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Abstract

Image reconstruction enhanced by regularizers, e.g., to enforce sparsity, low rank1

or smoothness priors on images, has many successful applications in vision tasks2

such as computer photography, biomedical and spectral imaging. It has been3

well accepted that non-convex regularizers normally perform better than convex4

ones in terms of the reconstruction quality. But their convergence analysis is5

only established to a critical point, rather than the global optima. To mitigate6

the loss of guarantees for global optima, we propose to apply the concept of7

invexity and provide the first list of proved invex regularizers for improving image8

reconstruction. Moreover, we establish convergence guarantees to global optima9

for various advanced image reconstruction techniques after being improved by such10

invex regularization. To the best of our knowledge, this is the first practical work11

applying invex regularization to improve imaging with global optima guarantees.12

To demonstrate the effectiveness of invex regularization, numerical experiments13

are conducted for various imaging tasks using benchmark datasets.14

1 Introduction15

Image reconstruction (restoration) enhanced by regularizers has a wide application in vision tasks such16

as computed tomography [1, 2], optical imaging [3, 4], magnetic resonance imaging [5, 6], computer17

photography [7, 8], biomedical and spectral imaging [9, 10]. In general, an image reconstruction task18

can be formulated as the solution of the following optimization problem:19

minimize
x∈Rn

F (x) = f(x) + g(x). (1)

Here f(x) models a data fidelity term, which usually corresponds to an error loss for image recon-20

struction, and is assumed to be differentiable. The other function g(x) acts as a regularizer which can21

be non-smooth. It imposes image priors such as sparsity, low rank or smoothness [11]. The use of an22

appropriate regularizer plays an important role in obtaining robust reconstruction results.23

Convex regularization has been popular in the last decade [11, 12, 13, 14, 15], because it can result in24

guaranteed global optima. The most well-known examples include the `1-norm and nuclear norm,25

which are the continuous and convex surrogates of the `0-pseudo norm and rank, respectively [16].26

Although convex regularizers have demonstrated their success in signal/image processing, biomedical27

informatics and computer vision applications [13, 17, 18, 19], they are suboptimal in many cases, as28

they promote sparsity and low rank only under very limited conditions (more measurements from the29

scene are needed [20, 21]). To address such limitations, non-convex regularizers have been proposed.30

For instance, several interpolations between the `0-pseudonorm and the `1-norm have been explored31

including the `p-quasinorms (where 0 < p < 1) [22], Capped-`1 penalty [23], Log-Sum Penalty32

[20], Minimax Concave Penalty [24], Geman Penalty [25]. However, these non-convex regularizers33

unfortunately come with the price of losing global optima guarantees.34
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Table 1: Comparison between the assumptions made in this work for f(x), and g(x) to be optimized in Eq. (1)
and the most common/successful assumptions in the state-of-the-art.

Method name Assumption Global optimizer
IRLS [33, 34] special f and g No
General descent [35, 36] Kurdyka-Łojasiewicz No
GIST [37] nonconvex f , g = g1 − g2, g1, g2 convex No
iPiano [38] nonconvex f , convex g No
Proposed convex f , invex g Yes

Image reconstruction methods based on Eq. (1) include model-based approaches that directly solve35

Eq. (1) using well-established optimization techniques, e.g., proximal operators and gradient descent36

rules [26, 27, 28], learning-based approaches that train an inference neural network [29, 30], as well37

as hybrid approaches that draw links between iterative signal processing algorithms and the layer-wise38

neural network architectures [31, 32]. Many of these exploit non-convex assumptions over f(x)39

and/or g(x), for which we present a summary of some commonly used or successful ones in Table 1.40

The table includes algorithms like the iterative reweighted least squares (IRLS) [33, 34], where the41

regularizer is a composition between the one-dimensional `p-quasinorm and the trace of a matrix.42

In [35, 36], the objective function F (x) is assumed to form a semi-algebraic or tame optimization43

problem solved by gradient descent algorithms. In [37], the regularizer g(x) is assumed to be the44

subtraction of two convex functions, and the general iterative shrinkage and thresholding (GIST)45

algorithm is proposed to optimize F (x). Lastly, [38] assumes non-convex f(x) but convex g(x) and46

proposes the inertial proximal (iPiano) algorithm for optimization.47

For algorithms with the convexity assumptions removed, e.g., those in Table 1, their convergence48

analysis unfortunately can only be established for a critical point. Ideally, we always prefer algorithms49

that can find the optimal solution for the target problem. One way to mitigate the loss of guarantees50

for global optima is by revisiting the concept of invexity which was first introduced by Hanson [39],51

Craven and Glover [40] in the 1980s. What makes this class of functions special is that, for any52

point where the derivative of a function vanishes (stationary point), it is a global minimizer of the53

function. Convexity is a special case of invexity. Since 1990s, a lot of mathematical implications for54

invex functions have been developed, but with the lack of practical applications [41]. Examples of55

the few successful works implementing the invexity theory include [42, 43, 44]. To the best of our56

knowledge, there is no existing work on the application of invex regularization for imaging.57

