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Abstract

Creating fast and accurate force fields is a long-standing challenge in computational1

chemistry and materials science. Recently, several equivariant message passing2

neural networks (MPNNs) have been shown to outperform models built using3

other approaches in terms of accuracy. However, most MPNNs suffer from high4

computational cost and poor scalability. We propose that these limitations arise5

because MPNNs only pass two-body messages leading to a direct relationship6

between the number of layers and the expressivity of the network. In this work,7

we introduce MACE, a new equivariant MPNN model that uses higher body order8

messages. In particular, we show that using four-body messages reduces the9

required number of message passing iterations to just two, resulting in a fast and10

highly parallelizable model, reaching or exceeding state-of-the-art accuracy on11

the rMD17, 3BPA, and ACAC benchmark tasks. We also demonstrate that using12

higher order messages leads to an improved steepness of the learning curves.13

1 Introduction14

The earliest approaches for creating force fields (interatomic potentials) using machine learning tech-15

niques were using local atom-centered symmetric descriptors and feed-forward neural networks [6],16

Gaussian Process regression[2] or linear regression [44, 47]. The first attempts to use graph neural net-17

works to model the potential energy of atomistic systems had only limited success. The DTNN [42],18

SchNet [41], HIP-NN [35], PhysNet [48], or DimeNet [20, 29] approaches could only come close19

to but not improve upon the atomic descriptor-based methods in terms of computational efficiency20

and accuracy on public benchmarks. Furthermore, most MPNN interatomic potentials use 2-body21

invariant messages, making them non-universal approximators [38].22

The MACE architecture presented here allows for the efficient computation of equivariant messages23

with high body order. As a result of the increased body order of the messages, only two message24

passing iterations are necessary to achieve high accuracy - unlike the typical five or six iterations25

of MPNNs, making it scalable and parallelizable. Finally, our implementation has remarkable26

computational efficiency, reaching state-of-the-art results on the 3BPA benchmark after 30 mins of27

training on NVIDIA A100 GPUs.28

We summarise our main contributions as follows:29

• We introduce MACE, a novel architecture combining equivariant message passing with30

efficient many-body messages. The MACE models achieve state-of-the-art performance31

on challenging benchmark tests. They also display greater generalization capabilities over32

other approaches on extrapolation benchmarks.33
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• We demonstrate that many-body messages change the power of the empirical power-law of34

the learning curves. Furthermore, we show experimentally that the addition of equivariant35

messages only shifts the learning curves but does not change the power law when higher36

order messages are used.37

• We show that MACE does not only outperform previous approaches in terms of accuracy38

but also does so while being significantly faster to train and evaluate than the previous most39

accurate models.40

2 Background41

2.1 MPNN Interatomic Potentials42

MPNNs [22, 9] are a type of graph neural network (GNN, [40, 4, 27, 51]) that parametrises a43

mapping from a labeled graph to a target space, either a graph or a vector space. When applied to44

parameterise properties of atomistic structures (materials or molecules), the graph is embedded in45

3-dimensional (3D) Euclidean space, where each node represents an atom, and edges connect nodes46

if the corresponding atoms are within a given distance of each other. We represent the state of each47

node i in layer t of the MPNN by a tuple48

σ
(t)
i = (ri, zi,h

(t)
i ), (1)

where ri ∈ R3 is the position of atom i, zi the chemical element, and h
(t)
i are its learnable features.49

A forward pass of the network consists of multiple message construction, update, and readout steps.50

During message construction, a message m
(t)
i is created for each node by pooling over its neighbors:51

52

m
(t)
i =

⊕
j∈N (i)

Mt(σ
(t)
i , σ

(t)
j ), (2)

where Mt is a learnable message function and
⊕

j∈N (i) is a learnable, permutation invariant pooling53

operation over the neighbors of atom i (e.g., a sum). In the update step, the message m
(t)
i is54

transformed into new features h(t+1)
i55

σ
(t+1)
i =

(
ri, zi, Ut(σ

(t)
i ,m

(t)
i )

)
, (3)

where Ut is a learnable update function. After T message construction and update steps, the learnable56

readout functions Rt map the node states σ(t)
i to the target, in this case the site energy of atom i,57

