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The Anonymous entry to the GENEA Challenge 2023-A Diffusion
Model for Co-speech Gesture generation

Anonymous Author(s)

ABSTRACT
This paper describes the Anonymous entry to the GENEAChallenge
2023. We formulate the gesture generation problem as a co-speech
gesture generation problem and a semantic gesture generation
problem. We solve the co-speech gesture generation problem by
denoising the diffusion probabilistic model with text, audio, and
pre-pose conditions. We use the U-Net with cross-attention archi-
tecture as a denoising model, and we propose a gesture autoencoder
as a mapping function. The collective evaluation released by GE-
NEA Challenge 2023 shows that our model successfully generates
co-speech gestures. Remarkably, our system receives the highest
interlocutor speech appropriateness (53.5% matched) among all
conditions except natural motion. We also conduct an ablation
study to measure the effects of the pre-pose. By the results, our
system contributes to the co-speech gesture generation for natural
interaction.

CCS CONCEPTS
•Computingmethodologies→Animation; •Human-centered
computing → Human computer interaction (HCI).

KEYWORDS
co-speech gesture generation, diffusion, neural networks, genera-
tive models
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lenge 2023-A Diffusion Model for Co-speech Gesture generation. In Pro-
ceedings of 25th ACM International Conference on Multimodal Interaction
(ICMI’23). ACM, New York, NY, USA, 8 pages. https://doi.org/XXXXXXX.
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1 INTRODUCTION
Synthesizing synchronized and human-like gestures performs cru-
cial roles to improve immersion, engagement, and naturalness for
embodied virtual agents and humanoid robots. During the human-
computer interaction(HCI) process, human uses both verbal and
non-verbal expressions to provide their intent to the interlocutor.
Gesture generation, which is one of the main challenges for non-
verbal interaction, aims to synthesize natural-looking and mean-
ingful human gestures. The task can be separated whether verbal
expression exists or not. When verbal expressions, such as audio
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© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

or text, are given, the gesture generation model focuses on making
gestures that emphasize the meaning of verbal expressions. In the
other case, the model should generate gestures that deliver the
intent whether verbal expressions are given or not. We define the
task with verbal information as co-speech gesture generation and
the task that focuses on synthesizing meaningful body motions that
deliver intent as semantic gesture generation. In this research, we
focus on generating high-fidelity co-speech gestures.

There are many challenges for the co-speech gesture generation.
The first is timing synchronization. Since the speech and gestures
are shown to the interlocutor sequentially, he or she will be con-
fused if gestures depart from speech. For example, if the start and
end timing of the gestures slightly differs from speech, the users
will think that it is an implemental error. A more detrimental situa-
tion is traffic jams during continuous generation. Once the timing
is out of sync, the timing between speech and gestures is continu-
ally departed and the discomfort will be gradually increased. With
similar thinking, semantic synchronization, which is the second
challenge, is also important to deliver proper intent. For example,
when people say "I disagree." by nodding, the interlocutor will be
confused that it is positive or negative.

The third obstacle is noise robustness. 3D pose estimation or mo-
tion capture is utilized to acquire gesture data. However, the quality
of raw data obtained by 3D pose estimation is not enough because
the algorithm is basically image-to-3D reconstruction, which is a
one-to-many problem. The motion capture is better, but it is too ex-
pensive and time-consuming. To secure quality, the cost is increased
exponentially. Therefore, the raw data may contain noise. Since
training with noisy data hurts both quantitative and qualitative
performance, a workaround such as pre-processing or noise-robust
training is needed.

To tackle these problems, deep learning-based approaches have
been applied to generating co-speech gestures, recently. There are
three types of training strategies: reconstruction-based method[13,
16, 32], generative adversarial network(GAN)[6] based method[23,
31], and diffusion[5, 10] based method[36]. The reconstruction-
based co-speech gesture generation methods directly estimate ges-
tures from text or audio. Although the methods induce reasonable
results in terms of joint error, disadvantages are seen in terms of
diversity. To generate various results without quantitative perfor-
mance degradation, GAN-based co-speech gesture generation mod-
els are trained by controlling the weight between reconstruction
loss and adversarial loss. Recently, denoising diffusion probabilis-
tic models(DDPMs) are achieving huge success in the generative
model and computer vision fields and expanding to other research
fields[12, 22]. Especially, the diffusion model could synthesize vari-
ous images that reflect input conditions, even if its semantic space is
large. Since the semantic space of the speech for co-speech gesture
generation is large, the diffusion model may help to synthesize
various and synchronized results. Therefore, the goal of the paper
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is to find a suitable diffusion model structure for co-speech gesture
generation.

