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Abstract

In recent years, robust Markov decision processes (MDPs) have emerged as a1

prominent modeling framework for dynamic decision problems affected by un-2

certainty. In contrast to classical MDPs, which only account for stochasticity by3

modeling the dynamics through a stochastic process with a known transition kernel,4

robust MDPs additionally account for ambiguity by optimizing in view of the most5

adverse transition kernel from a prescribed ambiguity set. In this paper, we develop6

a novel solution framework for robust MDPs with s-rectangular ambiguity sets that7

decomposes the problem into a sequence of robust Bellman updates and simplex8

projections. Exploiting the rich structure present in the simplex projections corre-9

sponding to �-divergence ambiguity sets, we show that the associated s-rectangular10

robust MDPs can be solved substantially faster than with state-of-the-art commer-11

cial solvers as well as a recent first-order solution scheme, thus rendering them12

attractive alternatives to classical MDPs in practical applications.13

1 Introduction14

Markov decision processes (MDPs) are a flexible and popular framework for dynamic decision-15

making problems and reinforcement learning [40, 50]. A practical limitation of the standard MDP16

model is that it assumes the model parameters, such as transition probabilities and rewards, to be17

known exactly. In reinforcement learning and other applications, these parameters must be estimated18

from sampled data, which introduces estimation errors. Optimal MDP solutions, referred to as policies,19

are well known to be sensitive to errors and may fail catastrophically when deployed [26, 58].20

Robust MDPs (RMDPs) mitigate the sensitivity of MDPs to estimation errors by computing a policy21

that is optimal for the worst plausible realization of the transition probabilities. This set of plausible22

transition probabilities is known as the ambiguity set. Most prior work considers ambiguity sets that23

are rectangular. In this work, we focus on s-rectangular ambiguity sets, which assume that the worst24

transition probabilities are chosen independently in each state [26, 58]. While several other models of25

rectangularity have been studied [9, 14, 22, 29], s-rectangular ambiguity sets are popular due to their26

generality and the existence of polynomial-time algorithms based on dynamic programming concepts.27

It has been shown that s-rectangular sets can provide policies that are less conservative compared to28

(s, a)-rectangular sets [58], both in-sample and out-of-sample. However, even those algorithms may29

be too slow in practice. Solving RMDPs requires the solution of a convex optimization problem in30

every step of value or policy iteration, which can become prohibitively slow even in moderatly sized31

problems with 100s of states [5, 9, 15, 20].32

Motivated by the difficulty of solving RMDPs, several fast algorithms have been proposed for s-33

rectangular RMDPs [5, 9, 15, 20]. The preponderance of the earlier work has focused on ambiguity34

sets defined in terms of L1- and L1-norms. These ambiguity sets are polyhedral, and they can be35

analyzed using linear programming techniques which offer fruitful avenues to exploit the structure36

inherent to those sets. However, recent statistical studies point to the superior solution quality offered37

by nonlinear ambiguity sets defined in terms of the Kullback-Leibler (KL) divergence, the L2-norm38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



and other metrics [18]. Linear optimization solvers are not applicable to RMDPs with s-rectangular39

ambiguity sets defined in terms of non-polyhedral ambiguity sets, as the corresponding optimization40

problems are in general convex conic programs (e.g., exponential cone program in the case of KL41

divergence); thus, they are currently solved using first-order methods [15] or general convex conic42

solvers such as MOSEK [3], which tend to be complex, closed-source and slow.43

As our main contribution, we propose a new suite of fast algorithms for solving RMDPs with �-44

divergence constrained s-rectangular ambiguity sets. �-divergences, also known as f-divergences,45

constitute a generalization of the KL divergence that encompasses the Burg entropy as well as46

the L1- and weighted L2-norms as special cases [4, 6]. Moreover, �-divergence ambiguity sets47

benefit from rigorous statistical performance guarantees, and they are optimal among all (known48

and unknown) data-driven optimization paradigms for certain types of worst-case out-of-sample49

performance guarantees [36]. The radii of �-divergence ambiguity sets can be selected either via cross-50

validation or via statistical bounds [27, 33, 57]. Robust MDPs with �-divergence sets is challenging51

and unexplored for both (s, a)-rectangular and s-rectangular ambiguity sets. Solving �-divergence52

