Under review as a conference paper at ICLR 2021

DEBERTA: DECODING-ENHANCED BERT WITH DIS-
ENTANGLED ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent progress in pre-trained neural language models has significantly improved
the performance of many natural language processing (NLP) tasks. In this paper
we propose a new model architecture DeBERTa (Decoding-enhanced BERT with
disentangled attention) that improves the BERT and RoBERTa models using two
novel techniques. The first is the disentangled attention mechanism, where each
word is represented using two vectors that encode its content and position, respec-
tively, and the attention weights among words are computed using disentangled
matrices on their contents and relative positions. Second, an enhanced mask de-
coder is used to incorporate absolute positions in the decoding layer to predict
the masked tokens in model pre-training. We show that these two techniques
significantly improve the efficiency of model pre-training and the performance of
both natural language understand(NLU) and natural langauge generation(NLG)
tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of the
training data performs consistently better on a wide range of NLP tasks, achieving
improvements on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3%
(88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%).

1 INTRODUCTION

The Transformer has become the most effective neural network architecture for neural language
modeling. Unlike recurrent neural networks (RNNs) that process text in sequence, Transformers
apply self-attention to compute in parallel every word from the input text an attention weight that
gauges the influence each word has on another, thus allowing for much more parallelization than
RNNss for large-scale model training (Vaswani et al.| [2017). Since 2018, we have seen the rise of a
set of large-scale Transformer-based Pre-trained Language Models (PLMs), such as GPT (Radford
et al.,[2019; Brown et al.,[2020), BERT (Devlin et al.,[2019), RoBERTa (Liu et al., 2019c)), XLNet
(Yang et al.,[2019), UniLM (Dong et al.,|2019a), ELECTRA (Clark et al.,[2020), TS5 (Raffel et al.,
2019), ALUM (Liu et al., 2020), StructBERT (Wang et al., 2019) and ERINE (Sun et al., 2019)) .
These PLMs have been fine-tuned using task-specific labels and created new state-of-the-art in many
downstream natural language processing (NLP) tasks (Liu et al.,[2019b; Minaee et al., 2020; Jiang
et al.L[2019; |He et al., 2019a3b; |Shen et al., [2020).

In this paper, we propose a new Transformer-based neural language model DeBERTa (Decoding-
enhanced BERT with disentangled attention) which has been proven to be more effective than
RoBERTa and BERT and after fine-tuning leads to better results on a wide range of NLP tasks.

DEBERTa proposes a disentangled self-attention mechanism. Unlike BERT where each word in
the input layer is represented using a vector which is the sum of its word (content) embedding
and position embedding, each word in DeBERTa is represented using two vectors that encode its
content and position, respectively, and the attention weights among words are computed using
disentangled matrices based on their contents and relative positions, respectively. This is motivated
by the observation that the attention weight of a word pair depends on not only their contents but
their relative positions. For example, the dependency between the words “deep” and “learning” is
much stronger when they occur next to each other than when they occur in different sentences.

As an extension to disentangled attention, we enhance the output layer of BERT for pre-training to
address a limitation of relative positions. We observe in some situations, it is challenging for the
relative positions only mechanism to accurately predict masking tokens. For example, considering

Under review as a conference paper at ICLR 2021

a sentence “A new store opened near the new mall” with the words store and mall masked for
prediction, only using the relative positions is not sufficient for the model to accurately predict store
and mall in this sentence, since they are exchangeable in syntax although with a different meaning,
also right after the word new with an exact relative position to it. To address this limitation, we
propose to introduce absolute positions back in the output layer of BERT, as a complement to the
relative positions.

We show through a comprehensive empirical study that the disentangle attentions with its extensions
substantially improve the efficiency of pre-training and the performance of downstream tasks. In
the NLU tasks, compared to RoOBERTa-Large, a DeBERTa model trained on half the training data
performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by
+0.9% (90.2% vs. 91.1%), on SQUAD v2.0 by +2.3%(88.4% vs. 90.7%), and RACE by +3.6%
(83.2% vs. 86.8%). In the NLG tasks, DeBERTa improves the perplexity from 21.6 to 19.5 on the
Wikitext-103 dataset.

2 BACKGROUND

2.1 TRANSFORMER STRUCTURE

A Transformer-based language model is composed of stacked Transformer blocks (Vaswani et al.,
2017). Each block contains a multi-head self-attention layer followed by a fully connected positional
feed-forward network. The standard self-attention mechanism lacks a natural way to encode word
position information. Thus, existing approaches add a positional bias to each input word embedding
so that each input word is represented by a vector whose value depends on its content and position.
The positional bias can be implemented using absolute position embedding (Vaswani et al., 2017}
Radford et al.l 2019; [Devlin et al., 2019)) or relative position embedding (Huang et al., 2018; Yang
et al.,|2019). It has been shown that relative position representations are more effective for natural
language understanding and generation tasks (Dai et al., [2019; |Shaw et al., 2018)). The proposed
Disentangled Attention mechanism differs from all existing approaches in that we represent each
input word using two separate vectors that encode a word’s content and position respectively, and
attention weights among words are computed using disentangled matrices on their contents and
relative positions.

2.2 MASKED LANGUAGE MODEL

Large-scale Transformer-based PLMs (Devlin et al., [2019; |Liu et al.l 2019c; [Lan et al.,|2019) are
typically pre-trained on large amounts of text to learn contextual word representations using a self-
supervision objective, known as Masked Language Model (MLM). Specifically, given a sequence

X = {z;}, we corrupt it into X by masking 15% of its tokens at random and then train a language
model parameterized by 6 to reconstruct X by predicting the masked tokens Z conditioned on X:
max log py(X|X) =mg><§10gpa(wi = 2| X) (1)

where C is the index set of the masked tokens in the sequence. The authors of BERT propose to keep
10% of the masked tokens unchanged, another 10% replaced with randomly picked tokens and the
rest replaced with the [MASK] token.