In this paper, we propose a diffusion-based co-speech gesture
generation method. We establish a gesture autoencoder to project
from gesture space to feature space and vice versa. The model was
configured to select suitable features according to the characteristics
of the gesture data. We also present how to deliver audio and text
information to the diffusion model. We use validated audio features
and the pre-trained language model to provide rich features.

The data and evaluations are provided by GENEA Challenge
2023[18]. Thanks to the good-quality data, the noise robustness
problem is under control and we can focus on the synchronizing
problems. The evaluations, which contain human likeness, and
appropriateness for the main agent and interlocutor, are also well-
formulated to measure the generation performance. The implemen-
tation will be available.

2 RELATEDWORKS
2.1 Co-speech gesture generation
Kucherenko et al. [16] proposed an autoencoder-style audio-to-
gesture model with hidden representation learning. The method
first find hidden embedding space of gesture by autoencoder and
next train the audio encoder to find joint embedding space between
audio and gesture. Yoon et al. [32] trained the sequence-to-sequence
LSTM model to map text transcriptions to 2D co-speech gestures.
Kim et al. [13] trained the transformer-based autoencoder with
self-supervised pre-training. These approaches use reconstruction
loss to optimize the model. Chang et al.[3] presented a locality con-
straint attention-based gesture generation model, which is inspired
by Tacotron2. StyleGestures [1] uses the method of normalizing
flow to generate gestures from speech. Audio2Gestures [20] syn-
thesize gestures using a variational autoencoder. Yoon et al. [31]
train the model with adversarial loss and reconstruction loss to
generate gestures from trimodal contexts. HA2G [23] adopts a
hierarchical decoder to address the structural information of the
joint. Gesturemaster[35] used a rhythm embedding module, style
embedding module, motion graph construction, and graph-based
optimization to extract features and generate gestures.

2.2 Semantic gesture generation
Kim et al. [14] generates gestures with the semantics itself or ex-
tracted from text. The method with an intent classifier emphasizes
co-speech gesture generation. The co-speech gesture model is se-
lected to generate gestures if the intent is unclear, else this method
is used to synthesize gestures. SEEG [21] generates semantic en-
ergized co-speech gestures with the semantic prompt gallery, se-
mantic prompter, and semantic energized learning. Gesticulator[17]
synchronizes between text and audio features in the encoding phase
and generates gestures by autoregression.

2.3 Diffusion-based motion generation
Alexanderson et al. [2] proposed conformer[8]-based diffusion mod-
els for gesture generation, dance synthesis, and path-driven locomo-
tion. Zhu et al. [36] migrated the diffusion model to speech-driven
co-speech gesture generation with diffusion gesture stabilizer and
implicit classifier-free guidance. FLAME [15] generates and edits

human motion with the pre-trained language model and trans-
former. Motiondiffuse[34] and MDM[28] also synthesize human
motions from text descriptions.

3 CO-SPEECH GESTURE GENERATION
MODEL

Figure 1 depicts an overview of the proposed model to generate
high-fidelity co-speech gestures. In this section, we first introduce
the problem formulation of co-speech gesture generation (Section
3.1). We propose the gesture autoencoder, which is designed to
project gesture space to feature space (Section 3.2). We then present
the classifier-free guidance for applying speech conditions to co-
speech gestures (Section 3.3). Furthermore, we establish the forward
diffusion and the reverse conditional generation process in feature
space (Section 3.4).

Figure 1: Overview of the proposed diffusion-based co-speech
gesture generation method. The model is autoregressive and
probabilistic. For the N-th generation, audio, text, and pre-
poses are projected to the latent space and used to conditions.
The initialized Gaussian noise is iteratively diffused by the
reverse process. The output latent vector is reconstructed to
the gesture space by the decoder.