RMDPs using value iteration requires the solution of seemingly unstructured min-max problems. Our53

main insight is that these min-max problems can be reduced to a small number of highly structured54

projection problems onto a probability simplex. We use this insight to develop tailored solution55

schemes for the projection problems corresponding to several popular �-divergence ambiguity sets,56

which in turn give rise to efficient solution methods for the respective RMDPs. Ignoring tolerances,57

our algorithms achieve an overall O(S2
·A logA) or O(S2 logS ·A) time complexity to compute58

the robust Bellman operator, where S and A denote the numbers of states and actions, respectively.59

Since the evaluation of a non-robust Bellman operator requires a runtime of O(S2
· logA), our60

algorithms only incur an additional logarithmic overhead to account for robustness in the transition61

probabilities. This computational complexity compares favorably with the larger time complexity of62

a recent first-order solution scheme for KL divergence-constrained s-rectangular RMDPs (which we63

will elaborate on later in the paper) as well as a minimum complexity of O(S4.5
·A) for the naïve64

solution with state-of-the-art interior-point algorithms. Our framework is general enough to readily65

accommodate for �-divergences that have not been studied previously in the context of s-rectangular66

ambiguity sets, such as the Burg entropy and the �2-distance. For other �-divergences, such as the67

L1-norm, our framework results in the same complexity at substantially simplified proofs.68

The algorithms developed in this paper speed up the computation of robust Bellman updates and so69

they can be used in combination with a variety of RMDP solution schemes. In particular, they can be70

used to accelerate the standard robust value iteration, policy iteration, modified policy iteration [23]71

and partial policy iteration [20]. They can also be combined with a first order gradient method [15]72

that has been introduced recently. In addition, fast algorithms for computing the Bellman operator also73

play a crucial role when scaling robust algorithms to value function approximation [52], model-free74

reinforcement learning [34, 44], and robust policy gradients [51]. In this paper, we focus on the75

model-based setting, which is currently under active study [25, 30, 32] and has many important real-76

life applications [13, 21, 60]; moreover, it also serves as an important building block to constructing77

model-free algorithms. While this paper focuses on the s-rectangular ambiguity sets, the proposed78

algorithms in this paper can also be applied to the case of (s, a)-rectangular ambiguity sets.79

The remainder of the paper proceeds as follows. Section 2 reviews relevant prior work and Section 380

describes our basic RMDP setting. Then, Section 4 shows how the robust Bellman operator for a large81

class of ambiguity sets can be reduced to a sequence of structured projections onto a simplex. We82

describe novel algorithms for efficiently computing the simplex projections for several �-divergences83

in Section 5. Finally, Section 6 presents experimental results that compare the runtime of our84

algorithms with general conic solvers as well as a recent first-order optimization algorithm [15].85

Notation. We denote by e the vector of all ones, whose context determines its dimension. We86

refer to the probability simplex in Rn by �n = {p 2 Rn
+ : e>p = 1}. For x 2 Rn, we let87

min{x} = min{xi : i = 1, . . . , n} (similar for the maximum operator), and we define [x]+ 2 Rn
+88

component-wise as ([x]+)i = max{xi, 0}, i = 1, . . . , n. We refer to the conjugate of a function89

f : Rn
! R by f?(y) = sup{y>x� f(x) : x 2 Rn

}. Random variables are indicated by a tilde.90

2



2 Related Work91

While RMDPs have been studied since the seventies [47], they have witnessed significant recent92

interest due to their widespread adoption in applications ranging from assortment optimization [45],93

medical decision-making [13, 64] and hospital operations management [17], production planning [60]94

and energy systems [21] to model predictive control [11], aircraft collision avoidance [24], wireless95

communications [59] and the robustification against approximation errors in aggregated MDPs [38].96

