hyperparameters: fusion factor α and loss weight κ. However, due to space limitations, we have305

placed the corresponding results of sensitivity analysis in Appendix D.306

6 Conclusion307

In this paper, we identified a potential negative augmentation problem for graph augmentation,308

which is caused by overly severe distribution shifts between the original and augmented graphs. To309

address this problem, we propose a novel Knowledge Distillation for Graph Augmentation (KDGA)310

framework by directly distilling contextual information from a teacher model trained on the augmented311

graphs into a partially parameter-shared student model. Extensive experiments show that KDGA312

outperforms the vanilla implementations of existing augmentation methods and GNN architectures.313

Limitations still exist, such as KDGA requires an initial raw graph structure for augmentation and314

cannot be applied to those structure-unknown scenarios, which will be left for future work.315
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were chosen)? [Yes] The training details of the data splits and hyperparameter settings484

have been placed in Appendix A.1 and Appendix A.2, respectively.485

(c) Did you report error bars (e.g., with respect to the random seed after running experi-486

ments multiple times)? [Yes] Each set of experiments is run five times with different487

random seeds, and the average accuracy and standard deviation are reported.488

(d) Did you include the total amount of compute and the type of resources used (e.g.,489

type of GPUs, internal cluster, or cloud provider)? [Yes] The implementation uses the490

PyTorch library running on NVIDIA v100 GPU, which is detailed in Appendix A.2.491

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...492

(a) If your work uses existing assets, did you cite the creators? [Yes]493

(b) Did you mention the license of the assets? [Yes] The assets in this paper come from494

some open-source platforms, such as Github, and follow the MIT license.495

(c) Did you include any new assets either in the supplemental material or as a URL? [No]496

(d) Did you discuss whether and how consent was obtained from people whose data you’re497

using/curating? [N/A]498

(e) Did you discuss whether the data you are using/curating contains personally identifiable499

information or offensive content? [No] It does not contain such sensitive information.500

5. If you used crowdsourcing or conducted research with human subjects...501

(a) Did you include the full text of instructions given to participants and screenshots, if502

applicable? [N/A]503

(b) Did you describe any potential participant risks, with links to Institutional Review504

Board (IRB) approvals, if applicable? [N/A]505

(c) Did you include the estimated hourly wage paid to participants and the total amount506

spent on participant compensation? [N/A]507
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Appendix508

A Dataset Statistics509

Eight publicly available graph datasets are used to evaluate the proposed KDGA framework. An510

overview summary of the statistical characteristics of datasets is given in Tab. A1.511

Cora, Citeseet, and Pubmed. These three are citation network benchmark datasets for node512

classification. In these datasets, nodes represent papers, and edges denote citations of one paper513

by another. Node features are the bag-of-words representation of papers, and the node label is the514

academic topic of a paper. The data splittings of these datasets are the same as [22].515

Cornell, Texas, and Wisconsin. Cornell, Texas, and Wisconsin 1 are three sub-datasets of WebKB,516

which is a webpage dataset collected from computer science departments of various universities by517

Carnegie Mellon University. In these datasets, nodes represent web pages, and edges are hyperlinks518

between them. Node features are the bag-of-words representation of web pages. The nodes are519

manually classified into five categories: student, project, course, staff, and faculty.520

Actor. This dataset is a subgraph of the film-director-actor-writer network. In this dataset, nodes521

represent actors, and edges are their co-occurrence on the same Wikipedia page. Node features are522

some keywords in the Wikipedia pages. The nodes are manually classified into five categories in523

terms of the words of the actor’s Wikipedia.524

Chameleon and Squirrel. Chameleon and Squirrel are two page-page networks on specific topics in525

Wikipedia. In these datasets, nodes represent web pages, and edges are mutual links between pages.526

Node features are several informative nouns in the Wikipedia pages. The nodes are classified into527

five categories in terms of the number of the average monthly traffic of the web page.528

Table A1: Statistical information of the datasets.

Dataset Cora Citeseer Chameleon Squirrel Texas Cornell Wisconsin Actor
# Nodes 2708 3327 2277 5210 183 183 251 7600
# Edges 5278 4614 3142 198493 279 277 450 26659
# Features 1433 3703 2325 2089 1703 1703 1703 932
# Classes 7 6 5 5 5 5 5 5
Homophily ratio r 0.81 0.74 0.23 0.22 0.11 0.30 0.21 0.22
Label Rate 5.2% 3.6% 48% 48% 48% 48% 48% 48%

B Hyperparameters and Search Space529

Table A2: Hyperparameter search space.