3.1 Problem Formulation
The co-speech gesture training data often consist of 3D pose se-
quence x, audio a, text(sentence) s, and metadata. The generative
model G parameterized by 𝜃 is optimized to synthesize x, which
is further conditioned on the audio a, text s, and the pre-defined

2
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initial poses x−1 of the M frames. The learning objective of the
problem can be formulated as 𝑎𝑟𝑔min𝜃 | |x −𝐺𝜃 (a, s, x−1) | |.

However, samples in the training data often have a long dura-
tion. To reduce the computational cost and memory usage, every
modality of the sample is cropped into segments x = {x1, ..., x𝑖 },
a = {a1, ..., a𝑖 }, and s = {s1, ..., s𝑖 }, where x𝑖 has N frames and
a𝑖 , s𝑖 have the same time length as x𝑖 . Now the generative model G
estimates x𝑖 from the audio a𝑖 , text s𝑖 , and the M pose frames from
previous segment x(𝑁−𝑀 ) :𝑁

𝑖−1 , instead of synthesizing x at once. Fi-
nally, the generative model G synthesizes the gestures {x1, ..., x𝑖 }
continuously.

The model is autoregressive because the poses generated by the
previous segment are used to synthesize the current segment, and
stochastic because the initial diffusion feature map is random noise.

3.2 Gesture Autoencoder
In the Stable Diffusion[26], the latent diffusion model provides flex-
ible, computationally tractable, and sometimes achieving quality
improvement. The gesture autoencoder focus on finding good latent
embedding space projected from gesture space. The gesture autoen-
coder consists of two autoencoder models: pose autoencoder and
motion autoencoder. Since the gesture is the sequential pose data,
we design the pose autoencoder for projecting the raw pose space
to latent space, and the motion autoencoder to find correlations
along the time axis.

The pose encoder and decoder consist of 3 fully-connected layers
with dropout[27] and GELU activation function[9] each. The input
poses sequence x𝑁×3𝐽 is projected to z′𝑁×𝐷 by the pose encoder,
where z′ denotes mid-level hidden representation, J is the number of
joints, and D is the dimension of z′, and the pose decoder performs
reverse projection. The pose autoencoder is first trained with L1
reconstruction loss. Once the pose autoencoder is optimized, the
parameters are frozen in the rest training stages.

The motion autoencoder aims to capture sequential information
of the data. Thus, the motion encoder and decoder consist of 3
gated recurrent units(GRU) layers[4] and 3multi-head self-attention
layers[29], which have strong capacity in sequential data modeling.
The motion encoder is formulated

z = 𝑀𝐻𝑆𝐴(𝐺𝑅𝑈 (z′)) (1)

where𝑀𝐻𝑆𝐴(𝑋 ) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋,𝑋,𝑋 ). The attention mechanism
is

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

) ·𝑉 (2)

where Q, K, and V are the query, key, and value from the feature
matrix, d is the channel dimension, and T is the matrix transpose
operation.

Themid-level hidden representation z′𝑁×𝐷 is projected to z𝑁×𝐷

by the motion encoder, where z denotes hidden representation in
feature space, and the motion decoder performs reverse projection.
The motion autoencoder is trained with L1 reconstruction loss. The
parameters of the motion autoencoder are also frozen after this
training stage.

3.3 Conditioning
The diffusion models are theoretically capable of modeling the con-
ditional distribution 𝑝 (𝑧 |𝑦). This can be implemented with a condi-
tional denoising autoencoder 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑦), where 𝑦 ∈ {a, s, zi−1}, to
address the generation process through inputs y. To combine condi-
tional information and latent vector in the U-Net backbone, we use
a cross-attention mechanism, which is used in Stable Diffusion[26].

The three modalities, which are audio, text, and pre-pose, are
used as conditions in the diffusion process. The pre-processed audio
features, text features, and pre-pose features are projected to the
embedding vectors by fully-connected layers. These three embed-
ding vectors are added to the time embedding vector and propagate
the information of each modality to the denoising U-Net model.