In this paper, we focus on image reconstruction problems formulated in the form of Eq. (1), where58

the data fidelity term f(x) is based on the `2-norm and an invex regularizer g(x) is used. Most invex59

theory research lacks clarity on how to benefit practical applications, and this does not encourage the60

practitioners to exploit the invex property [41]. We aim at filling this gap by providing for the first61

time concrete and useful invex optimization formulations for imaging applications.62

Specifically, we make the following contribution:63

• Provide the first list of regularizers with proved invexity that fits optimization problems for64

imaging applications.65

• Establish convergence guarantees to global optima for three types of advanced image66

reconstruction techniques enhanced by invex reguarlizers.67

• Empirically demonstrate the effectiveness of invex regularization for various imaging tasks.68

2 Preliminaries69

Throughout this paper, we use boldface lowercase and uppercase letters for vectors and matrices,70

respectively. The i-th entry of a vector w, isw[i]. For vectors, ‖w‖p is the `p-norm. An open ball71

is defined as B(x; r) = {y ∈ Rn : ‖y − x‖2 < r}. The operation conv(A) represents the convex72

hull of the set A, and the operation sign(w) returns the sign of w. We use σi(W ) to denote the i-th73

singular value ofW assumed in descending order.74

We present several concepts needed for the development of this paper starting with the definition of a75

locally Lipschitz continuous function.76
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Definition 1 (Locally Lipschitz Continuity). A function f : Rn → R is locally Lipschitz continu-77

ous at a point x ∈ Rn if there exist scalars K > 0 and ε > 0 such that78

|f(y)− f(z)| ≤ K‖y − z‖2, (2)
for all y, z ∈ B(x, ε).79

Since the ordinary directional derivative being the most important tool in optimization does not80

necessarily exist for locally Lipschitz continuous functions, it is required to introduce the concept of81

subdifferential [45] which is calculated in practice as follows.82

Theorem 1 (Subdifferential). [45, Theorem 3.9] Let f : Rn → R be a locally Lipschitz continuous83

function at x ∈ Rn, and define Ωf = {x ∈ Rn| f is not differentiable at the point x}. Then the84

subdifferential of f is given by85

∂f(x) = conv ({ζ ∈ Rn| exists (xi) ∈ Rn \ Ωf such that xi → x and ∇f(xi)→ ζ}) . (3)

The notion of subdifferential is given for locally Lipschitz continuous functions because it is always86

nonempty [45, Theorem 3.3]. Based on these, the concept of invex function is presented as follows.87

Definition 2 (Invexity). Let f : Rn → R be locally Lipschitz; then f is invex if there exists a88

function η : Rn × Rn → Rn such that89

f(x)− f(y) ≥ ζT η(x,y), (4)
∀x,y ∈ Rn, ∀ζ ∈ ∂f(y).90

It is well known that a convex function simply satisfies this definition for η(x,y) = x− y.91

The following classical theorem [46, Theorem 4.33] makes connection between an invex function92

and its well-known optimum property that supports the motivation of designing invex regularizers.93

Theorem 2 (Invex Optimality). [46, Theorem 4.33]) Let f : Rn → R be locally Lipschitz. Then94

the following statements are equivalent.95

1. f is invex.96

2. Every point y ∈ Rn that satisfies 0 ∈ ∂f(y) is a global minimizer of f .97

3. Definition 2 is satisfied for η : Rn × Rn → Rn given by98

η(x,y) =

{
0 f(x) ≥ f(y),
f(x)−f(y)
‖ζ∗y‖22

ζ∗y otherwise, (5)

where ζ∗y is an element in ∂f(y) of minimum norm.99

3 Invex Functions100

We start this section by firstly presenting five examples of invex functions that are useful for imaging101

applications. Four of these have been labelled as non-convex in existing works [47, 48]. This is the102

first time that they are formally proved to be invex functions. We prove their invexity by showing103

they satisfy Statement 2 of Theorem 2 (see proof in Appendix A of supplementary material).104

Lemma 1 (Invex Functions). All of the following functions are invex:105

g(x) =

n∑
i=1

(|x[i]|+ ε)
p
, for p ∈ (0, 1) and ε ≥ (p(1− p))

1
2−p , (6)

g(x) =

n∑
i=1

log(1 + |x[i]|), (7)

g(x) =

n∑
i=1

|x[i]|
2 + 2|x[i]|

, (8)

g(x) =

n∑
i=1

x2[i]

1 + x2[i]
, (9)

g(x) =

n∑
i=1

log(1 + |x[i]|)− |x[i]|
2 + 2|x[i]|

. (10)

106
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We provide further insights of these functions with respect to the literature in Section A.1 of Supple-107

mental material. Table 2 summarizes their applications. Specifically, Eq. (6) is known as quasinorm,108

and has attracted a lot of attention because it has resulted in theoretical improvements for matrix109

completion and compressive sensing [22, 49]. The analysis on the quasinorms is valid with and110

without the constant ε. We prefer to add ε in order to formally satisfy the Lipschitz continuity in111