Efficient implementations of the robust value iteration have been first proposed by [12, 22, 33]97

for RMDPs with (s, a)-rectangular ambiguity sets, where the worst transition probabilities are98

considered separately for each state and action. The authors study ambiguity sets that bound the99

distance of the transition probabilities to some nominal distribution in terms of finite scenarios,100

interval matrix bounds, ellipsoids, the relative entropy, the KL divergence and maximum a posteriori101

models. Subsequently, similar methods have been developed by [59] for interval matrix bounds as102

well as likelihood uncertainty models, by [38] for 1-norm ambiguity sets as well as by [64] for interval103

matrix bounds intersected with a budget constraint. All of these contributions have in common that104

they focus on (s, a)-rectangular ambiguity sets where the existence of optimal deterministic policies105

is guaranteed, and it is not clear how they could be extended to the more general class of s-rectangular106

ambiguity sets where all optimal policies may be randomized.107

In contrast to (s, a)-rectangular ambiguity sets, s-rectangular ambiguity sets restrict the conservatism108

among transition probabilities corresponding to different actions in the same state, which tends to109

lead to a superior performance in data-driven settings. [58] solve the subproblems arising in the110

robust value iteration of an s-rectangular RMDP as linear or conic optimization problems using111

commercial off-the-shelf solvers. Despite their polynomial-time complexity, general-purpose solvers112

cannot exploit the structure present in these subproblems, which renders them suitable primarily113

for small problem instances. More efficient tailored solution methods for s-rectangular RMDPs114

have subsequently been developed by [5, 19, 20]. [19] develop a homotopy continuation method for115

RMDPs with (s, a)-rectangular and s-rectangular weighted 1-norm ambiguity sets, while [5] adapt116

the algorithm of [19] to unweighted1-norm ambiguity sets. [20] embed the algorithms of [19] in a117

partial policy iteration, which generalizes the robust modified policy iteration proposed by [23] for118

(s, a)-rectangular RMDPs to s-rectangular RMDPs.119

While the present paper focuses on the robust value iteration for ease of exposition, we note that our120

algorithms can also be combined with the partial policy iteration of [20] to obtain further speedups.121

[9] establish a relationship between s-rectangular RMDPs and twice regularized MDPs, which they122

subsequently use to propose efficient Bellman updates for a modified policy iteration. While their123

approach can solve RMDPs in almost the same time as a classical non-robust MDPs, the obtained124

policies can be conservative as the worst-case transition probabilities are not restricted to reside in a125

probability simplex and, therefore, may be negative and/or add up to more or less than 1. Finally,126

[15] propose a first-order framework for RMDPs with s-rectangular KL and spherical ambiguity sets127

that interleaves primal-dual first-order updates with approximate value iteration steps. The authors128

show that their algorithms outperform a robust value iteration that solves the emerging subproblems129

using state-of-the-art commercial solvers. We compare our solution method for KL ambiguity sets130

with the approach proposed by [15] in terms of its theoretical complexity and numerical runtimes.131

While this paper exclusively studies s-rectangular uncertainty sets, alternative generalizations of (s, a)-132

rectangular ambiguity sets have been proposed in the literature as well. For example, [29] consider133

k-rectangular ambiguity sets where the transition probabilities of different states can be coupled, [14]134

study factor ambiguity model ambiguity sets where the transition probabilities depend on a small135

number of underlying factors, and [53] construct ambiguity sets that bound marginal moments of136

state-action features defined over entire MDP trajectories. Other than model-based settings, there137

is also an interesting line of research on robust reinforcement learning, such as least squares policy138

iteration [34], analysis on sample complexity [35], robust Q-learning algorithm and robust TDC139

algorithm [44, 55], and robust policy gradient [56]. We also note the papers [7, 16, 62] which study140

the related problem of distributionally robust MDPs whose transition probabilities are themselves141

regarded as random objects that are drawn from distributions which are only partially known. The142

connections between RMDPs and multi-stage stochastic programs as well as distributionally robust143

problems are explored further by [46, 48, 49].144
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3 Preliminaries145

Robust MDPs We study RMDPs with a finite state space S = {1, . . . , S} and a finite action space146