Ei =

T∑
t=1

Rt(σ
(t)
i ). (4)

2.2 Equivariant Graph Neural Networks58

In equivariant GNNs, internal features h(t)
i transform in a specified way under some group action [1,59

12, 32, 46, 49]. When modelling the potential energy of an atomic structure, the group of interest is60

O(3), specifying rotations and reflections of the particles.1 We call a GNN O(3) equivariant if it has61

internal features that transform under the rotation Q ∈ O(3) as62

h
(t)
i (Q · (r1, ..., rN )) = D(Q)h

(t)
i (r1, ..., rN ), (5)

where Q · (r1, ..., rN ) denotes the action of the rotation on the set of atomic positions and D(Q) is a63

matrix representing the rotation Q, acting on message h(t)
i . In general, elements of the feature vector64

can be labeled according to the irreducible representation they transform with. We will write h
(t)
i,kLM65

to indicate a collection of features on atom i, indexed by k, that transform according to66

h
(t)
i,kLM (Q · (r1, . . . , rN )) =

∑
M ′

DL
M ′M (Q)h

(t)
i,kLM ′(r1, . . . , rN ), (6)

1Translation invariance is trivially incorporated through the use of relative distances.

2



where DL(Q) ∈ R(2L+1)×(2L+1) is a Wigner D-matrix of order L. A feature labelled with L = 067

describes an invariant scalar. Features labeled with L > 0, describe equivariant features, formally68

corresponding to equivariant vectors, matrices or higher order tensors. The features of invariant69

models, such as SchNet[41] and DimeNet[29], transform according to D(Q) = 1, the identity matrix.70

Models such as NequIP [5], equivariant transformer [45], PaiNN [43], or SEGNNs [8], in addition to71

invariant scalars, employ equivariant internal features that transform like vectors or tensors.72

3 Related Work73

ACE - Higher Order Local Descriptors In the last few years, there have been two significant74

breakthroughs in machine learning force fields. First, the Atomic Cluster Expansion (ACE) [16]75

provided a systematic framework for constructing high body order complete polynomial basis76

functions (features) at a constant cost per basis function, independent of body order [17]. It has also77

been shown that ACE includes many previously developed atomic environment representations as78

special cases, including Atom Centred Symmetry Functions [6], the Smooth Overlap of Atomic79

Positions (SOAP) descriptor [2], Moment Tensor Potential basis functions [44], and the hyperspherical80

bispectrum descriptor [2] used by the SNAP model [47]. These local models are limited by their81

cutoff distance and their relatively rigid architecture compared to the overparametrised MPNNs,82

leading to somewhat lower accuracy, in particular, for molecular force fields.83

Equivariant MPNNs The second breakthrough was using equivariant internal features in MPNNs.84

These equivariant MPNNs, such as Cormorant [1], Tensor Field Networks [46], EGNN [39],85

PaiNN [43], Equivariant Transformers [45], SEGNN [8], NewtonNet [23], and NequIP [5] were able86

to achieve higher performance than previous local descriptor-based models. However, they suffer87

from two significant limitations: first, the most accurate models used L = 3 spherical tensors as88

messages and 4 to 6 message passing iterations [5], which resulted in a relatively high computational89

cost. Second, using this many iterations significantly increased the receptive field of the network,90

making them difficult to parallelise across multiple GPUs [36].91

Higher Order Message Passing Most MPNNs use a message passing scheme based on two-body92

messages, meaning they simultaneously depend on the states of two atoms. It has been recognised93

that it can be beneficial to include angles into the features, effectively creating 3-body invariant94

messages [29]. This idea has also been exploited in other invariant MPNNs, in particular, by95

SphereNet [34] and GemNet [30]. Even though these models improved the accuracy compared to96

the 2-body message passing, they were limited by the computational cost associated with explicitly97

summing over all triplets or quadruplets to compute the higher order features.98

Multi-ACE Framework Recently, multi-ACE has been proposed as a unifying framework of99