Definition 1. Eqs. (7) and (8) enhance the convex `1-norm regularizer, and they have significantly112

improved image denoising [47]. Eq. (9) has been used as the loss function to improve support vector113

classification [50].114

Table 2: List of invex functions studied in this work.
Reference Invex function Application
[22, 33, 51, 52] Eq. (6) Matrix completion
[20, 37, 53, 48] Eq. (7) Enhancing compressive sensing
[47, 54, 55] Eq. (8) Image denoising
[50] Eq. (9) Support vector classification
Proposed Eq. (10) Compressive sensing

We propose the last function in Eq. (10) by the subtraction between Eq. (7) and Eq. (8). This design115

is motivated by the optimization framework in [37] where the regularization term is assumed to be116

the subtraction of two convex functions (see GIST in Table 1). This has been found to be highly117

successful in imaging applications (see the survey [48]). But until now there is no evidence that this118

subtraction produces another convex function (if exists) potentially useful in imaging applications.119

Therefore, we propose this example to show that at least this is possible in the invex case.120

Additionally, we present another way of constructing an invex function in the following lemma.121

It establishes that an invex function f : Rm → R composed with an affine mapping Hx − b for122

H ∈ Rm×n, x ∈ Rn and b ∈ Rm, is also invex ifH is full row-rank. This condition onH is a mild123

assumption, because we show in Section 4 imaging application examples that satisfy this criterium.124

Lemma 2 (Affine Invex Construction). Let f : Rm → R be a continuously differentiable invex125

function, H ∈ Rm×n have full row rank, and b ∈ Rm be a vector. Then the function h(x) =126

f(Hx− b) is invex.127

Similar to Lemma 1, it is proved by showing that the composed function satisfies Statement 2 of128

Theorem 2 (see proof in Appendix B of supplementary material). Eq. (9) is an example of such129

an invex construction that satisfies the continuously differentiable assumption in Lemma 2. This is130

easily verified in the proof of Lemma 1. A practical implication of Lemma 2 for imaging applications131

appears when we want to solve linear system of equations (e.g. [50]). We demonstrate an application132

of this kind of invex construction in Section 4.2.2 to improve a widely used image reconstruction133

framework.134

4 Invex Imaging Examples, Algorithms and Convergence Analysis135

In this section, we demonstrate the use of invex regularizers to improve some advanced imaging136

methodologies. To benefit both practitioners and theory development, we present practical invex137

imaging algorithms and prove their convergence guarantees to global optima which was only possible138

for convex functions.139

4.1 Image Denoising140

Image denoising plays a critical role in modern signal processing systems since images are inevitably141

contaminated by noise during acquisition, compression, and transmission, leading to distortion142

and loss of image information [56]. Plenty of denoising methods exist, originating from a wide143

range of disciplines such as probability theory, statistics, partial differential equations, linear and144

nonlinear filtering, spectral and multiresolution analysis, also classical machine learning and deep145

learning [57, 58, 56]. All these methods rely on some explicit or implicit assumptions about the true146

(noise-free) signal in order to separate it properly from the random noise.147
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One of the most successful assumptions is that a signal can be well approximated by a linear148

combination of few basis elements in a transform domain [59, 60]. Under this assumption, a149

denoising method can be implemented as a two-step procedure: i) to obtain high-magnitude transform150

coefficients that convey mostly the true-signal energy, ii) to discard the transform coefficients which151

are mainly due to noise. Typical choices for the first step are the wavelet, cosine transforms, and152

principal component analysis (PCA) [59, 60, 61]. The second step is seen as a filtering procedure153

that is formally modelled as a proximal optimization problem [62]154

Proxg(u) = arg min
x∈Rn

(
g(x) +

1

2
‖x− u‖22

)
, (11)

where g(x) acts as a regularization term, and u represents the noisy transform coefficients. In fact,155

the usefulness of Eq. (11) is not just limited to denoising, but other imaging problems like computer156

tomography [63], optical imaging [64], biomedical and spectral imaging [65]. In general, global157

optima guarantees in Eq. (11) is restricted to convex g(x), e.g., `1-norm.158

We improve this important proximal operator by incorporating invex regularizers. Specifically, using159

those invex functions g(x) as listed in Table 2, global minimization is achieved in Eq. (11). The160

result is presented in the following theorem:161

Theorem 3 (Invex Proximal). Consider the optimization problem in Eq. (11) for all functions in162

Table 2. Then the following holds:163

1. The function h(x) = g(x) + 1
2‖x− u‖

2
2 is convex (therefore invex).164

2. The resolvent operator of the proximal is (I + ∂g)−1 and it is treated as a singleton because165

it always maps to a global optimizer.166

It is classically known that the sum of two invex functions is not necessarily invex in general [46].167

Therefore, presenting examples like above, where the sum of f(x) and g(x) is invex, is important to168

both invexity and imaging communities. We present the proof of Theorem 3 and provide the solution169

to Eq. (11) for each function in Table 2 in Appendix C of supplementary material.170