3.4 Diffusion
DDPMs define the latent variable models of the form 𝑝𝜃 (𝑥0) =∫
𝑝𝜃 (𝑥0:𝑇 )𝑑𝑥1:𝑇 , where 𝑥1:𝑇 are latent variables in the same sample

space as 𝑥0 with the same dimensionality.
The forward process, which is also called the diffusion process,

approximates the posterior distribution 𝑞(𝑥1:𝑇 |𝑥0) by the Markov
chain that gradually adds Gaussian noise to the data according to
the variance schedule 𝛽1, ..., 𝛽𝑇 :

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1), (3)

where
𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;

√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I). (4)

The forward process variances 𝛽𝑡 can be learned by reparameteri-
zation or held constant as hyperparameters. Since our model uses
gesture autoencoder for mapping from pose to latent embeddings,
the latent embeddings are gradually corrupted by noise, which
finally leads to a pure white noise when T goes to infinity. There-
fore, the prior latent distribution of 𝑝 (𝑥𝑇 ) is N(𝑥𝑡 ; 0, I) with only
information of Gaussian noise.

The reverse process estimates the joint distribution of 𝑝𝜃 (𝑥0:𝑇 ).
It is defined as a Markov chain with learned Gaussian transitions
starting at N(𝑥𝑡 ; 0, I):

𝑝𝜃 (𝑥0:𝑇 = 𝑝 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ), (5)

where
𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) . (6)

The corrupted noisy latent embedding𝑥𝑡 is sampled by𝑞(𝑥𝑡 |𝑥0) =
N(𝑥𝑡 ;

√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 )I), where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =

∏𝑡
𝑠=1 𝛼𝑠 .

Since the problem is co-speech gesture generation, which is
a conditional generation problem, we have to provide additional
inputs a, s, and zi−1 to the model. Therefore, these conditions are
injected into the generation process. The reverse process of each
timestep can be updated for our problem as:

𝑝𝜃 (𝑧𝑡−1 |𝑧𝑡 , 𝑦) = N(𝑥𝑡−1; 𝜇𝜃 (𝑧𝑡 , 𝑡, 𝑦), 𝛽𝑡 I) . (7)

The reverse process is started by sampling a Gaussian noise
𝑧𝑡 N(0, I) and following the Markov chain to iteratively denoise
the latent variable 𝑥𝑡 via Eq. 7 to get the original latent vector 𝑧0.

3
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Table 1: Detailed hyperparameters setting

Hyperparameter Value

# of joints (J) 26
# of pre-pose frames (M) 8

# of frames of the segment (N) 128
Denoising diffusion steps 1000
Feature dimension (D) 128

Condition vector dimension 512
# of residual blocks per up/downsampling layer 2

# of up/downsampling layers 4
# of attention heads 4

N-FFT 4096
Hop length [ms] 33

Text embedding dimension 1024

To optimize the diffusion model, the variational lower bound
on negative log-likelihood. We follow [10] to simplify the training
objective to the ensemble of MSE losses as:

𝐿(𝜃 ) = E𝑡,𝑥0,𝜖 [| |𝜖 − 𝜖𝜃 (
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖,𝑦, 𝑡) | |2], (8)

where t is uniformly sampled between 1 and T, and 𝜖 is initialized
as N(0, I). The diffusion model is trained by the gradient descent
steps on Eq. 8 until converged.

4 EXPERIMENT
4.1 Data Processing
We train our model using the GENEA Challenge 2023 dataset[33],
which is based on the Talking with Hands 16.2M dataset[19]. The
dataset includes a training set of 371 clips, a validation set of 40
clips, and a test set of 70 clips. Each clip contains audio, transcript,
and gesture motion for the main agent, gesture motion for the inter-
locutor, and metadata. The sampling rate of the audio is 44100kHz.
The gesture motion is in BVH format and its FPS is 30.