E(3)-equivariant atom-centered interatomic potentials, extending the ACE framework to include100

methods built on equivariant MPNNs [3]. A similar unifying theories were also put forward by101

[37] and [7]. The idea is to parameterise the message m
(t)
i in terms of invariant or equivariant102

ACE models. This framework sets out a design space in which each model can be characterised103

in terms of: (1) the number of layers, (2) the body order of the messages, (3) the equivariance (or104

invariance) of the messages, and (4) the number of features in each layer. The framework highlights105

the relationship between the overall body order of the models and message passing, also previously106

discussed in Kondor [31]. Most previously published models achieved high accuracy by either using107

4 to 6 layers [5, 43] or increasing the local body order with a single layer [33, 36]. With our model,108

we fall in between these two extremes by combining high body order with message passing.109

4 The MACE Architecture110

Our MACE model follows the general framework of MPNNs outlined in Section 2. Our key111

innovation is a new message construction mechanism. We expand the messages m(t)
i in a hierarchical112
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body order expansion,113

m
(t)
i =

∑
j

u1

(
σ
(t)
i ;σ

(t)
j

)
+

∑
j1,j2

u2

(
σ
(t)
i ;σ

(t)
j1

, σ
(t)
j2

)
+ · · ·+

∑
j1,...,jν̄

uν̄

(
σ
(t)
i ;σ

(t)
j1

, . . . , σ
(t)
jν̄

)
,

(7)
where the terms uν are learnable, the sums run over the neighbors of i, and ν̄ is a hyper-parameter114

corresponding to the maximum correlation order, the body order minus 1, of the message function115

with respect to the states. Even though we refer to the message as (ν̄ + 1)-body with respect to the116

states, the overall body order with respect to the positions can be larger depending on the body order of117

the states themselves. Crucially, by writing
∑

j1,...,jν̄
, which includes self-interaction (e.g., j1 = j2),118

we will later obtain a tensor product structure with a computationally efficient parameterisation,119

that allows us to circumvent the seemingly exponential scaling of the computational cost with the120

correlation order ν. This contrasts with previous models, such as DimeNet [28, 29], that compute121

3-body features via the more standard many-body expansion
∑

j1<···<jν̄
. Below, we describe the122

MACE architecture in detail.123

Message construction At each iteration, we first embed the edges using a learnable radial basis124

R
(t)
kl1l2l3

, a set of spherical harmonics Y m1

l1
, and a learnable embedding of the previous node features125

h
(t)
j,l2m2

using weights W(t)
kl2

. The A
(t)
i -features are obtained by pooling over the neighbours N (i) to126

obtain permutation invariant 2-body features whilst, crucially, retaining full directional information,127

and thus, full information about the atomic environment:128

A
(t)
i,kl3m3

=
∑

l1m1,l2m2

Cl3m3

l1m1,l2m2

∑
j∈N (i)

R
(t)
kl1l2l3

(rji)Y
m1

l1
(r̂ji)W(t)

kl2
h
(t)
j,l2m2

, (8)

where Cl3m3

l1m1,l2m2
are the standard Clebsch-Gordan coefficients ensuring that A(t)

i,kl3m3
maintain the129

correct equivariance, rji is the (scalar) interatomic distance, and r̂ji is the corresponding unit vector.130

R
(t)
kl1l2l3

is obtained by feeding a set of radial features that embed the radial distance rji using Bessel131

functions multiplied by a smooth polynomial cutoff (cf. Ref. [29]) to a multi-layer perceptron (MLP).132

See Section A.3 for details. In the first layer, the node features h
(t)
j correspond to the (invariant)133

chemical element zj . Therefore, (8) can be further simplified:134

A
(1)
i,kl1m1

=
∑

j∈N (i)

R
(1)
kl1

(rji)Y
m1

l1
(r̂ji)W(1)

kzj
. (9)

This simplified operation is much cheaper, making the computational cost of the first layer low.135