A = {1, . . . , A}. We assume an infinite planning horizon, but all of our results immediately extend147

to a finite time horizon. Without loss of generality, we assume that every action a 2 A is admissible148

in every state s 2 S . The RMDP starts in a random initial state s̃0 that follows the known probability149

distribution p0 from the probability simplex �S in RS . If action a 2 A is taken in state s 2 S , then150

the RMDP transitions randomly to the next state according to the conditional probability distribution151

psa 2 �S . We condense the transition probabilities psa to the tensor p 2 (�S)S⇥A. The transition152

probabilities are only known to reside in a non-empty, compact ambiguity set P ✓ (�S)S⇥A. For153

a transition from state s 2 S to state s0 2 S under action a 2 A, the decision maker receives an154

expected reward of rsas0 2 R+. As with the transition probabilities, we condense these rewards to155

the tensor r 2 RS⇥A⇥S
+ . Without loss of generality, we assume that all rewards are non-negative.156

We denote by ⇧ = (�A)S the set of all stationary (i.e., time-independent) randomized policies. A157

policy ⇡ 2 ⇧ takes action a 2 A in state s 2 S with probability ⇡sa. The transition probabilities158

p 2 P and the policy ⇡ 2 ⇧ induce a stochastic process {(s̃t, ãt)}1t=0 on the space (S ⇥A)1 of159

sample paths. We refer by Ep,⇡ to expectations with respect to this process. The decision maker is160

risk-neutral but ambiguity-averse and wishes to maximize the worst-case expected total reward under161

a discount factor � 2 (0, 1),162

max
⇡2⇧

min
p2P

Ep,⇡

" 1X

t=0

�t
· rs̃t,ãt,s̃t+1

��� s̃0 ⇠ p0

#
. (1)

Note that the maximum and minimum in (1) are both attained by the Weierstrass theorem since ⇧163

and P are non-empty and compact, while the objective function is finite since � < 1.164

Rectangular Ambiguity Sets For general ambiguity sets P , evaluating the inner minimization165

in (1) is NP-hard even if the policy ⇡ 2 ⇧ is fixed [58]. For these reasons, much of the research on166

RMDPs and their applications has focused on rectangular ambiguity sets. Among the most general167

rectangular ambiguity sets are the s-rectangular ambiguity sets P satisfying168

P =
�
p 2 (�S)

S⇥A : ps 2 Ps 8s 2 S
 
, where Ps ✓ (�S)

A, s 2 S,

see [26, 58, 61, 63]. In contrast to the simpler class of (s, a)-rectangular ambiguity sets, s-rectangular169

ambiguity sets restrict the choice of transition probabilities ps1, . . . ,psA corresponding to different170

actions a applied in the same state s. This limits the conservatism of the resulting RMDP (1) and171

typically leads to a better performance of the optimal policy [58]. Although Bellman’s optimality172

principle extends to s-rectangular RMDPs and there is always an optimal stationary policy, all optimal173

policies of an s-rectangular RMDP may be randomized.174

We study a new general class of s-rectangular ambiguity sets that can be expressed as175

Ps =

(
ps 2 (�S)

A :
X

a2A
da(psa,psa)  

)
, (2)

where  2 R+ is the uncertainty budget and the distance functions da(psa,psa), a 2 A, are176

�-divergences (also known as f-divergences) satisfying177

da(psa,psa) =
X

s02S
psas0�

✓
psas0

psas0

◆
.

Here, � : R+ ! R+ is a convex function satisfying �(1) = 0. Intuitively, a �-divergence measures178

the distance between two probability distributions. With an appropriate choice of �, it generalizes179

other metrics including the KL divergence, the Burg entropy, L1- and L2-norms and others [4, 6].180

Table 1 reports some popular �-divergences that we study in this paper. Note that the variation181

distance coincides with the L1-based s-rectangular ambiguity sets studied in earlier work [19, 20].182

Note that although � is set to be the same for different state-action pairs, the proposed approach also183

work for the general case of da(psa,psa) =
P

s02S psas0�sas0(psas0/psas0).184
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Divergence da(psa,psa) �(t) Complexity of J State-of-the-Art

Kullback-Leibler
P

s0 psas0 log
⇣

psas0
psas0

⌘
t log t� t+ 1 O(S2

·A logA) O(`2 · S2
·A)

Burg Entropy
P

s0 psas0 log
⇣

psas0
psas0

⌘
� log t+ t� 1 O(S2

·A logA) no poly-time guarantee
Variation Distance

P
s0 |psas0 � psas0 | |t� 1| O(S2 logS ·A) O(S2 logS ·A)

�2-Distance
P

s0
(psas0�psas0 )

2

psas0
(t� 1)2 O(S2 logS ·A) O(S4.5

·A)

Table 1: Summary of the �-divergences studied in this paper, together with the complexity of our
robust Bellman operator J (applied across all states s 2 S) as well as the best known results from the
literature. The complexity estimates omit constants and tolerances that are reported in Section 5 of
the paper. ‘`’, where present, refers to the number of Bellman iterations conducted so far.