4.2 Image Compressive Sensing171

Image compressive sensing has been extensively exploited in areas such as microscopy, holography,172

optical imaging and spectroscopy [66, 67, 68]. It is an inverse problem that aims at recovering an173

image f ∈ Rn from its measurement data vector b = Φf , where Φ ∈ Rm×n is the image acquisition174

matrix (m < n). Sincem < n, compressive sensing assumes f has a k-sparse representation x ∈ Rn175

(k � n non-zero elements) in a basis Ψ ∈ Rn×n, that is f = Ψx, in order to ensure uniqueness176

under some conditions. Examples of this sparse basis Ψ in imaging are the Wavelet (also Haar177

Wavelet) transform, cosine and Fourier representations [69]. Hence, one can work with the abstract178

model b = ΦΨx = Hx, whereH encapsulates the product between Φ, and Ψ, with `2-normalized179

columns [66, 70]. Under this setup, compressive sensing enables to recover x using much lesser180

samples than what are predicted by the Nyquist criterion [70]. The task formulation is181

minimize
x∈Rn

f(x) + λg(x) =
1

2
‖Hx− b‖22 + λg(x), (12)

where λ ∈ (0, 1] is a typical choice in practice. When the regularizer g(x) takes the convex form of182

`1-norm, and when the sampling matrixH satisfies the restricted isometry property (RIP) for any183

k-sparse vector x ∈ Rn, i.e., (1− δ2k)‖x‖22 ≤ ‖Hx‖22 ≤ (1 + δ2k)‖x‖22 for δ2k < 1
3 [69, Theorem184

6.9], it has been proved that x can be exactly recovered by solving Eq. (12) [71].185

We are interested in invex regularizers. It has been proved that, when g(x) takes the particular invex186

form in Eq. (6), x can be exactly recovered by solving Eq. (12) [49]. Below we further generalize this187

result to all the invex functions as listed in Table 2. The generalized result is presented in Theorem 4.188

Theorem 4 (Invex Image Compressive Sensing). Assume Hx = b, where x ∈ Rn is k-sparse,189

the matrixH ∈ Rm×n (m < n) with `2-normalized columns that satisfies the RIP condition for any190

k-sparse vector, and b ∈ Rm is a noiseless measurement vector. If g(x) in Eq. (12) takes the form of191

the functions in Table 2, then the following holds:192

1. The objective function 1
2‖Hx− b‖

2
2 + λg(x) is invex.193
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2. x can be exactly recovered by solving Eq. (12) i.e. only global optimizers exist. When g(x)194

takes the form of Eq. (9), extra mild conditions on x are needed.195

We clarify that ifH satisfies the mentioned RIP, then each sub-matrix with k-columns ofH , selected196

according to indices of the nonzero elements of the k-sparse signal is a full row-rank matrix. This197

result is important to invex community, because it supports the validity of Lemma 2 to build invex198

functions with affine mappings. Additionally, we present another proved form of function sum that199

can result in an invex function, i.e., the sum of g(x) and the `2-norm composed with the affine200

mappingHx− b. The complete proof is provided in Appendix E of supplementary material.201

Next, we present different algorithms to solve Eq. (12) using invex g(x) as in Table 2. We select a202

few of the most important and successful image reconstruction techniques to start from, and develop203

their invex extensions. Taking advantage of the invex property, we prove convergence to global204

minimizers for each extended algorithm, which is unexplored up to date.205

Algorithm 1 Accelerated Proximal Gradient

1: input: Tolerance constant ε ∈ (0, 1), initial point x(0), and number of iterations T .
2: initialize: x(1) = x(0) = z(0), r1 = 1, r0 = 0, α1, α2 <

1
L , and λ ∈ (0, 1]

3: for t = 1 to T do
4: y(t) = x(t) + rt−1

rt
(z(t) − x(t)) + rt−1−1

rt
(x(t) − x(t−1))

5: z(t+1) = proxα2λg
(y(t) − α2∇f(y(t)))

6: v(t+1) = proxα1λg
(x(t) − α1∇f(x(t)))

7: rt+1 =

√
4(rt)2+1+1

2

8: x(t+1) =

{
z(t+1), if f(z(t+1)) + λg(z(t+1)) ≤ f(v(t+1)) + λg(v(t+1))
v(t+1), otherwise

9: end for
10: return: x(T )

4.2.1 Accelerated Proximal Gradient Algorithm206

The accelerated proximal gradient (APG) method [72] has been shown to be effective solving Eq.207

(12), achieving better imaging quality in less iterations than its predecessors [13, 36, 37, 38, 73], and208

been frequently used by recent imaging works [55, 74, 75, 76]. Its convergence to global optima is209

only guaranteed for convex loss [72]. For non-convex cases, convergence to a critical point has been210

stated [72]. Its pseudo-code for solving Eq. (12) is provided in Algorithm 1.211

Taking advantage that the loss function f(x) + λg(x) in Eq. (12) is invex, and the uniqueness result212

in Theorem 3, we formally extend APG in the following lemma stating that the sequence
{
x(t+1)