The key operation of MACE is the efficient construction of higher order features from the unsym-136

metrized A
(t)
i -features. This is achieved by first forming tensor products of the features, and then137

symmetrising:138

B
(t)
i,ηkLM =

∑
lm

CLM
η,lm

ν∏
ξ=1

∑
k̃

w
(t)

kk̃lξ
A

(t)

i,k̃lξmξ
, lm = (l1m1, . . . , lνmν) (10)

where the coupling coefficients CLM
η,lm corresponding to the generalised Clebsch-Gordan coefficients139

(details in A.2) ensuring that B(t)
i,ηkLM are L-equivariant and the weights w

(t)

kk̃lξ
are mixing the140

channels (k) of A(t)
i . CLM

η,lm is very sparse and can be pre-computed such that (10) can be evaluated141

efficiently (see Appendix A.2). The additional index η simply enumerates all possible couplings of142

l1, . . . , lν features that yield the selected equivariance specified by the L index. The B
(t)
i -features143

are constructed for ν ∈ {1 · · · ν̄}. The parameter ν in (10) is the order of the tensor product, and144

hence, can be identified as the ν of the many-body expansion in (7). The computationally expensive145

multi-dimensional sums over all triplets, quadruplets, etc., are thus circumvented and absorbed into146

(9) and (8).147

The message m
(t)
i can now be written as a linear expansion148

m
(t)
i,kLM =

∑
η

W
(t)
zikL,ηB

(t)
i,ηkLM , (11)
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where W
(t)
zikL,η is a learnable weight matrix that depends on the chemical element zi of the receiving149

atom and message symmetry L. Thus, we implicitly construct each term uν in (7) by a linear150

combination of B(t)
i,ηkLM .151

Under mild conditions on the two-body bases A(t)
i , the higher order features B(t)

i,ηkLM can be inter-152

preted as a complete basis of many-body interactions, which can be computed at a cost comparable153

to pairwise interactions. Because of this, the expansion (11) is systematic. It can in principle be154

converged to represent any smooth (ν + 1)-body equivariant mapping in the limit of infinitely many155

features [17].156

Update In MACE, the update is a linear function of the message and the residual connection [25]:157

158

h
(t+1)
i,kLM = UkL

t (σ
(t)
i ,m

(t)
i ) =

∑
k̃

W
(t)

kL,k̃
mi,k̃LM +

∑
k̃

W
(t)

zikL,k̃
h
(t)

i,k̃LM
. (12)

Readout In the readout phase, the invariant part of the node features is mapped to a hierarchical159

decomposition of site energies via readout functions:160

Ei = E
(0)
i + E

(1)
i + ...+ E

(T )
i , where

E
(t)
i = Rt

(
h
(t)
i

)
=


∑

k̃ W
(t)

readout,k̃
h
(t)

i,k̃00
if t < T

MLP
(t)
readout

({
h
(t)
i,k00

}
k

)
if t = T

(13)

The readout only depends on the invariant features h(t)
i,k00 to ensure that the site energy contributions161

E
(t)
i are invariant as well. To maintain body ordering, we use linear readout functions for all layers162

except the last, where we use a one-layer MLP.163

5 Results164

5.1 Effect of Higher Order Messages165

Number of layers In this section, we investigate the effect of using higher order messages.166

Many MPNN architectures [41, 48] exclusively pass two-body invariant messages resulting in an167

incomplete representation of the local environment [38]. Equivariant message-passing schemes [5,168

43, 8] lift the degeneracy of most structures by containing directional information in the messages.169

MPNNs that only employ two-body messages at each layer can increase the body order either by170

stacking layers [31] which simultaneously increases the model’s receptive field or by using non-linear171

activation functions, generate only a subset of all possible higher order features. By constructing172

higher order messages using the MACE architecture, we disentangle the increase in body order from173

the increase of the receptive field.174

In Figure 1, we show the accuracy of MACE, NequIP, and BOTNet [3] on the 3BPA benchmark [33]175

as a function of the number of message passing layers. Approaches employing 2-body message176

passing require up to five iterations for their accuracy to converge. By constructing many body177

messages, the number of required layers to converge in accuracy reduces to just two. In all subsequent178

experiments, we use two-layer MACE models.179

Furthermore, we compare BOTNet, which does not use any non-linearities in the update step to180