3 APPROACH

3.1 DISENTANGLED ATTENTION

For a token at position 4 in a sequence, we represent it using two vectors, { H;} and { P;;}, which
represent its content and relative position with the token at position j, respectively. The calculation of
the cross attention score between tokens ¢ and j can be decomposed into four components as

Aij = {H;, Py;} x {Hj, Pj;}7

= H,,H; + H,LPJT‘z + P'L|.7H; + P;

2)

. pPT
\JPju

Under review as a conference paper at ICLR 2021

That is, the attention weight of a word pair can be computed as a sum of four attention scores
using disentangled matrices on their contents and positions as content-to-content, content-to-position,
position-to-content, and position-to-position

Existing approaches (Shaw et al.l 2018; [Huang et al.l |2018) to relative position encoding use a
separate embedding matrix to compute the relative position bias in computing attention weights. This
is equivalent to computing the attention weights using only the content-to-content and content-to-
position terms in equation [2] We argue that the position-to-content term is also important since the
attention weight of a word pair depends not only on their contents but on their relative positions,
which can only be fully modeled using both the content-to-position and position-to-content terms.
Since we use relative position embedding, the position-to-position term does not provide much
additional information and is removed from equation [2]in our implementation.

Taking single-head attention as an example, the standard self-attention (Vaswani et al.,|2017) can be
formulated as:

KT
Q=HW, K=HW,V=HW, A= Qi
Vd
H, = softmax(A)V

where H € R™V*4 represents the input hidden vectors, H, € RV *? the output of self-attention,
Wy, Wi, W, € R4 the projection matrices, A € RV ¥ the attention matrix, N the length of
input sequence, and d the dimension of hidden state.

Denote k as the maximum relative distance, (i, j) € [0, 2k) as the relative distance from token ¢ to
token 7, which is defined as:

0 for i—j5<-—k
6(i,j)={ 2k—1 for i—j5=k 3)
i —j+k others

We can represent the disentangled self-attention with relative position bias as equation []
where Q., K. and V. are the projected content vectors generated using projection matrices
Wa.c, Wi,c, Way,e € R respectively, P € R***? represents the relative position embedding
vectors shared across all layers (i.e., staying fixed during forward propagation), and Q,. and K,
are projected relative position vectors generated using projection matrices Wy, ., Wi, € R4,
respectively.

Qc = HWq,ch = HWk,Ca Ve = HW'u,c,Qr = PWq,raKr = PWk,r

A crreT crrr T cr T
Aig = QiKj' + QiKy, ;" + KjQy,
Y 4
(a) content-to-content (b) content-to-position (c) position-to-content ()

H, = softmax(\gid)vC

Aj; ; is the element of attention matrix A, representing the attention score from token i to token
J. Qf is the i-th row of Q.. K75 is the j-th row of K. Kg(i) is the (4, j)-th row of K, with
regarding to relative distance §(%, j). Q3 ;i) 1s the (4, 1)-th row of Q,. with regarding to relative
distance (7, ¢). Note that we use d(j,) rather than (4, j) here. This is because for a given position
1, position-to-content computes the attention weight of the key content at j with respect to the
query position at ¢, thus the relative distance is 6(7, 7). The position-to-content term is calculated as
K;Qg(j Z.)T. The content-to-position term is calculated in a similar way.

Finally, we apply a scaling factor of \/% on A which is important for stabilizing model training
Vaswani et al.|(2017), especially for large-scale PLMs.

'In this sense, our model shares some similarity to Tensor Product Representation (Smolensky, |1990; [Schlag
et al.l 2019;|Chen et al.l 2019) where a word is represented using a tensor product of its filler (content) vector
and its role (position) vector.

Under review as a conference paper at ICLR 2021

3.1.1 EFFICIENT IMPLEMENTATION

For an input sequence of length IV, it requires a space complexity of O(N2d) (Shaw et al., 2018},
Huang et al., |2018; |Dai et al., [2019) to store the relative position embedding for each token. However,
taking content-to-position as an example, we note that since 6(4, j) € [0, 2k) and thus the embedding
of all possible relative positions are always a subset of K, € R***9, then we can reuse K, in
the attention calculation for all the queries. In experiments, we set the maximum relative distance
k to 512 for pre-training. The disentangled attention weights can be computed efficiently using
Algorithm [I} Let § be the relative position matrix according to equation [3} i.e., 8[7, j] = (i,).
Instead of allocating a different relative position embedding matrix for each query, we multiply each
query vector Q.[i,:] by KT € RY*?k asinline 3 — 5. Then, we extract the attention weight using
the relative position matrix § as the index, as in line 6 — 10. To compute the position-to-content
attention score, we calculate Apac[:, 7] i.e., the column vector of the attention matrix Ap e, by
multiplying each key vector K.[j,:] by QT, as in line 11 — 13. Finally, we extract the corresponding
attention score via the relative position matrix § as the index, as in line 14 — 18. In this way, we do
not need to allocate memory to store a relative position embedding for each query and thus reduce
the space complexity to O(kd) (for storing K. and Q).

Algorithm 1 Disentangled Attention

Input: Hidden state H, relative distance embedding P, relative distance matrix 6. Content projec-
tion matrix Wy, ., Wgq.c, Wy, ¢, position projection matrix Wy, ., W ...
Kc = HWk,C? Qc = HWq,ca ‘/c = HWv,cy K'r' = PWk,’r‘s Qr = PWq,r
Ac—>c = QcK::r
fori =0,....,N —1do

Acoplis:] = Qelis:] K]
end for
for: =0,...N —1do

for j =0,....,N—1do

Ac—»p[ivj] = Ac*p[lvé[zvj]]

9: end for
10: end for
11: for j =0,....,N —1do
12: Ap—>c[:7j] = Kc[.ja]Ql
13: end for
14: for j =0,...,N — 1 do
15: fori =0,....N —1do

X RINEAE RN

16: Apcli, j] = Ap—eldlj,], j]
17: end for
18: end for

1990 A=A e +Acp+ Ap
. _ A

20: H, = softmax(ﬁ)Vc

QOutput: H,

3.2 Two EXTENSIONS OF THE DISENTANGLED ATTENTION

The DeBERTa model has two additional extensions. One is to address a limitation of the relative
positions which have been fully captured by the disentangled attentions. The other is to enable
generation tasks and a multi-task learning objective.