}
213

generated by Algorithm 1 converges to a global minimizer of Eq. (12).214

Lemma 3 (Invex APG). Under the setup of Theorem 4 and using L = σ1

(
HTH

)
(maximum215

singular value), the sequence
{
x(t)

}T−1

t=0
generated by Algorithm 1 converges to a global minimizer.216

To prove Lemma 3, we apply the Statement 2 of Theorem 2 to Eq. (12) and the unicity of the proximal217

operators for functions in Table 2. The complete proof is provided in Appendix F of supplementary218

material.219

4.2.2 Plug-and-play with Deep Denoiser Prior220

Plug-and-play (PnP) is a powerful framework for regularizing imaging inverse problems [65] and has221

gained popularity in a range of applications in the context of imaging inverse problems [29, 65, 77,222

78, 79]. It replaces the proximal operator in an iterative algorithm with an image denoiser, which223

does not necessarily have a corresponding regularization objective. This implies that the effectiveness224

of PnP goes beyond standard proximal algorithms such as primal-dual splitting [80, 81, 82]. It has225

guarantees to a fixed point only when convex objective functions are employed [81].226
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To apply the PnP framework, we modify Algorithm 1 by replacing the proximal operator (Line 6 in227

its pseudo-code) with a neural network based denoiser Noise2Void [58], resulting in228

v(t+1) = Noise2Void
(
x(t) − α1∇f

(
x(t)

))
. (13)

The complete pseudo-code is presented in Algorithm 3 of Appendix G in supplemental material.229

We remark that in Algorithm 3, Line 5 of the Algorithm 1 is retained to allows the comparison230

between regularizers (invex and convex). More specifically, Line 5 computes the proximal step, while231

Line 6 relies on a neural network for the same purpose (13). This offers an avenue for simultaneously232

exploiting both the model-based and data-driven approaches. The output of Algorithm 3 is a close233

estimation to the solution of Eq. (12) [81]. The benefit of using this denoiser is that it does not234

require clean target images in order to be trained. We present the following convergence result for this235

modified algorithm under the assumption of f(x) in Eq. (12) being invex which is a generalization236

of [81] (restricted to convex functions only).237

Lemma 4 (Invex Plug-and-play). Assume f(x) in Eq. (12) is invex with Lipschitz continuous238

gradient, and a denoiser d : Rn → R. Under the setup of Theorem 4 and some mild conditions on d,239

the sequence
{
x(t)

}T
t=0

generated by Algorithm 1 satisfies240

1

T

T∑
t=1

∥∥∥x(t) − d
(
x(t) − α1∇f

(
x(t)

))∥∥∥2

2
≤ 2

T

(
1 + κ

1− κ

)∥∥∥x(0) − x∗
∥∥∥2

2
, (14)

for any x∗ = d(x∗ − α1∇f(x∗)) (fixed point) and for some κ ∈ (0, 1).241

Eq. (14) guarantees that the sequence
{
x(t)

}T
t=0

is arbitrarily close to the set of fixed points of d(·)242

which can be considered as a close estimation to the solution of Eq. (12) [81]. Its proof is provided in243

Appendix G of supplementary material. As an example, Eq. (9) satisfies the assumption required in244

Lemma 4.245

4.2.3 Unrolling246

The unrolling or unfolding framework is another imaging strategy for solving Eq. (12). It offers a247

systematic connection between iterative algorithms used in signal processing and the neural networks248

[31, 32, 83]. Unrolled neural networks become popular due to their potential in developing efficient249

and high-performing network architectures from reasonably sized training sets [84, 85]. A folded250

version of the proximal gradient algorithm is presented in Algorithm 2. Particularly, existing works251

[86, 87] have shown that the efficiency of Algorithm 2 can be improved by simulating a recurrent252

neural network so that its layers mimic the iterations in Line 4 of Algorithm 2. Specifically, each253

x(t+1) constitutes one linear operation which models a layer of the network, followed by a proximal254

operation that models the activation function. Thus, one forms a deep network by mapping each255

iteration to a network layer and stacking the layers together to learnH, αt, and x(t) for all t which is256

equivalent to executing an iteration of Algorithm 2 multiple times. Their study was conducted only257

for g(x) in the form of `1-norm.258

Algorithm 2 Folded Proximal Gradient Algorithm

1: input: initial point x(0), number of iterations T
2: initialize: αt < 2

L+2 , and λ ∈ (0, 1]
3: for t = 0 to T do
4: x(t+1) = proxαtλg(x

(t) − αtHT (Hx(t) − b))
5: end for
6: return: x(T )

Convergence guarantees to global optima for Algorithm 2 has been established in [13], but it is259

restricted to convex objective functions. Therefore, due to the success and importance of unrolling260

we aim to extend the global optima guarantees of Algorithm 2 to invex objectives, and present the261

results in the following lemma:262
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Lemma 5 (Invex Unrolling). Under the setup of Theorem 4 and using L = σ1

(
HTH

)
(maximum263

singular value) and αt < 2
L+2 , the sequence

{
x(t)