NequIP, which does. Otherwise, the two models are very similar. We observe that the increase in body181

order through non-linearities within the update provides only marginal improvement, highlighting182

the difference between an increase in body order through non-linearities (NequIP) and higher order183

symmetric messages (MACE). Consequently, higher order message passing allows one to reduce the184

number of layers, thereby increasing speed and ease of parallelization over multiple GPUs. We note185

that MACE does not improve after two layers as the 3BPA molecule is about 9 Å and radial cutoff is186

5 Å.187

Learning curves We study how higher order message passing affects the learning curves. A188

recent study of the NequIP model [5] showed that the inclusion of equivariant features results in189
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Figure 1: Energy and force errors of BOTNet, NequIP, and MACE (L = 2) on the 3BPA dataset at
different temperatures as a function of the number of layers.

enhanced data efficiency, increasing the slope of the log-log plot of predictive error as a function of190

the dataset size. They showed that adding equivariance not only shifts the learning curves, but also191

changes the powers in the empirical power law of the learning curves, which is usually constant for a192

given dataset [26].193

On the left panel of Figure 2, we replicate the experiments of [5] by training a series of invariant194

MACE models with increasing correlation order ν on the aspirin molecule from the rMD17 dataset.195

We observe that adding higher order messages changes the steepness of the learning curves, even196

without equivariant features. The model with correlation order ν = 1 corresponds to a two-layer197

2-body invariant model, similar to SchNet. This model is the least accurate due to the incomplete198

nature of 2-body invariant representations of the local environment [38]. The invariant messages with199

ν = 2 are akin to those in DimeNet, which explicitly puts angular information into the messages. We200

see that including higher order information significantly improves the model’s accuracy. Finally, by201

going beyond any current message passing potential by setting ν = 3, we achieve similar performance202

to a highly-accurate 2-body, equivariant MPNN while only using higher order invariant messages.203

On the middle panel of Figure 2, we keep the correlation order fixed at ν = 3 and gradually increase204

the symmetry order L of the messages. While the slope remains nearly unchanged, the curves are205

shifted. In the right panel of Figure 2, we keep the correlation order fixed at ν = 1 and gradually206

increase the symmetry order L of the messages. We see only a marginal slope change when adding207

equivariant features, which could be attributable to the relatively low expressiveness of a two-layer208

MACE restricted to correlation order ν = 1. These results suggest two routes to improve invariant 2-209

body MPNN models: creating higher correlation order features or incorporating equivariant features.210

By exploiting both of these options, the MACE model achieves state-of-the-art accuracy.211

5.2 Scaling and Computational Cost212

Chemical elements A significant limitation of existing atomic environment representations is that213

their size grows with the number of chemical elements S and correlation order ν as Sν . Data-driven214

compression schemes have been proposed [50] to solve this issue, and MPNNs incorporate similar215

embeddings of the chemical elements into a fixed-size vector space. MACE uses a continuous species216

embedding and when constructing the higher order features in (10), it does not include the species217

dimension k in the tensor product resulting in O(1) scaling of the model with the number of chemical218

elements S.219

Receptive field A severe limitation of many previously published MPNNs was their large receptive220

field, making it difficult to parallelize the evaluation across multiple GPUs. In traditional MPNNs,221

6



102 103

Number of training data

10 2

10 1

M
A
E
 F

 [
e
V
/A

]

102 103

Number of training data
102 103

Number of training data

L= 0, = 3, s=-0.64
L= 1, = 3, s=-0.63
L= 2, = 3, s=-0.64

L= 0, = 1, s=-0.33
L= 1, = 1, s=-0.44
L= 2, = 1, s=-0.45

L= 0, = 1, s=-0.33
L= 0, = 2, s=-0.51
L= 0, = 3, s=-0.64

Figure 2: Learning curve of force errors (RMSE in eV / Å) for aspirin from the rMD17 dataset
for different models. Left: Two layers of invariant (L = 0) MACE with increasing body order
ν ∈ {1, 2, 3}. Center: Two layers of MACE with ν = 3 and increasing equivariance L ∈ {0, 1, 2}.
Right: Two layers of MACE with ν = 1 and increasing equivariance L ∈ {0, 1, 2}.