Given a sentence “A new store opened near the new mall” with the words store and mall masked
for prediction, only using the relative positions is hard for the model to distinguish store and mall in
this sentence, since both of them are right after the word new with the exact relative positions. To
address this limitation, we propose to reconsider the introduction of absolute positions in the model,
as a complement to the relative positions. There are at least two ways to introduce the absolution
positions. The BERT model incorporates the absolute positions in the input layer. In DeBERTa,
we propose an alternative to consider it right after all the Transformer layers but right before the
softmax for masked token decoding, as shown in Figure[2] In this way, DeBERTa captures the relative

Under review as a conference paper at ICLR 2021

positions in all the Transformer layers and only character the absolute position as a complementary
in the softmax decoding layer. We call this new approach as Enhanced Mask Decoder(EMD). In
our empirical studies, we compare these two approaches to incorporate the absolute positions and
observe that the new approach in DeBERTa is much better. We conjecture the early introduction of
the absolute position will undesirably hamper the model from learning accurate relative positions
information. In addition, this new design will enable us to introduce additional information besides
positions to the pre-training, which is out of the scope of this paper and will be explored in future.

Besides natural language understanding(NLU), we further extend DeBERTa for natural language
generation (NLG) to verify the impacts of the disentangled attention thoroughly in both settings. To
enable the autoregressive generation, we follow (Dong et al.|[2019b) by using a triangular matrix for
self-attention and set the upper triangular part of the self-attention mask to —oo.

4 EXPERIMENT

This section evaluates DeBERTa on various NLP tasks for both NLU and NLG.

4.1 MAIN RESULTS ON NLU TASKS

Following previous papers on BERT, RoBERTa and XLNet, we report results using large and base
models.

4.1.1 PERFORMANCE ON LARGE MODELS

Model CoLA| QQP | MNLI-m/mm| SST-2| STS-B| QNLI| RTE| MRPC| Avg.
Mcc |F1/Acc Acc Acc Corr Acc | Acc| Acc
BERT 4, ge 60.6 | 91.3 86.6/- 93.2 90.0 923 | 70.4| 88.0 | 84.05
RoBERTa4,g. | 68.0 | 92.2 90.2/90.2 96.4 924 939 | 86.6] 90.9 | 88.82
XLNetgrge 69.0 | 92.3 90.8/90.8 97.0 92.5 949 | 859| 90.8 | 89.15
ALBERT ;31qrge| 714 | 92.2 90.8/- 96.9 93.0 953 | 89.2| 90.9 | 89.96
ELECTRA4ee | 69.1 | 92.4 90.9/- 96.9 92.6 95.0 | 88.0] 90.8 | 89.46
DeBERTa;4p4. | 70.5 | 92.3 91.1/91.1 96.8 92.8 95.3 | 88.3| 91.9 | 90.00

Table 1: Comparison results on the GLUE development set.

We pre-train our large models following the setting of BERT (Devlin et al.,2019), except that we use
the BPE vocabulary as (Radford et al.l 2019} Liu et al.,|2019c). For training data, we use Wikipedia
(English Wikipedia dum 12GB), BookCorpus (Zhu et al.,[2015) (6GB), OPENWEBTEXT (public
Reddit content (Gokaslan & Cohen, [2019); 38GB), and STORIES (a subset of CommonCrawl (Trinh
& Le, [2018); 31GB). The total data size after data deduplication(Shoeybi et al., 2019)) is about 78GB.
We report the details of pre-trained dataset in Appendix A.2. We use 6 DGX-2 machines with 96
V100 GPUs to train the model. A single model trained with 2K batch size and 1M steps takes about
20 days. Refer to Appendix [A]for the detailed hyperparamters.

We summarize the results on eight GLUE (Wang et al.l [2018]) tasks in Table |1} which compares
DeBERTa with previous models with around 350M parameters: BERT, RoBERTa, XLNet, ALBERT
and ELECTRA. Note that RoOBERTa, XILNet, ALBERT E] and ELECTRA use 160G training data
while DeBERTa uses 78G training data. ROBERTa and XLNet are trained for 500K steps with 8K
samples in a step, which amounts to four billion passes over training samples. We train DeBERTa for
one million steps with 2K samples in each step. This amounts to two billion passes of its training
samples, approximately half of either ROBERTa or XLNet. Table|l|shows that compared to BERT and
RoBERTa, DeBERTa is consistently better across all the tasks. Meanwhile, DeBERTa outperforms
XLNet in six out of eight tasks. Particularly, the improvements on MRPC (1.1% over XLNet and
1.0% over RoBERTa), RTE (2.4% over XLNet and 1.7% over RoOBERTa) and CoL A (1.5% over
XLNet and 2.5% over RoBERTa) are significant. Even compared to the SOTA pre-trained models,

2https://dumps.wikimedia.org/enwiki/
3 ALBERT includes an additional sentence-order prediction task.

Under review as a conference paper at ICLR 2021

ALBERT arge E] and ELECTRA e, DeBERTa still outperforms them in term of the average “GLUE”
score. Note that MNLI is often used as an indicative task to monitor the progress of pre-training.
DeBERTa significantly outperforms all existing models of similar size on MNLI and creates a new
state-of-the-art (SOTA).

MNLI-m/mm||SQuAD v1.1 SQuAD v2.0|RACE|ReCoRD || SWAG||NER
Acc F1/EM F1/EM Acc | FI/EM Acc F1

BERT ;g 86.6/- 90.9/84.1 81.8/79.0 | 72.0 - 86.6 |/92.8
RoBERTa;4,¢. | 90.2/90.2 94.6/88.9 89.4/86.5 | 83.2 |90.6/90.0|| 89.9 |93.4
XLNetigrge 90.8/90.8 95.1/89.7 90.6/87.9 | 85.4 - - -

Megatronssem 89.7/90.0 94.2/88.0 88.1/84.8 | 83.0 - - -
DeBERTa;4,4. | 91.1/91.1 95.5/90.1 90.7/88.0 | 86.8 [91.4/91.0(| 90.8 |/ 93.8

Megatron; 3p 90.9/91.0 94.9/89.1 90.2/87.1 | 87.3 - - -
Megatrons op 91.4/91.4 95.5/90.0 91.2/88.5 | 89.5 - - -

Model

Table 2: Results on MNLI in/out-domain, SQuAD v1.1, SQuAD v2.0, RACE, ReCoRD, SWAG,

CoNLL 2003 NER development set. Note that missing results in literature are signified by “-”.