Robust Value Iteration A standard approach for computing the optimal value and the optimal185

policy of an RMDP (1) is the robust value iteration [22, 33, 26, 58]: Starting with an initial estimate186

v0
2 RS of the state-wise optimal value to-go, we conduct robust Bellman iterations of the form187

vt+1
 J(vt), t = 0, 1, . . ., where the robust Bellman operator J is defined component-wise as188

[J(v)]s = max
⇡s2�A

min
ps2Ps

X

a2A
⇡sa · psa

>(rsa + �v) 8s 2 S. (3)

This yields the optimal value p0>v?, where the limit v? = limt!1 vt is approached component-wise189

at a geometric rate. The optimal policy ⇡?
2 ⇧, finally, is recovered state-wise via190

⇡?
s 2 argmax

⇡s2�A

min
ps2Ps

X

a2A
⇡sa · psa

>(rsa + �v?) 8s 2 S.

4 Robust Bellman Updates via Simplex Projections191

In this section, we show that the robust Bellman operator J reduces to a generalized projection192

problem. This reduction is important because it underlies our fast algorithms for computing J.193

At the core of the robust value iteration is the solution of the max-min problem (3). By applying194

min-max theorem, the optimal value in right-hand side of (3) could be reduced to be a structural195

problem which could be solved via bisection on its objective value. For any given � in the bisection196

method, we check whether feasible ps exists via solving the following generalized da-projection of197

the nominal transition probabilities psa:198

P(psa; b,�) =

2

4
minimize da(psa,psa)
subject to b>psa  �

psa 2 �S

3

5 . (4)

Here, psa 2 �S are the decision variables and psa 2 �S , b 2 RS
+ and � 2 R+ are parameters. Thus,199

the robust Bellman operator J could be computed efficiently if the above generalized da-projection (4)200

could be computed efficiently, and more details information on the bisection method could be found in201

the Appendix. Note that problem (4) is infeasible if and only if min{b} > �. Moreover, problem (4)202

is trivially solved by psa with an optimal objective value of 0 whenever b>psa  �. To avoid these203

trivial cases, we assume throughout the paper that min{b}  � and b>psa > �. We illustrate the204

feasible region and optimal solution to problem (4) for different �-divergences in Figure 1.205

Our generalized da-projection (4) relates to the rich literature on projections onto simplices, which206

we review in the next section. In fact, our algorithms in the next section solve a variant of the simplex207

projection problem that is restricted by an additional inequality constraint. We therefore believe that208

our algorithms may find additional applications outside the RMDP literature.209

In the following, we say that for a given estimate vt
2 RS of the optimal value function, the robust210

Bellman iteration (3) is solved to ✏-accuracy by any vt+1
2 RS satisfying kvt+1

� J(vt)k1  ✏.211

We seek ✏-optimal solutions because our ambiguity sets are nonlinear and hence the exact Bellman212
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Figure 1: The generalized da-projection problem (4) in S = 3 dimensions (a) and two-dimensional
projections for the variation distance (b), the �2-distance (c) and the KL divergence (d). The gray
shaded areas represent the probability simplex �S , the red dashed lines show the boundary of the
intersection of the halfspace b>psa  � with the probability simplex, and the white shapes illustrate
contour lines centered at the nominal transition probabilities psa.

iterate J(vt) may be irrational even if vt is rational. To simplify the exposition, we define R =213

[1� �]�1
·max{rsas0 : s, s0 2 S, a 2 A} as an upper bound on all [J(v)]s, v  v? and s 2 S .214

For divergence-based ambiguity sets, the projection problem (4) is generically nonlinear and can215

hence not be expected to be solved to exact optimality. To account for this additional complication,216

we say that for a given psa 2 �S , b 2 RS
+ and � 2 R+, the generalized da-projection P(psa; b,�)217

is solved to �-accuracy by any pair (d, d) 2 R2 satisfying P(psa; b,�) 2 [d, d] and d� d  �.218