}T−1

t=0
generated by Algorithm 2 converges to a264

global minimizer.265

The key to proving Lemma 5 relies on the uniqueness result of the proximal operator for invex266

functions in Table 2 as stated in Theorem 3. The proof is presented in Appendix H of supplementary267

material. Such results confirm that the invex unrolled network of Algorithm 2, which uses the268

proximal operators of invex mappings as the activation functions, can reach the optimal solution269

during training.270

5 Experiments and Results271

A number of datasets have been merged to formulate one unique dataset for our training and272

evaluation purposes. These are DIV2K super-resolution [88], the McMaster [89], Kodak [90],273

Berkeley Segmentation (BSDS 500) [91], Tampere Images (TID2013) [92] and the Color BSD68274

[93] datasets. We conduct various experiments to study the performance of those invex regularizers275

as listed in Table 2 in non-ideal conditions. We compare them against the state-of-the-art methods276

originally developed for convex regularizers (`1-norm) ensuring global optima. When neural network277

training is involved, we take a total of 900 images which are randomly divided into a training set of278

800 images, a validation set of 55 images, and a test set of 45 images. For all the experiments, the279

images are scaled into the range between 0 and 1. For the invex regularizer in Eq. (6), we vary the280

value of p.281

5.1 Image Compressive Sensing Experiments282

We assess signal reconstruction, in these experiments, by averaging the peak-signal-to-noise-ratio283

(PSNR) in dB over the testing image set. We consider additive white Gaussian noise in the mea-284

surements data vector with three different levels of SNR (Signal-to-Noise Ratio) = 20, 30, and∞285

(noiseless case). For Algorithm 1 and its plug-and-play variant, the parameters λ, α1, and α2 were286

chosen to be the best for each analyzed function determined by cross validation, and the initial point287

x(0) was the blurred image b. The results are summarized in Table 3, where the best and least efficient288

among invex functions is highlighted in boldface and underscore, respectively. Additional results are289

reported in Appendix I of supplemental material for each experiment, using the structural similarity290

index measure to assess imaging quality.291

Experiment 1 studies the effect of different invex regularizers, the Smoothly Clipped Absolute292

Deviation (SCAD) [94], and the Minimax Concave Penalty (MCP) [24], under Algorithm 1. A293

deconvolution problem is studied to formulate Eq. (12) which is an important problem in signal294

processing due to imperfect artefacts in physical setups such as mismatch, calibration errors, and loss295

of contrast [95]. To compare, the used state-of-the-art methods that employ convex regularization296

are the Total Variation Minimization by Augmented Lagrangian (TVAL3) [96], and the fast iterative297

shrinkage-thresholding algorithm (FISTA) [13] which ensures global optima. Further, to comparing298

with convolutional neural networks methodologies, the non-iterative reconstruction methodology299

ReconNet [97] is used. To model this problem, all pixels of the testing set are fixed to 256 × 256300

pixels. The images went through a Gaussian blur of size 9× 9 and standard deviation 4, followed301

by an additive zero-mean white Gaussian noise. The sensing matrix H is built as H = ΦΨ (for302

all methods except ReconNet), where Φ represents the blur operator over the images and Ψ is the303

inverse of a three stage Haar wavelet transform. This experiment is extremely ill-conditioned, where304

the condition number of HTH is significantly higher than 1. This means that in practice the RIP305

condition is not guaranteed. To achieve a fair comparison, the number of iterations was fixed for all306

functions as T = 800. The deconvolution problem follows a compressive sensing setup because the307

Gaussian filter remove high frequency information of the input image.308

In the case of ReconNet, we follow existing setting in [97]. For the learning of ReconNet, we extract309

patches of size 33 × 33 from the noisy blurred training image set, and we train it using the Adam310

optimization algorithm and a learning rate 5× 10−4 for 512 epochs with a batch size of 128.311
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Table 3: Performance comparison, in terms of PSNR (dB), where the best and least efficient among
invex functions is highlighted in boldface and underscore, respectively.

(Experiment 1) Algorithm 1, p = 0.5 for Eq. (6). FISTA [13] ReconNet [97] TVAL3 [96] SCAD [94] MCP [24]
SNR Eq. (6) Eq. (7) Eq. (8) Eq. (9) Eq. (10) `1-norm
∞ 33.40 31.25 31.93 30.00 32.65 29.97 27.01 28.77 30.55 31.30

20dB 24.60 22.83 23.39 22.00 23.98 21.80 19.99 20.49 22.60 23.01
30dB 27.61 26.56 26.90 26.00 27.25 24.91 22.01 23.99 26.10 26.77

(Experiment 2) Algorithm 3, p = 0.8 for Eq. (6).
SNR Eq. (6) Eq. (7) Eq. (8) Eq. (9) Eq. (10) `1-norm
∞ 34.51 32.37 33.06 31.40 33.76 31.10
20dB 25.55 23.92 24.44 23.00 24.98 22.95
30dB 28.30 26.87 27.33 26.05 27.80 26.00

(Denoising experiment) Algorithm 4,
p = 0.5 for Eq. (6)

BM3D
[59]

Noise2Void
[58]