Our system only used main-agent audio and text. The metadata
and interlocutor information were ignored. We extracted the mel-
spectrogram, mel-frequency cepstrum coefficients, and prosody
with n-fft=4096 and hop length=33ms. We used Librosa[25] package
and Parselmouth[11] library to extract audio features. The output
from the network was joint angles relative to a T-pose. These joint
angles were parameterized using the exponential map[7], with each
dimension normalized to have zero mean and unit standard devia-
tion over the official challenge training set. We selected all joints in
the full-body expression and the number of selected joints is 26. We
smooth the generated gestures using the Savitzky-Golay filter[24]
with a window length of 9 and polynomial order of 3. The text
segment is embedded by pre-trained text embedding model[30],
which has 1024 dimensions for each sentence. We used sentence em-
bedding because we assume that sentence embedding can address
semantic information compared to word embedding. Since the au-
dio, text, and gestures are cropped from the same timestamps, The
timing of the audio features, text embeddings, and pose sequences
are synchronized.

Table 2: Summary of the collective perception study with a
0.05 confidence interval about human-likeness. Our entry is
SA.

Condi- Human-likeness
tion Median Mean

NA 71 ∈ [70, 71] 68.4±1.0
SG 69 ∈ [67, 70] 65.6±1.4
SF 65 ∈ [64, 67] 63.6±1.3
SJ 51 ∈ [50, 53] 51.8±1.3
SL 51 ∈ [50, 51] 50.6±1.3
SE 50 ∈ [49, 51] 50.9±1.3
SH 46 ∈ [44, 49] 45.1±1.5
BD 46 ∈ [43, 47] 45.3±1.4
SD 45 ∈ [43, 47] 44.7±1.3
BM 43 ∈ [42, 45] 42.9±1.3
SI 40 ∈ [39, 43] 41.4±1.4
SK 37 ∈ [35, 40] 40.2±1.5
SA 30 ∈ [29, 31] 32.0±1.3
SB 24 ∈ [23, 27] 27.4±1.3
SC 9 ∈ [ 9, 9] 11.6±0.9

5 DISCUSSION
In this section, we discuss evaluation results. The submitted co-
speech gestures are measured by three aspects: human likeness,
appropriateness for agent speech, and appropriateness for the inter-
locutor. The natural motion, monadic baseline, and dyadic baseline
are labeled NA, BM, and BD, respectively. Our submitted entry
name is named SA. Our gesture generation system is tested on a
desktop with a 3.20GHz i9-12900K CPU, 128GB RAM, and a RTX
3090 GPU.

5.1 Human-likeness
The evaluation results are shown in Table 2 and Figure 2. Our sub-
mitted system receives a median human-likeness score of 30 and a
mean human-likeness score of 32.0. There is a gap in human like-
ness between our entry and natural motion. We think one major
reason is that our system does not use any structural information
about the joints. Since the model does not catch a relationship be-
tween the joints, the model generates gestures by focusing on the
movements of the arms, which have a large movement compared
to the head or body joints. Moreover, our system does not include
finger motions. One other potential issue is smoothing methods.
The motions generated by our system seem not to be smooth, de-
spite the smoothing filter being applied. There can be some reasons,
such as the smoothing filter is not fully optimized and the number
of pre-pose is not enough.

5.2 Appropriateness for main agent speech
Regarding speech appropriateness for the main agent, Table 3 and
Figure 4 describes that our entry obtains 54.8% matched. The speech
appropriateness score for the main agent is not outstanding com-
pared to most of the other conditions.We think one potential reason
is semantic conditioning. Our system uses a pre-trained sentence

4
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Figure 2: Box plot visualizing the rating distribution in the
human-likeness study. Red bars are the median ratings (each
with a 0.05 confidence interval); yellow diamonds are the
mean ratings (also with a 0.05 confidence interval). Box edges
are at 25 and 75 percentiles, while whiskers cover 95% of all
ratings for each condition.
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Figure 3: Significance of pairwise differences between con-
ditions. White means that the condition listed on the 𝑦-axis
rated significantly above the condition on the 𝑥-axis, black
means the opposite (𝑦 rated below 𝑥), and grey means no
statistically significant difference at the level 𝛼 = 0.05 after
Holm-Bonferroni correction.

embedding model without fine-tuning. However, lots of text seg-
ments in the data are not satisfy sentence structure. Therefore,
embeddings may not express the semantics of the text segment cor-
rectly. To solve the problem, we suggest that the model uses longer
segments or a word embedding model. Another issue is the natural-
ness of the generated gestures. The gesture results generated by our

Table 3: Summary statistics of user-study responses from
appropriateness for main agent speech, with confidence in-
tervals for the mean appropriateness score(MAS) at the level
𝛼 = 0.05. "Pref. matched" identified how often test-takers pre-
ferredmatchedmotion in terms of appropriateness, ignoring
ties.