Hyperparameters Search Space

Hidden Dimension F [64, 128, 256]
Learning Rate lr [1e-2, 5e-3, 1e-3]
Loss Weight λ [0.1, 0.5, 1.0]
Loss Weight κ [0.1, 0.5, 1.0, 5.0, 20.0]
Fusion Factor α [0.1, 0.3, 0.5, 1.0]
Temperature τ1 [1.0, 1.1, 1.2, 1.3, 1.4]

All baselines and our approach are imple-530

mented based on the standard implementa-531

tion in the DGL library [43] using the Py-532

Torch 1.6.0 library with Intel(R) Xeon(R)533

Gold 6240R @ 2.40GHz CPU and NVIDIA534

V100 GPU. The following hyperparameters535

are set for all datasets: weight decay decay =536

5e-4; Maximum Epoch E = 500; Layer num-537

ber L = 2, sampling temperature τ2 = 1.0.538

The other dataset-specific hyperparameters539

are determined by a hyperparameter search540

tool - NNI for each dataset, including hidden541

dimension F , learning rate lr, loss weight λ and κ, fusion factor α, and distillation temperature τ1.542

The hyperparameter search space is shown in Tab. A2, and the model with the highest validation543

accuracy is selected for testing. The best hyperparameter choices are available in the supplementary.544

1Cornell, Texas, and Wisconsin are three sub-datasets of WebKB1 from http://www.cs.cmu.edu/
afs/cs.cmu.edu/project/theo-11/www/wwkb.
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D. Training Curves with GKD Loss545

The GKD loss can be considered as a "bridge" between the teacher and student models. It regularizes546

the student model by gradually distilling knowledge from a teacher model (pre-trained on augmented547

graphs) to a student model, but does not directly affect the learning of the teacher model and graph548

augmentation. As a result, the trajectories trained with and without GKD loss will not be substantially549

different, i.e., they both still suffer from distribution shifts, as shown in Fig. 5 and Fig. A1. Essentially,550

the role of GKD loss is not to directly prevent the occurrence of distribution shifts, but to reduce551

their negative effects (potential negative augmentation) as much as possible and improve the model552

generalization by knowledge distillation in the presence of distribution shifts, as shown in Table. 1.553
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Figure A1: Training curves (w/ GKD Loss) of homophily ratios in the original and augmented graphs.

D. Parameter Sensitivity Analysis554

We have evaluated the parameter sensitivity w.r.t two key hyperparameters: fusion factor α and loss555

weight κ, and results are reported in Fig. A2. In practice, we can determine fusion factor α and loss556

weight κ by selecting the model with the highest accuracy on the validation set.557
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Figure A2: Parameter sensitivity analysis on fusion factor α and loss weight κ.

Fusion Factor α. The parameter sensitivity w.r.t the fusion factor α defined in Eq. (8) is reported558

in Fig. 2(a), from which we can observe that (1) When α is set to a small value, the performance559

gains for all four datasets are reduced, due to the insufficient contextual variations in the augmented560

graphs. (2) When α is set to a large value, different types of graphs show different hyperparameter561

sensitivity to α. For homophily graphs, such as Cora and Citeseer datasets, a too-large value of α562

hurts performance, as it may cause overly severe distribution shifts in the direction of reducing the563

homophily ratio. For heterophily graphs, such as Texas and Wisconsin datasets, they generally reach564

the best performance at α = 1, where the augmented graph tends to exhibit a higher homophily565

ratio than the original graph. The difference in the parameter sensitivity of these two types of graphs566

comes mainly from the difference in their directions of the distribution shifts, as shown in Fig. 5.567

Loss Weight κ. As can be observed from Fig. 2(b), the loss weight κ plays a critical role in the568

KDGA framework. If we set the loss weight κ = 0, i.e., completely remove the GKD loss, the model569
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performance will deteriorate to be the same as the vanilla implementations, resulting in the poorest570

performance compared to other settings. In practice, we find that setting κ to a non-zero value, i.e.,571

training with GKD loss, always achieves better performance than training without GKD loss (setting572

κ = 0), which demonstrates the effectiveness of the proposed GKD loss. Moreover, we find that the573

model performance can be further improved as the loss weight κ increases, but the performance gains574

reduce when κ becomes too large, probably because a too large GKD loss weight κ tends to weaken575

the contribution of label information (i.e., the loss of Lcla) in the semi-supervised learning.576
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