Metric Eq. (6) Eq. (8) Eq. (10) `1-norm

SNR (dB) 49.40 43.85 46.46 41.52 39.43

SSIM 0.886 0.872 0.876 0.869 0.853

(Experiment 3) Algorithm 2 - unfolded LISTA. p = 0.85 for Eq. (6)
SNR m/n Eq. (6) Eq. (7) Eq. (8) Eq. (9) Eq. (10) `1-norm

[86]
ReconNet

[97]

∞
0.2 31.32 29.20 29.87 28.56 30.58 27.95 26.59

0.4 36.10 33.50 34.34 32.75 35.20 32.01 31.86

0.6 41.27 37.81 38.90 36.09 40.05 35.82 34.42

20dB
0.2 26.00 24.45 24.94 23.97 25.01 23.52 22.00

0.4 32.67 30.64 31.32 30.02 32.29 29.43 28.24

0.6 34.38 33.00 33.28 32.94 33.64 32.60 30.20

30dB
0.2 27.65 26.20 26.66 25.75 27.15 25.32 23.64

0.4 34.33 31.89 32.66 31.02 33.47 30.46 29.88

0.6 37.03 34.84 35.54 34.17 36.27 33.53 31.71

(Experiment 3) Algorithm 2 - unfolded ISTA-Net. p = 0.85 for Eq. (6)
SNR m/n Eq. (6) Eq. (7) Eq. (8) Eq. (9) Eq. (10) `1-norm

[98]

∞
0.2 32.50 30.15 30.89 29.04 31.67 28.77
0.4 38.33 35.72 36.55 34.92 37.41 34.17
0.6 43.61 40.07 41.18 39.02 42.36 38.02

20dB
0.2 28.29 26.22 26.87 25.60 27.56 25.01
0.4 33.96 32.11 32.71 31.55 33.32 31.00
0.6 35.77 34.68 35.03 34.33 35.39 33.99

30dB
0.2 29.34 28.30 28.63 27.97 28.98 27.65
0.4 35.41 33.33 33.99 32.69 34.68 32.08
0.6 38.95 36.25 37.10 35.43 38.00 34.65

Experiment 2 studies the invex regularizers under the plug-and-play modification of Algorithm 1312

as described in Section 4.2.2 1 [58]. The same deconvolution problem as in Experiment 1 is used.313

The interesting aspect of this scenario is that Algorithm 1 has a proximal step in Line 5 that allows314

to compare between regularizers (invex and convex) while using neural networks in Line 6 (see315

Algorithm 3 in Appendix G of Supplemental material). Noise2Void is trained by randomly extracting316

patches of size 64× 64 pixels from the training images where zero-mean white Gaussian noise was317

added for SNR = 20, 30dB. Data augmentation on the training dataset is used, by rotating each318

image three times by 90 and also added all mirrored versions. The learning rate is fixed as 0.0004.319

Experiment 3 compares the invex regularizers but under the unrolling framework as described in320

Section 4.2.3. The gold standard convex regularizations to compare with are the learned iterative321

shrinkage and thresholding algorithm (LISTA) [87], and the Interpretable optimization-inspired deep322

network (ISTA-Net)[98]. Also, to comparing with convolutional neural networks methodologies,323

the non-iterative reconstruction methodology ReconNet [97] is used. We follow the existing setting324

for LISTA in [86]2, and for ISTA-Net in [87]. For the training stage we extract 10000 patches325

b ∈ R16×16 at random positions of each image, with all means removed. We then learn a dictionary326

D ∈ R256×512 from the extracted patches, using the same strategy as in [86]. Gaussian i.i.d sensing327

matrices Φ ∈ Rm×256 are created from the standard Gaussian distribution, Φ[i, j] ∼ N (0, 1/m) and328

then normalize its columns to have the unit `2-norm, wherem is selected such that m
256 = 0.2, 0.4, 0.6.329

The matrixH is built asH = ΦΨ with T = 16 (number of layers). We follow the same two-step330

strategy in [86] to train a recurrent neural network. First, perform a layer-wise pre-training solving Eq.331

(12) for each extracted patch b by fixingH = Ψ. Second, append a learnable fully-connected layer332

at the end of the network structure, initialized by Ψ. Then, perform an end-to-end training solving333

Eq. (12) whereH in this case is learnt by updating the initial matrix Ψ. For each testing image, we334

divide it into non-overlapping 16× 16 patches. When g(x) is the the `1-norm, we recover [86].335

In the case of ISTA-Net, and ReconNet, for their learning stage we extract patches from the training336

image set of size 33 × 33. Gaussian i.i.d sensing matrices Φ ∈ Rm×1089 are created with `2-337

normalized columns as for LISTA, where m is selected such that m
1089 = 0.2, 0.4, 0.6. The optimizer338

employed was Adam algorithm and a learning rate 1× 10−4 for 200 and 512 epochs for ISTA-Net339

and ReconNet respectively, with a batch size of 64 for both networks. For ISTA-Net T = 16 (number340

of unrolled iterations). We recall that when g(x) is the the `1-norm in ISTA-Net, we recover [98].341