Condi- MAS Pref. Raw response count
tion matched 2 1 0 −1 −2 Sum

NA 0.81±0.06 73.6% 755 452 185 217 157 1766
SG 0.39±0.07 61.8% 531 486 201 330 259 1807
SJ 0.27±0.06 58.4% 338 521 391 401 155 1806
BM 0.20±0.05 56.6% 269 559 390 451 139 1808
SF 0.20±0.06 55.8% 397 483 261 421 249 1811
SK 0.18±0.06 55.6% 370 491 283 406 252 1802
SI 0.16±0.06 55.5% 283 547 342 428 202 1802
SE 0.16±0.05 54.9% 221 525 489 453 117 1805
BD 0.14±0.06 54.8% 310 505 357 422 220 1814
SD 0.14±0.06 55.0% 252 561 350 459 175 1797
SB 0.13±0.06 55.0% 320 508 339 386 262 1815
SA 0.11±0.06 53.6% 238 495 438 444 162 1777
SH 0.09±0.07 52.9% 384 438 258 393 325 1798
SL 0.05±0.05 51.7% 200 522 432 491 170 1815
SC −0.02±0.04 49.1% 72 284 1057 314 76 1803

system are sometimes not smooth and seem to odd. We believe that
this situation occurred by the structure of the pose autoencoder,
the number of pre-pose, and the degree of the smoothing filter.
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Figure 4: Bar plots visualizing the response distribution in the
appropriateness for main agent speech. The blue bar(bottom)
represents responses where subjects preferred the matched
motion, the light grey bar(middle) represents tied responses,
and the red bar(top) represents responses preferring mis-
matched motion, with the height of each bar being propor-
tional to the fraction of each category. Lighter colors corre-
spond to slight preference, and darker colors to clear prefer-
ence. On top of each bar is also a confidence interval for the
mean appropriateness score, scaled to fit the current axes.
The dotted black line indicates chance-level performance.
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Figure 5: Significant differences between conditions in the
appropriateness for main agent speech. White means the
condition listed on the 𝑦-axis achieved a MAS significantly
above the condition on the 𝑥-axis, black means the opposite
(𝑦 scored below 𝑥), and grey means no statistically significant
difference at level 𝛼 = 0.05 after correction for the false dis-
covery rate.

5.3 Appropriateness for interlocutor speech
The evaluation results are shown in Table 4 and Figure 6 about
interlocutor speech appropriateness. Our system receives a 53.5%
preference matched score, which is the highest appropriateness
score for interlocutor speech among all conditions, except for the
natural motion entry. Interestingly, although our system did not
have good scores for the main agent, it achieved a good appropri-
ateness score for interlocutor speech. Here we summarize several
settings of our condition that we think might be beneficial to im-
proving interlocutor speech appropriateness. The first reason may
be timing synchronization. In this evaluation setting, the video
with the main agent and interlocutor gives two times of perceptive
information, such as gestures and speech, to the referee compared
to the video with the main agent only. Therefore, the referee may
focus on timing rather than semantics because timing is easy to
perceive and intuitive. Since our system uses speech features, in-
cluding the mel-spectrogram, MFCC, and prosody, to find timing
from audio, the model learns to properly align audio with gestures.
Thus, our predicted gestures can control the timing of when the
speaking starts and pauses. The second reason is the characteristics
of generated gestures. In particular, there were many movements
of extending the arms to the interlocutor, and these movements
seem like a conversation with the interlocutor.