We evaluate DeBERTa on additional benchmarks: (1) Question Answering: SQuAD v1.1 (Rajpurkar|
et al.,[2016), SQuAD v2.0 (Rajpurkar et al.,|2018)), RACE (Lai et al.,[2017), ReCoRD (Zhang et al.,
2018) and SWAG (Zellers et al., 2018); (2) Natural Language Inference: MNLI (Williams et al.|
2018)); and (3) NER: CoNLL-2003. For comparison, we also include Megatron (Shoeybi et al.,[2019)
with three different model sizes: Megatronssen, Megatron; 35 and Megatrons gg, which are trained
using the same dataset as ROBERTa. Note that Megatronssey has a similar model size as other models
mentioned abov

We summarize the results in Table[2] Compared to the previous SOTA models with similar sizes,
including BERT, RoBERTa, XLNet and Megatronssey, DeBERTa consistently outperforms them in
all the 7 tasks. Taking RACE as an example, DeBERTa is significantly better than previous SOTA
XLNet with an improvement of 1.4% (86.8% vs. 85.4%). Although Megatron, 3p is 3 times larger
than DeBERTa, we observe that DeBERTa can still outperform Megatron; 35 in three of the four
benchmarks. All the results show the superior performance of DeBERTa in various downstream tasks.
We are confident that DeBERTa can perform even better with a larger model size — we leave it to
future work.

4.1.2 PERFORMANCE ON BASE MODELS

The setting for base model pre-training is similar to that for large models. The base model structure
follows that of the BERT base model, i.e., L = 12, H = 768, A = 12. We use 4 DGX-2 with 64
V100 GPUs to train the base model and it takes about 10 days to finish a single pre-training of 1M
training steps with batch size 2048. We train DeBERTa with the same 78G text data, and compare it
with RoOBERTa and XLNet trained using their 160G text data. For detailed comparison of datasets for
pre-training, please refer the Appendix A.2.

We summarize the results in Table [3] Across all three tasks, DeBERTa consistently surpasses
RoBERTa and XLNet, with more improvements than that in large models. For example, on the MNLI
in-domain setting (MNLI-m), DeBERTay,. obtains 1.2% (88.8% vs. 87.6%) over ROBERTay,., and
2% (88.8% vs. 86.8%) over XL Netpase.

4.2 MAIN RESULTS ON GENERATION TASKS

We further evaluate the DeBERTa model with auto-regressive language model (ARLM) using
Wikitext-103 (Merity et al., 2016). DeBERTa-MT denotes our model trained jointly with MLM

“The hidden dimension of ALBERT xjarge is 4 times of DeBERTa and the computation cost is about 4 times
of DeBERTa.

5 Although T5 (Raffel et al.,[2019) has more parameters (11B), it only reports the test results and it is not
comparable with other models.

Under review as a conference paper at ICLR 2021

Model | MNLI-m/mm (Acc) | SQUAD v1.1 (FI/EM) | SQuAD v2.0 (F1/EM)
RoBERTa,se 87.6/- 91.5/84.6 83.7/80.5
XLNetpase 86.8/- - 7802
DeBERTay,,. 88.8/88.5 93.1/87.2 86.2/83.1

Table 3: Results on MNLI in/out-domain (m/mm), SQuAD v1.1 and v2.0 development set.

and ARLM as in UniLM (Dong et al.l 2019b). The training hyper-parameters are the same as
DeBERTay,,, except we use less training steps (200k). For fair comparison, we use RoBERTa as
our baseline in the same setting. At last, we include GPT-2 and Transformer-XL for references. All
of those models use the base model settings. DeBERTa+A P denotes the DeBERTa model trained
without £ M D but adding the absolute position embedding into the input layer as ROBERTa.

Model |RoBERTa|DeBERTa+AP| DeBERTa| DeBERTa-MT |GPT-2| Transformer-XL

DevPPL | 216 | 207 | 205 [195 | - | 231
TestPPL | 21.6 | 200 | 199 | 195 |37.30] 24

Table 4: Language model results on Wikitext-103 .

Table E] reports the results on Wikitext-103. Note that DeBERTay,s. obtains a better PPL on both dev
and test, and the joint training of MLM and ARLM reduces PPL further, showing the effectiveness of
DeBERTa. Moreover, as a comparison between different places to incorporate the absolute positions,
we show that the DeBERTa approach via injecting the absolute positions in the decoder layer is better
than the RoBERTa approach (i.e., DeBERTa + AP) on the absolute positions.

4.3 MODEL ANALYSIS

In this section, we first present an ablation study to quantify the relative contributions of different
components introduced in DeBERTa. Then, we study the convergence property to characterize the
model training efficiency. Due to space limit, we illustrate the difference in attention patterns between
DeBERTa and its counterpart ROBERTa in Appendix A.7. We run experiments for analysis using
the base model setting where the Wikipedia + Bookcorpus data is used for model pre-training and a
model can be pre-trained for 1M steps with batch size 256 in 7 days on a DGX-2 machine with 16
V-100 GPUs.

4.3.1 ABLATION STUDY

To verify our experimental setting, we pre-train the ROBERTa base model from scratch. We call the
re-pre-trained ROBERTa RoBERTa-Relmpy,,s.. To investigate the relative contributions of different
components in DeBERTa, we design three variations:

e -EMD is the DeBERTa base model without EMD.
e -C2P is the DeBERTa base model without the content-to-position term ((c) in Eq. Ef])

e -P2C is the DeBERTa base model without the position-to-content term ((b) in Eq. E]) As
XLNet also used relative position bias, this model is close to XLNet plus EMD.