1We used Noise2Void implementation at https://github.com/juglab/n2v
2We used the implementation from [86] at https://github.com/VITA-Group/LISTA-CPSS
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5.2 Image Denoising Experiment342

Two image datasets, which we merge (80 images in total), are used for this experiment comes from343

a neutron image formation phenomenon3. These type of images contain the neutron attenuation344

properties of the object which helps analyze material structure. Performance is assessed by averaging345

along all the images the experimental SNR in dB given by SNR = 20 log
(
‖z‖2
‖ẑ−z‖2

)
, where z and ẑ346

stand for the noisy and the denoised image, respectively, and the structural similarity index measure347

(SSIM) computed between z and ẑ. Taking advantage of results observed from previous experiments,348

we compare the top three regularizers in Eqs. (6), (8), and (10) with two state-of-the-art denoising349

techniques including the block-matching and 3-D filtering (BM3D) [59] using `1-norm regularizer350

and the deep learning technique Noise2Void (trained as in Experiment 2) [58]. We follow the two-step351

denoising procedure described in Section 4.1. In the first step, the transform domain is built using352

PCA as in [61]. To build this transform we extract patches of 16× 16 from the noisy image that are353

then used to adaptively construct a tight frame (nearly orthogonal matrix) tailored to the given noisy354

data 4. Results are summarized in Table 3. We report examples of denoised images obtained by Eqs.355

(6), (8), (10), BM3D, and Noise2Void are illustrated in Appendix J of supplementary material, along356

with the algorithm used for the invex regularizers to denoise these images.357

6 Discussion, Limitations and Conclusion358

Application advancement of invex theory has paused for decades due to the lack of practical examples,359

which has caused a significantly reduced interest in invexity research. To address this issue, we present360

for the first time a list of invex regularizers for image reconstruction applications, and formulate361

corresponding optimization problems. Particularly, for image compressive sensing, we improve three362

advanced imaging techniques using the listed functions in Table 2 as invex regularizers. We present363

their solution algorithms and develop theoretical guarantees on their convergence to global minimum.364

We also conducted various image compressive sensing and denoising experiments to demonstrate365

the effectiveness of invex regularizers under practical scenarios that are non-ideal with noisy data366

observed and RIP condition not guaranteed. Significant benefit of using invex regularizers have been367

proved from both theoretical and empirical aspects. In fact, Table 3 and theoretical results in Section368

4 revive the potential of exploring invex theory in practical applications.369

The numerical results presented in Table 3 confirm performance improvement by using invex regular-370

izers over the `1-norm-based methods (e.g FISTA, TVAL3) in unexplored scenarios. These tables and371

theoretical results in Section 4 revive the potential of exploring invex theory in practical applications.372

The best result is obtained with Eq. (6), and Eq. (9) is the least efficient. The intuition behind the373

superiority of Eq. (6) comes from the possibility of adjusting the value of p in data-dependent manner374

[49]. This means that when the images are strictly sparse, and the noise is relatively low, a small value375

of p should be used. Conversely, when images are non-strictly sparse and/or the noise is relatively376

high, a larger value of p tend to yield better performance (which seems to be the case for the selected377

image datasets). We believe that the remaining invex, SCAD, and MCP regularizers have a lesser378

performance than Eq. (6) as they do not have the flexibility of adjustment to the sparsity of the data.379

In fact, Eq. (9) shows the poorest performance because in the proof of Theorem 4, we theoretically380

guarantee that Eq. (9) cannot sparsify all images. Therefore, this analysis leads to the conclusion381

that the invex function Eq. (6) offers the best performance for the metrics concerns and the imaging382

problems studied here.383

Although, we have presented theoretical results with global optima using invexity for some of most384

important and successful image reconstruction techniques, we highlight several limitations of our385

analysis. Specifically, we focused on reconstructed the image of interest in an ideal scenario, that386

is, without the present of noise (Theorem 4). Additionally, we have limited our numerical results to387

tasks like denoising, and deconvolution. And, the convergence guarantees for the plug-and-play result388

only ensures a close estimate of the solution (Lemma 4). Therefore, we see there are a number of389

future directions this research can be taken further improving the results even further. One aspect is to390

explore avenues for improving convergence guarantees to global optima the plug-and-play framework.391

Another direction is the study of inclusion of noise in the analysis of imaging applications, which may392

be an enabler to improve downstream tasks like invex robust image reconstruction. Finally, we feel393

3Acquired with the ISIS Neutron and Moun Source system at Harwell Science and Innovation Campus.
4We used implementation at https://www.math.hkust.edu.hk/~jfcai/.
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that the application domains for invex functions can go well beyond denoising, and deconvolution394

imaging problems, especially around deep learning research, which can improved a number of395

downstream applications.396

Broader Impact397

We believe that the presented mathematical and empirical analysis over the studied regularizers has398

the potential to unlock the benefits of invexity for further applications in signal and image processing.399

This may be an enabler to improve downstream tasks like deep learning for imaging, and to provide400

more robust image reconstruction algorithms.401
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