We suggest potential improvement methods for our system in
the main agent and interlocutor speech appropriateness. First, the
model can use the interlocutor gestures, audio, and text as condi-
tions. Second, putting the longer previous features of themain agent
and interlocutor into the conditions may generate better gestures.
Third, carefully designing the text embedding model and gesture
autoencoder improves semantic conditioning and the naturalness

Table 4: Summary statistics of user-study responses from
appropriateness for interlocutor speech, with confidence in-
tervals for the mean appropriateness score(MAS) at the level
𝛼 = 0.05. "Pref. matched" identified how often test-takers pre-
ferredmatchedmotion in terms of appropriateness, ignoring
ties.

Condi- MAS Pref. Raw response count
tion matched 2 1 0 −1 −2 Sum

NA 0.63±0.08 67.9% 367 272 98 189 88 1014
SA 0.09±0.06 53.5% 77 243 444 194 55 1013
BD 0.07±0.06 53.0% 74 274 374 229 59 1010
SB 0.07±0.08 51.8% 156 262 206 263 119 1006
SL 0.07±0.06 53.4% 52 267 439 204 47 1009
SE 0.05±0.07 51.8% 89 305 263 284 73 1014
SF 0.04±0.06 50.9% 94 208 419 208 76 1005
SI 0.04±0.08 50.9% 147 269 193 269 129 1007
SD 0.02±0.07 52.2% 85 307 278 241 106 1017
BM −0.01±0.06 49.9% 55 212 470 206 63 1006
SJ −0.03±0.05 49.1% 31 157 617 168 39 1012
SC −0.03±0.05 49.1% 34 183 541 190 45 993
SK −0.06±0.09 47.4% 200 227 111 276 205 1019
SG −0.09±0.08 46.7% 140 252 163 293 167 1015
SH −0.21±0.07 44.0% 55 237 308 270 144 1014

of the gestures, respectively. We will focus on these aspects in our
future work.
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Figure 6: Bar plots visualizing the response distribution
in the appropriateness for interlocutor speech. The blue
bar(bottom) represents responses where subjects preferred
the matched motion, the light grey bar(middle) represents
tied responses, and the red bar(top) represents responses
preferring mismatched motion, with the height of each bar
being proportional to the fraction of each category. Lighter
colors correspond to slight preference, and darker colors to
clear preference. On top of each bar is also a confidence in-
terval for the mean appropriateness score, scaled to fit the
current axes. The dotted black line indicates chance-level
performance.
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Figure 7: Significant differences between conditions in the
appropriateness for interlocutor speech. White means the
condition listed on the 𝑦-axis achieved a MAS significantly
above the condition on the 𝑥-axis, black means the opposite
(𝑦 scored below 𝑥), and grey means no statistically significant
difference at level 𝛼 = 0.05 after correction for the false dis-
covery rate.

Table 5: Effects of autoregression.

Model FGD(feature) FGD (raw)

w/o. pre-pose 154.984 4977.059
w. pre-pose 77.909 2279.612

5.4 ablation study
We conduct an ablation study to ensure that autoregression is help-
ful to co-speech gesture synthesis. We calculate Frechet Gesture
Distance(FGD), between ground truth and generated motions in the
validation set, which are shown in Table 5. As a result, the FGD of
discriminator features and raw gestures are improved when using
the pre-pose condition.

6 CONCLUSION
In this paper, we presented a novel diffusion-based co-speech ges-
ture generation framework, which is submitted to the GENEA Chal-
lenge 2023. To generate high-fidelity co-speech gestures, we pro-
posed a gesture autoencoder for domain transfer between gesture
space and latent feature space. We also migrated the denoising
diffusion probabilistic models to solve the co-speech gesture gen-
eration problem. The collective evaluation results indicated that
our method is not outstanding in main agent aspects compared to
most of the other entries, but our system outperforms all of the
other entries in appropriateness for interlocutor speech. We further
conducted an ablation study to ensure that autoregression is useful
to co-speech gesture synthesis. We conclude that our system has
merits in timing synchronization and generating suitable gestures

for the interaction. We also suggest some further challenges, includ-
ing semantic embedding and gesture embedding model structures,
for future work. We hope our method contributes to the research
about diffusion-based gesture generation and be applied to various
gesture generation applications.
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