Table [5] summarizes the results on four benchmark datasets. First, comparing ROBERTa with
RoBERTa-Relmp, we observe that they perform similarly across all the four benchmark datasets.
Thus, we can confidently treat ROBERTa-Relmp as a solid baseline for comparison. Second, we
see that removing any one component in DeBERTa results in a sheer performance drop in all the
benchmarks. For instance, removing EMD (-EMD) results in a loss of 1.4% (71.7% vs. 70.3%) on
RACE, 0.3% (92.1% vs. 91.8%) on SQuAD v1.1, 1.2% (82.5% vs. 81.3%) on SQuAD v2.0, 0.2%
(86.3% vs. 86.1%) and 0.1% (86.2% vs. 86.1%) on MNLI-m/mm, respectively. Similarly, removing
either content-to-position or position-to-content leads to consistent performance drops in all the
benchmarks. As expected, removing two components results in even more significant deterioration in
performance.

Under review as a conference paper at ICLR 2021

Model MNLI-m/mm | SQuAD vl.1 SQuAD v2.0 | RACE
Acc F1/EM F1/EM Acc
BERT},,s. [Devlin et al.|(2019) 84.3/84.7 88.5/81.0 76.3/73.7 65.0
RoBERT3;,,. IL1u et al.|(2019c)) 84.7/- 90.6/- 79.7/- 65.6
XLNetpqse | Yang et al.[(2019) 85.8/85.4 -/- 81.3/78.5 66.7
RoBERTa-Relmpy,se 84.9/85.1 91.1/84.8 79.5/76.0 66.8
DeBERTay s 86.3/86.2 92.1/86.1 82.5/79.3 71.7
-EMD 86.1/86.1 91.8/85.8 81.3/78.0 70.3
-C2P 85.9/85.7 91.6/85.8 81.3/78.3 69.3
-P2C 86.0/85.8 91.7/85.7 80.8/77.6 69.6
-(EMD+C2P) 85.8/85.9 91.5/85.3 80.3/77.2 68.1
-(EMD+P20C) 85.8/85.8 91.3/85.1 80.2/77.1 68.5

Table 5: Ablation study of the DeBERTa base model.

4.3.2 PRE-TRAINING EFFICIENCY

To investigate the convergence of model pre-training, we plot the performance of fine-tuned down-
stream tasks as a function of the number of pre-training steps. As shown in Figure [T} for the
RoBERTa-Relmp base model and the DeBERTa base model, we dump a checkpoint every 150K
pre-training steps, and then fine-tune the checkpoint on two representative downstream tasks (MNLI
and SQuAD v2.0) and then report the accuracy and F1 score, respectively. As a reference, we copy
the final model performance of both the original ROBERTa base models (Liu et al.,[2019c) and XLNet
base models (Yang et al., 2019) and plot them as flat dot lines. The results show that DeBERTa
consistently outperforms RoBERTa-Relmp during the course of pre-training, and converges faster to
the performance of ROBERTa.

[

[}
[o0)
N

[o0]
o

—m— RoOBERTa-Relmppase
—e— DeBERTapase

—m— ROBERTa-Relmppase
—eo— DeBERTapase

~
[e)]

Accuracy (MNLI)
oo
S

F1 (SQUAD v2.0)
~
(o]

82 @ ROBERTapase @ ROBERTapase
¥ XLNetpase 74 ¥ XLNetpase
150k 250k 350k 450k 550k 650k 750k 850k 1M 150k 250k 350k 450k 550k 650k 750k 850k 1M
Number of pre-training steps Number of pre-training steps
(a) Results on MNLI development (b) Results on SQuAD v2.0 development

Figure 1: Pre-training performance curve between DeBERTa and its counterparts on the MNLI and
SQuAD v2.0 development set.

5 CONCLUSIONS

This paper introduces a new model called DeBERTa for large-scale language model pre-training.
DeBERTa first proposes the disentangled attention mechanism that represents each word using two
vectors that encode its content and position, respectively, to thoroughly capture both contents and
relative positions. As an extension to the disentangled attention, DeBERTa incorporates the absolute
positions in the decoding layer as a complement to the relative positions. Compare to the strong
RoBERTa and XLNet models, the DeBERTa model shows both better pre-training efficient and
downstream NLU and NLG task accuracy consistently. For future work, we will explore alternative
approaches to combine both relative and absolute position information in pre-training.

Under review as a conference paper at ICLR 2021

REFERENCES

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, and Danilo Giampiccolo. The second PASCAL
recognising textual entailment challenge. In Proceedings of the Second PASCAL Challenges
Workshop on Recognising Textual Entailment, 01 2006.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The
fifth pascal recognizing textual entailment challenge. In In Proc Text Analysis Conference (TAC 09,
2009.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Kezhen Chen, Qiuyuan Huang, Hamid Palangi, Paul Smolensky, Kenneth D Forbus, and Jianfeng
Gao. Natural-to formal-language generation using tensor product representations. arXiv preprint
arXiv:1910.02339, 2019.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text
encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Proceedings of the First International Conference on Machine Learning Chal-
lenges: Evaluating Predictive Uncertainty Visual Object Classification, and Recognizing Textual
Entailment, MLCW"’05, pp. 177-190, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-
33427-0, 978-3-540-33427-9. doi: 10.1007/11736790_9. URL http://dx.doi.org/10}
1007/11736790_09.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-x1: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978-2988, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171-4186, 2019.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. Unified language model pre-training for natural language understanding
and generation. In Advances in Neural Information Processing Systems, pp. 13042-13054, 2019a.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. Unified language model pre-training for natural language understanding
and generation. arXiv preprint arXiv:1905.03197, 2019b.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pp. 1-9, Prague, June 2007. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/W07-1401.

http://dx.doi.org/10.1007/11736790_9
http://dx.doi.org/10.1007/11736790_9
https://www.aclweb.org/anthology/W07-1401

Under review as a conference paper at ICLR 2021

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Pengcheng He, Xiaodong Liu, Weizhu Chen, and Jianfeng Gao. A hybrid neural network model for
commonsense reasoning. arXiv preprint arXiv:1907.11983,2019a.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and Weizhu Chen. X-sql: reinforce schema representa-
tion with context. arXiv preprint arXiv:1908.08113, 2019b.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, lan Simon, Curtis Hawthorne, Noam
Shazeer, Andrew M Dai, Matthew D Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer: Generating music with long-term structure. 2018.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. Smart:
Robust and efficient fine-tuning for pre-trained natural language models through principled regu-
larized optimization. arXiv preprint arXiv:1911.03437, 2019.

Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. Spanbert:
Improving pre-training by representing and predicting spans. arXiv preprint arXiv:1907.10529,
2019.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 785-794, 2017.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning,

2012.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019a.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks
for natural language understanding. In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 4487-4496, Florence, Italy, July 2019b. Association for
Computational Linguistics. URL |https://www.aclweb.org/anthology/P19-1441\

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao.
Adversarial training for large neural language models. arXiv preprint arXiv:2004.08994, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019c.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. 2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv, pp. arXiv—1609, 2016.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu, and Jian-

feng Gao. Deep learning based text classification: A comprehensive review. arXiv preprint
arXiv:2004.03705, 2020.

10

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://www.aclweb.org/anthology/P19-1441

Under review as a conference paper at ICLR 2021

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl Blog, 1(8), 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383-2392, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://www.aclweb.org/
anthology/D16-1264.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa Jojic, Jiirgen Schmidhuber, and Jianfeng
Gao. Enhancing the transformer with explicit relational encoding for math problem solving. arXiv
preprint arXiv:1910.06611, 2019.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 464—468,
2018.

Tao Shen, Yi Mao, Pengcheng He, Guodong Long, Adam Trischler, and Weizhu Chen. Ex-
ploiting structured knowledge in text via graph-guided representation learning. arXiv preprint
arXiv:2004.14224, 2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using gpu model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial intelligence, 46(1-2):159-216, 1990.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.

In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631-1642, 2013.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu,
Hao Tian, and Hua Wu. Ernie: Enhanced representation through knowledge integration. arXiv
preprint arXiv:1904.09223, 2019.

Trieu H Trinh and Quoc V Le. A simple method for commonsense reasoning. arXiv preprint
arXiv:1806.02847, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao, Liwei Peng, and Luo Si. Structbert: Incor-
porating language structures into pre-training for deep language understanding. arXiv preprint
arXiv:1908.04577, 2019.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471, 2018.

11

https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264

Under review as a conference paper at ICLR 2021

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pp. 1112-1122. Association for Computational Linguistics, 2018.
URLhttp://aclweb.org/anthology/N18-1101.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural
information processing systems, pp. 5754-5764, 2019.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial
dataset for grounded commonsense inference. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 93—104, 2018.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme.
Record: Bridging the gap between human and machine commonsense reading comprehension.
arXiv preprint arXiv:1810.12885, 2018.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19-27, 2015.

12

http://aclweb.org/anthology/N18-1101

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 DATASET

Corpus | Task | #Train | #Dev | #Test | #Label | Metrics
General Language Understanding Evaluation (GLUE)

CoLA Acceptability 8.5k 1k 1k 2 Matthews corr

SST Sentiment 67k 872 1.8k 2 Accuracy

MNLI NLI 393k 20k 20k 3 Accuracy

RTE NLI 2.5k 276 3k 2 Accuracy

WNLI NLI 634 71 146 2 Accuracy

QQP Paraphrase 364k 40k | 391k 2 Accuracy/F1

MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1

QNLI QA/NLI 108k 5.7k | 5.7k 2 Accuracy

STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr
Question Answering

SQuAD vI.1 | MRC 87.6k | 10.5k | 9.5k - Exact Match (EM)/F1

SQuAD v2.0 | MRC 130.3k | 11.9k | 8.9k - Exact Match (EM)/F1

ReCoRD MRC 101k 10k 10k - Exact Match (EM)/F1

RACE MRC 87,866 | 4,887 | 4,934 4 Accuracy

SWAG Multiple choice | 73.5k 20k 20k 4 Accuracy
Token Classification

CoNLL 2003 | NER | 14987 | 3,466 | 3,684 [8 | F1

Table 6: Summary information of the NLP application benchmarks.

o GLUE. The General Language Understanding Evaluation (GLUE) benchmark is a collection of
nine natural language understanding (NLU) tasks. As shown in Table[6] it includes question answer-
ing (Rajpurkar et al.| 2016)), linguistic acceptability (Warstadt et al.,[2018)), sentiment analysis (Socher
et al.,|2013), text similarity (Cer et al.,2017)), paraphrase detection (Dolan & Brockett, 2005), and
natural language inference (NLI) (Dagan et al.| [2006; [Bar-Haim et al.| [2006; |Giampiccolo et al.,
2007} Bentivogli et al.l 2009; Levesque et al.,|2012; Williams et al.} 2018). The diversity of the tasks
makes GLUE very suitable for evaluating the generalization and robustness of NLU models.

e ReCoRD is a commonsense Question Answering dataset. Each example consists of a news article,
drawn from CNN and DailyMail, and a Cloze-style question about the article in which one entity is
masked out (Zhang et al., [2018)).

o RACE is a large-scale machine reading comprehension dataset, collected from English examinations
in China, which are designed for middle school and high school students (Lai et al.l 2017).

e SQuAD v1.1/v2.0 is the Stanford Question Answering Dataset (SQuAD) v1.1 and v2.0 (Rajpurkar
et al.,2016;|2018)) are popular machine reading comprehension benchmarks. Their passages come
from approximately 500 Wikipedia articles and the questions and answers are obtained by crowd-
sourcing. The SQuAD v2.0 dataset includes unanswerable questions about the same paragraphs.

o SWAG is a large-scale adversarial dataset for the task of grounded commonsense inference, which
unifies natural language inference and physically grounded reasoning (Zellers et al., 2018). SWAG
consists of 113k multiple choice questions about grounded situations.

e CoNLL 2003 is an English dataset consisting of text from a wide variety of sources. It has 4 types
of named entity.