the total receptive field of each node, which grows with each message passing iteration, can be up to222

30 Å. This scaling results in the number of neighbours being in the thousands in a condensed phase223

simulation, preventing any efficient parallelization [36]. By decoupling the increase in correlation224

order of the messages from the number of message passing iterations, MACE only requires two layers225

resulting in a much smaller receptive field. With a local radial cutoff of 4 to 5 Å, the overall receptive226

field remains small, making the model more parallelisable.227

Computational cost The computational bottleneck of equivariant MPNNs is the equivariant228

tensor product (8). This tensor product is evaluated on edges. In MACE, we only evaluate this229

expensive tensor product once, within the second layer, and build up correlations through the tensor230

product of (10). Importantly, this operation is carried out on nodes. Typically the number of nodes is231

orders of magnitudes smaller than the number of edges resulting in a computational advantage. The232

other computational advantage comes from the efficient implementation of (10) using a loop tensor233

contraction algorithm (see A.2).234

We report evaluation times for BOTNet, NequIP, and multiple versions of MACE in Table 2. We235

observe that the invariant MACE (L = 0) is close to 10 times faster than BOTNet and NequIP236

while achieving similar accuracy at high temperatures. MACE with L = 1 and L = 2 is 5 and 4237

times faster than BOTNet and NequIP, respectively, while outperforming them at every temperature.238

We acknowledge that accurate speed comparisons between codes are hard to obtain, and further239

investigations need to be carried out. It is also essential to consider training times. Models that are240

significantly faster to train are better suited for applications of active learning, which is typically how241

databases for materials science applications are built [13–15]. The MACE model reported in Table 2242

takes approximately 30 mins to reach the accuracy of a converged BOTNet model, taking more than243

a day to be trained on the 3BPA dataset using NVIDIA A100 GPUs.244

5.3 Benchmark Results 2245

5.3.1 rMD17: Molecular Dynamics Trajectory246

The revised MD17 (rMD17) dataset contains train test splits randomly selected from a long molecular247

dynamics trajectory of ten small organic molecules [11]. For each molecule, the splits consist of 1000248

training and test configurations. Table 1 shows that MACE achieves excellent accuracy, improving249

the state of the art for some molecules, particularly those with the highest errors. As several methods250

achieve similar accuracy on the standard task of predicting energies and forces based on the whole251

training set, we also trained MACE and NequIP, another accurate model, on just 50 configurations to252

increase the difficulty of the benchmark. In this case, we found that MACE outperformed NequIP for253

most molecules.254

2Training details and hyper-parameters for all experiments can be found in Appendix A.3
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Table 1: Mean absolute errors on the rMD17 dataset [11]. Energy (E, meV) and force (F, meV/Å)
errors of different models trained on 950 configurations and validated on 50. The models on the right
of the first vertical line, DimeNet and NewtonNet, were trained on the original MD17 dataset [10].
The models on the right of the second (double) vertical line were trained on 50 configurations.

MACE Allegro [36] BOTNet [3] NequIP [5] ACE [33] FCHL [18] GAP [2] ANI [19] PaiNN [43] DimeNet [29] NewtonNet [24] NequIP [5] MACE

Ntrain = 950 Ntrain = 50

Aspirin E 2.2 2.3 2.3 2.3 6.1 6.2 17.7 16.6 6.9 8.8 7.3 19.5 17.0
F 6.6 7.3 8.5 8.2 17.9 20.9 44.9 40.6 16.1 21.6 15.1 52.0 43.9

Azobenzene E 1.2 1.2 0.7 0.7 3.6 2.8 8.5 15.9 - - 6.1 6.0 5.4
F 3.0 2.6 3.3 2.9 10.9 10.8 24.5 35.4 - - 5.9 20.0 17.7

Benzene E 0.4 0.3 0.03 0.04 0.04 0.35 0.75 3.3 - 3.4 - 0.6 0.7
F 0.3 0.2 0.3 0.3 0.5 2.6 6.0 10.0 - 8.1 - 2.9 2.7