13

Under review as a conference paper at ICLR 2021

A.2 PRE-TRAINING DATASET

For DeBERTa pre-training, we use Wikipedia (English Wikipedia dumpf’l 12GB), BookCorpus (Zhu
et al.,[2015)|'[(6GB), OPENWEBTEXT (public Reddit content (Gokaslan & Cohenl[2019); 38GB)
and STORIES®| (a subset of CommonCrawl (Trinh & Lel [2018)); 31GB). The total data size after data
deduplication(Shoeybi et al., 2019) is about 78GB. For pre-training, we also sample 5% training
data as the validation set to monitor the training process. Table [/|compares datasets used in different
pre-trained models.

Model Wiki+Book | OpenWebText | Stories | CC-News | Giga5 | ClueWeb | Common Crawl
16GB 38GB 31GB | 76GB |16GB| 19GB 110GB

BERT v

XLNet v v v v

RoBERTa v v v v

DeBERTa v v v

Table 7: Comparison of the pre-training data.

A.3 IMPLEMENTATION DETAILS

Following RoBERTa (Liu et al.,2019c])), we adopted dynamic data batching. We also include span
masking(Joshi et al.| 2019) as the additional masking strategy with the span size up to three. We list
the detailed hyperparameters of pre-training in Table 8| For pre-training, we all use Adam (Kingma
& Bal|2014) as the optimizer with weight decay (Loshchilov & Hutter, |2018). For fine-tuning, even
though we can get better and robust results with RAdam(Liu et al.,2019a) on some tasks, e.g. CoLA,
RTE and RACE, we all use Adam(Kingma & Bal 2014) as the optimizer for a fair comparison. For
fine-tuning, we trained each task with a hyper-parameter search procedure, each run will take about
1-2 hours on a DGX-2 node. All the hyperparameters are presented in Table[9] The model selection
is based on the performance on the task-specific development sets.

Our code is implemented based on Huggingface Transformerﬂ FairSeﬂ and Megatron
shoeybi2019megatror| '}

A.4 HANDLING LONG SEQUENCE INPUT

With relative position bias, we choose to truncate the maximum relative distance to k as in equation|3}
Thus in each layer, each token can attend directly to at most 2(k — 1) tokens and itself. By stacking
Transformer layers, each token in the [—th layer can attend to at most (2k — 1)! tokens implicitly.
Taking DeBERTaj,e as an example, where k = 512, L = 24, in theory, the maximum sequence
length that can be handled is 24528. This is a byproduct benefit of our design choice and we found it
is beneficial for the RACE task. A comparison of long sequence effect on the RACE task is shown in
table

Long sequence handling is an active research area as of late, there are a lot of works built on the
Transformer to optimize its performance on long sequence handling(Beltagy et al.| [2020; Kitaev et al.|
20205 (Child et al.| [2019; [Dai et al.| [2019). One of the potential future works is to extend DeBERTa to
deal with extremely long sequences and compare it with existing approaches.

A.5 MODEL COMPLEXITY

With Disentangled Attention, we introduced three additional parameters W ., Wy, € Raxd
and P € R?:*?_ The total increase in parameter is 2L x d?> + 2k x d. For the large model

Shttps://dumps.wikimedia.org/enwiki/
"https://github.com/butsugiri/homemade_bookcorpus
8https://github.com/tensorflow/models/tree/master/research/lm_commonsense
“https://github.com/huggingface/transformers
https://github.com/pytorch/fairseq
https://github.com/NVIDIA/Megatron-LM

14

Under review as a conference paper at ICLR 2021

Hyper-parameter | DeBERTa; 4, gc | DeBERTay,45c | DeBERTay45¢ —abiation
Number of Layers 24 12 12
Hidden size 1024 768 768
FNN inner hidden size 4096 3072 3072
Attention Heads 16 12 12
Attention Head size 64 64 64
Dropout 0.1 0.1 0.1
Warmup Steps 10k 10k 10k
Learning Rates 2e-4 2e-4 le-4
Batch Size 2k 2k 256
Weight Decay 0.01 0.01 0.01
Max Steps IM M IM
Learning Rate Decay Linear Linear Linear
Adam € le-6 le-6 le-6
Adam [0.9 0.9 0.9
Adam 5 0.999 0.999 0.999
Gradient Clipping 1.0 1.0 1.0
Gradient Clipping 1.0 1.0 1.0
Number of DGX-2 nodes 6 4 1
Training Time 20 days 10 days 7 days

Table 8: Hyper-parameters for pre-training DeBERTa.

Hyper-parameter \ DeBERTa;4,ge \ DeBERTay .
Dropout of task layer {0,0.1,0.15} {0,0.1,0.15}
Warmup Steps {50,100,500,1000} {50,100,500,1000}
Learning Rates {5e-6, 8e-6, 9e-6, 1e-5}|{1.5e-5,2e-5, 3e-5, 4e-5}
Batch Size {16,32,48,64} {16,32,48,64}
Weight Decay 0.01 0.01
Maximun Training Epochs 10 10
Learning Rate Decay Linear Linear
Adam € le-6 le-6

Adam f3; 0.9 0.9

Adam Sy 0.999 0.999
Gradient Clipping 1.0 1.0

Table 9: Hyper-parameters for fine-tuning DeBERTa on down-streaming tasks.

Sequence length |Middle |High | Accuracy
512 ‘ 88.8 ‘85.0‘ 86.3

768 88.7 |86.3| 86.8

Table 10: The effect of handling long sequence input for RACE task with DeBERTa

(d = 1024, L = 24,k = 512), this introduces about 49M additional parameters, which is an
increment of 13%. For the base model(d = 768, L = 12,k = 512), this introduces about 14M
additional parameters, which is an increment of 12%. However, by sharing the projection matrix
between content and position embedding, i.e. Wy, = Wy ., Wi, = Wy ., the number of
parameters of DeBERTa will be the same as RoOBERTa. Our experiment on base model shows that
the results are almost the same. The results are shown in table[TT} Due to computation resource
limitation, we didn’t run this setting with large model and we plan to re-run it in the future with this
setting.

The additional computational complexity is O(Nkd) due to the calculation of the additional posifion-
to-content and content-to-position attention scores. Compared with BERT or RoOBERTa, this intro-

15

Under review as a conference paper at ICLR 2021

Model Parameters | MNLI-m/mm | SQuAD v1.1 | SQuAD v2.0
Acc ‘ F1/EM F1/EM
RoBERTa-Relmpy se 120M 84.9/85.1 91.1/84.8 79.5/76.0
DeBERTap s 134M 86.3/86.2 92.1/86.1 82.5/79.3
DeBERTay, s.+ShareProjection 120M 86.3/86.3 92.2/86.2 82.3/79.5

Table 11: Abluation study of the additional parameters in the DeBERTa base model.

Language Model Head Language Model Head

|

|

Transformer Layer Transformer Layer :
A A

Q K v a i ; y | Xn

> | NY____>=4 |

] :

A
| |
H H
(a) BERT decoding layer (b) Enhanced Mask Decoder

Figure 2: Comparison of the decoding layer.

duces about a 30% increase in computation. Compared with XLNet which also uses relative position
embedding, the actual computation cost is about 15%. A further optimization by fusing the attention
computation kernel could significantly reduce this additional cost. For E'M D, since the decoder in
pre-training only reconstructs the masked tokens, it does not introduce additional computation for
unmasked tokens. In the situation where 15% tokens are masked and we use only two decoder layers,
the additional cost is 0.15 x 2/L which results in an additional computational cost of only 3% for
base model(L = 12) and 2% for large model(L = 24) in EM D.

A.6 DETAIL OF ENHANCED MASK DECODER

The structure of EM D is shown in figure 2b] There are two inputs for EM D, i.e. I, H. H denotes
the hidden states from the previous transformer layer, and I indicates the input for decoding which
can be any necessary information for decoding, e.g., H, absolute position embedding or output from
previous EM D layer. n denotes n stacked layers of EM D where the output of each EM D layer
will be the input I for next EM D layer and the output of last EM D layer will be feed to language
model head directly. The n layers can share the same weight. In our experiment we share the same
weight for n = 2 layers to save parameters and use absolute position embedding as I of the first
EMD layer. When I = H and n = 1, EM D is the same as BERT decoder layer. However, EM D
is more general and flexible as it can take more input information for the decoding task.

A.7 ATTENTION PATTERNS
To understand why DeBERTa performs differently from RoBERTa, we present their attention patterns

in the last self-attention layer in Figure 3] where we also depict the attention patterns of the three
DeBERTa variants for comparison. Comparing RoOBERTa with DeBERTa, we observe two obvious

16

Under review as a conference paper at ICLR 2021

DeBERTa RoBERTa DeBERTa-EMD DeBERTa-C2P DeBERTa-P2C

-1.0
-0.8
-0.6
-0.4
-0.2

02468101214 0 2 4 6 8101214 0 2 4 6 8101214 0 2 4 6 8101214 0 2 4 6 8101214

o

o

o

141210 8 6 4 2 0

Figure 3: Comparison of attention patterns of the last layer among DeBERTa, RoBERTa and DeBERTa
variants (i.e., DeBERTa without EMD, C2P and P2C respectively).

differences. First, ROBERTa has a clear diagonal line effect for a token to attend to itself, which is not
observed in DeBERTa. This could be attributed to the use of EMD, in which the vectors of the masked
but unchanged tokens are replaced with their position embeddings. This seems to be verified by
examining the attention pattern of DeBERTa-EMD, where the diagonal line effect is brighter than the
original DeBERTa. Second, there are vertical strips in the attention patterns of RoOBERTa, which are
mainly caused by high-frequent functional tokens (e.g., “a”, “the”, or punctuation). For DeBERTa, the
strip appears in the first column, which represents the [CLS] token. We conjecture that a dominant
emphasis on the [CLS] token is desirable for a good pre-trained model since the vector of this token
is often used as a contextual representation of the entire input sequence in downstream tasks. We also
observe that the vertical strip effect is quite obvious in the patterns of the three DeBERTa variants.

We provide three more examples to illustrate the difference in attention patterns between DeBERTa
and RoBERTa as shown Figure [[5]

17

Under review as a conference paper at ICLR 2021

DeBERTa

2

14 12 10 8 6 4

OCHNMSNON~N0O o
-
(a)

DeBERTa

DeBERTa

Figure 4: Comparison on attention patterns of the last layer between DeBERTa and RoBERTa.

18

RoBERTa

< OCHNMSNO~OO O
o —

MM SN
e A

RoBERTa

RoBERTa

Under review as a conference paper at ICLR 2021

DeBERTa DeBERTa-EMD DeBERTa-C2P DeBERTa-P2C

-1.0

-0.8
© -0.6
©

0.4

0.2

OHANMITNORNOIOANMTIN OHNMITINONOIOANMTIN OANMITNONOIOANMTEN OFHNMFINONODOANM SN
A A A A

2 0

4

14 12 10

(a)

DeBERTa DeBERTa-EMD DeBERTa-C2P DeBERTa-P2C 10

-0.8

-0.6

-0.4

-0.2

o DeBERTa-EMD DeBERTa-C2P DeBERTa-P2C 10
10
20

30 -0.8

40
50
60
70
80
90
100
110
120
130
140

=}

6

=]

4

=}

2

Figure 5: Comparison on attention patterns of last layer between DeBERTa and its variants (i.e.
DeBERTa without EMD, C2P and P2C respectively).

19

	Introduction
	Background
	Transformer structure
	Masked Language Model

	Approach
	Disentangled Attention
	Efficient implementation

	Two Extensions of the disentangled attention

	Experiment
	Main Results on NLU tasks
	Performance on Large Models
	Performance on Base Models

	Main Results on Generation Tasks
	Model Analysis
	Ablation study
	Pre-training Efficiency

	Conclusions
	Appendix
	Dataset
	Pre-training Dataset
	Implementation Details
	Handling long sequence input
	Model complexity
	Detail of Enhanced Mask Decoder
	Attention Patterns