Ethanol E 0.4 0.4 0.4 0.4 1.2 0.9 3.5 2.5 2.7 2.8 2.6 8.7 6.7
F 2.1 2.1 3.2 2.8 7.3 6.2 18.1 13.4 10.0 10.0 9.1 40.2 32.6

Malonaldehyde E 0.8 0.6 0.8 0.8 1.7 1.5 4.8 4.6 3.9 4.5 4.1 12.7 10.0
F 4.1 3.6 5.8 5.1 11.1 10.3 26.4 24.5 13.8 16.6 14.0 57.2 43.3

Naphthalene E 0.5 0.2 0.2 0.9 0.9 1.2 3.8 11.3 5.1 5.3 5.2 2.1 2.1
F 1.6 0.9 1.8 1.3 5.1 6.5 16.5 29.2 3.6 9.3 3.6 10.0 9.2

Paracetamol E 1.3 1.5 1.3 1.4 4.0 2.9 8.5 11.5 - - 6.1 14.3 9.7
F 4.8 4.9 5.8 5.9 12.7 12.3 28.9 30.4 - - 11.4 42.1 31.5

Salicylic acid E 0.9 0.9 0.8 0.7 1.8 1.8 5.6 9.2 4.9 5.8 4.9 8.0 6.5
F 3.1 2.9 4.3 4.0 9.3 9.5 24.7 29.7 9.1 16.2 8.5 35.0 28.4

Toluene E 0.5 0.4 0.3 0.3 1.1 1.7 4.0 7.7 4.2 4.4 4.1 3.3 3.1
F 1.5 1.8 1.9 1.6 6.5 8.8 17.8 24.3 4.4 9.4 3.8 15.1 12.1

Uracil E 0.5 0.6 0.4 0.4 1.1 0.6 3.0 5.1 4.5 5.0 4.6 9.2 4.4
F 2.1 1.8 3.2 3.1 6.6 4.2 17.6 21.4 6.1 13.1 6.4 44.6 25.9

5.3.2 3BPA: Extrapolation to Out-of-domain Data255

The 3BPA dataset introduced in [33] tests a model’s extrapolation capabilities. Its training set contains256

500 geometries sampled from 300 K molecular dynamics simulation of the large and flexible drug-like257

molecule 3-(benzyloxy)pyridin-2-amine. The three test sets contain geometries sampled at 300 K,258

600 K, and 1200 K to assess in- and out-of-domain accuracy. A fourth test set consists of optimized259

geometries, where two of the molecule’s dihedral angles are fixed, and a third is varied between 0260

and 360 degrees resulting in so-called dihedral slices through regions of the PES far away from the261

training data.262

The root-mean-squared errors (RMSE) on energies and forces for several models are shown in Table 2.263

It can be seen that MACE outperforms the other models on all tasks. In particular, when extrapolating264

to 1200 K data, MACE with L = 2 outperforms NequIP and Allegro models by about 30%. Further,265

MACE with L = 2 outperforms the next best model, BOTNet, by 40% on energies for the dihedral266

slices. Finally, the MACE model with invariant messages (L = 0) often nearly matches or exceeds267

the performance of competitive equivariant models.268

MACE shows excellent results while also featuring low computational cost compared to many other269

models. The L = 0 model, which approaches previous models in terms of accuracy, outpaces them270

Table 2: Root-mean-square errors on the 3BPA dataset. Energy (E, meV) and force (F, meV/Å)
errors of models trained and tested on configurations collected at 300 K of the flexible drug-like
molecule 3-(benzyloxy)pyridin-2-amine (3BPA). Standard deviations are computed over three runs
and shown in brackets if available. All PyTorch timings were realised on an NVIDIA A100 GPU.

BOTNet NequIP Allegro MACE (L=0) MACE (L=1) MACE (L=2)

300 K E 3.1 (0.13) 3.3 (0.1) 3.84 4.5 (0.25) 3.4 (0.2) 3.0 (0.2)
F 11.0 (0.14) 10.8 (0.2) 12.98 14.6 (0.5) 10.3 (0.3) 8.8 (0.3)

600 K E 11.5 (0.6) 11.2 (0.1) 12.07 13.7 (0.16) 9.9 (0.8) 9.7 (0.5)
F 26.7 (0.29) 26.4 (0.1) 29.17 33.3 (1.35) 24.6 (1.1) 21.8 (0.6)

1200 K E 39.1 (1.1) 38.5 (1.6) 42.57 37.1 (0.8) 31.7 (0.5) 29.8 (1.0)
F 81.1 (1.5) 76.2 (1.1) 82.96 81.6 (3.89) 67.8 (1.8) 62.0 (0.7)

Dihedral Slices E 16.3 (1.5) - - 12.3 (0.8) 11.5 (0.6) 7.8 (0.6)
F 20.0 (1.2) - - 26.1 (2.8) 19.3 (0.6) 16.5 (1.7)

Time / atom [ms] * 3.7 3.7 - 0.39 0.65 0.89
* These timings are preliminary, and we intend to collaborate with the authors of the other models to get the final timings. The

code of the Allegro model was published just two weeks before the submission deadline such that were not able to obtain the
timings. They will be included in the revised version of this manuscript.
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by nearly a factor of 10, whereas the L = 2 model achieves state-of-the-art accuracy and is around271

four times faster than other equivariant MPNN models.272

In Figure 3, we compare the BOTNet, NequIP, and MACE (L = 2) by inspecting their energy profile273

for three dihedral slices. Overall, it can be seen that all models produce smooth energy profiles and274

that, in general, MACE comes closest to the ground truth. The fact that MACE outperforms the
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Figure 3: Energy predictions on cuts through the potential energy surface of the 3-(benzyloxy)pyridin-
2-amine (3BPA) molecule by BOTNet, NequIP, and MACE (L = 2). The ground-truth energy is
shown in black. For each cut, the curves have been shifted vertically so that the lowest ground-truth
energy is zero.

275

other methods in the middle panel, which contains geometries furthest from the training dataset [3],276

suggests superior extrapolation capabilities.277

5.3.3 ACAC: Flexibility and Reactivity278

A similar benchmark dataset assessing a model’s extrapolation capabilities to higher temperatures,279

bond breaking, and bond torsions of the acetylacetone molecule was proposed in [3]. In Table 3, we280

show that MACE achieves state-of-the-art results on this dataset as well. For details, see Appendix A.1.281

Table 3: Root-mean-square errors on the acetylacetone dataset. Energy (E, meV) and force (F,
meV/Å) errors of models trained on configurations of the acetylacetone molecule sampled at 300 K
and tested on configurations sampled at 300 K and 600 K.

BOTNet NequIP MACE

300 K E 0.89 (0.0) 0.81 (0.04) 0.9 (0.03)
F 6.3 (0.0) 5.90 (0.38) 5.1 (0.10)

600 K E 6.2 (1.1) 6.04 (1.26) 4.6 (0.3)
F 29.8 (1.0) 27.8 (3.29) 22.4 (0.9)

N° Parameters 2,756,416 3,190,488 2,803,984

282

6 Discussions283

With MACE, we extend traditional (equivariant) MPNNs from 2-body to many-body message passing284

in a computationally efficient manner. Our experiments show that the approach reduces the required285

number of message passing, leading to efficient and parallelizable models. Furthermore, we have286

demonstrated the high accuracy and good extrapolation capabilities of MACE, reaching state-of-the-287

art accuracy on the rMD17, 3BPA, and ACAC benchmarks. Future development should concentrate288

on testing MACE on larger systems, including condensed phases and solids.289
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7 Reproducibility statements290

We have included error bars via different seeds and various ablation studies wherever necessary and291

appropriate. We have stated all hyper-parameters and data description in the Appendix A.3. Code292

will be made available online.293

8 Ethical statements294

The societal impact of MACE is challenging to predict. However, better force fields have a positive295

impact on society by speeding up drug discovery and through helping to understand, control, and296

design new materials. However, machine learning force fields rely on generating ab initio training297

data leading to heavy computation and large energy consumption. Machine learned force fields do298

alleviate the costs of doing molecular modelling significantly when compared with using solely ab299

initio methods.300
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