Theorem 1. Assume that the generalized da-projection (4) can be computed to any accuracy � > 0219

in time O(h(�)). Then the robust Bellman iteration (3) can be computed to any accuracy ✏ > 0 in220

time O(AS · h(✏/[2AR+A✏]) · log[R/✏]).221

Theorem 1 reduces the evaluation of the robust Bellman iterator J, which involves the solution of a222

max-min optimization problem over an s-rectangular ambiguity set that couples all actions a 2 A, to223

a sequence of much simpler and highly structured projection problems that are no longer coupled224

across different actions a 2 A. The next section describes efficient solution schemes for the projection225

problem (4) in the context of several �-divergence ambiguity sets. The runtimes of these solution226

schemes are summarized in Table 1. Note that the evaluation of a non-robust Bellman operator227

requires a runtime of O(S2
· logA), which implies that our algorithms only incur an additional228

logarithmic overhead to account for robustness in the transition probabilities.229

5 Fast Projections on �-Divergence Simplices230

We next describe fast algorithms for computing generalized projections onto the probability simplex.231

Combined with the results from Section 4, these algorithms can be used to efficiently compute232

the robust Bellman operator. Note that some �-divergences, such as the KL divergence and the233

�2-distance, imply that if psas0 = 0 for some s, s0 2 S and a 2 A, then psas0 = 0 for all psa 2 �S234

with da(psa,psa) <1, and thus we can remove indices s0 with psas0 = 0. For other �-divergences,235

such as the Burg entropy and the variation distance, one can readily verify that our results remain236

valid no matter whether psa > 0 or not, but the formulations and proofs require additional case237

distinctions and/or limit arguments. To simplify the exposition, we therefore assume that psa > 0.238

Proposition 1. For the distance function da(psa,psa) =
P

s02S psas0 · �
⇣

psas0
psas0

⌘
, the optimal value239

of the projection problem (4) equals the optimal value of the bivariate convex problem240

maximize ��↵+ ⇣ �
X

s02S
psas0�

?(�↵bs0 + ⇣)

subject to ↵ 2 R+, ⇣ 2 R.
(5)

Proposition 1 reduces the S-dimensional projection problem (4) to a two-dimensional optimization241

problem over the dual variables ↵ and ⇣. In the following, we show that for the �-divergences from242

Table 1, problem (5) can be further simplified to univariate convex optimization problems that can be243

solved efficiently via bisection, binary search or sorting.244
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5.1 Kullback-Leibler Divergence245

We first show that for the KL divergence �(t) = t log t� t+ 1, the reduced projection problem (5)246

can be further simplified to a univariate convex optimization problem. The radii of this type of247

ambiguity sets can be selected via statistical bounds [27].248

Proposition 2. For the KL divergence �(t) = t log t � t + 1, the optimal value of the projection249

problem (4) equals the optimal value of the univariate convex problem250

maximize
↵2R+

� �↵� log

 
X

s02S
psas0 · e

�↵bs0

!
. (6)

We next show that the univariate optimization problem (2) admits an efficient solution via bisection.251

Theorem 2. If � � min{b}+ ! for some ! > 0, then the projection problem (4) can be solved to252

any �-accuracy in time O(S · log[max{b} · log(min{p}�1)/(�!)]).253

Note that the projection problem (4) is infeasible whenever � < min{b}. The condition in the254

statement of Theorem 2 can thus be interpreted as a strict feasibility requirement. It is worth255

contrasting the result of Theorem 2 with the solution of the projection problem (4) as an exponential256

cone program. The latter would result in a practical complexity of O(S3), assuming that—which is257

often observed in practice—the number of iterations of the employed interior-point solver does not258

grow with the problem dimensions. A theoretically guaranteed complexity, on the other hand, does259

not seem to be available at present as the commercial state-of-the-art solvers for exponential conic260

programs are not proven to terminate in polynomial time.261

Corollary 1. The robust Bellman iteration (3) over a KL divergence ambiguity set can be computed262

to any accuracy ✏ > 0 in time O(S2
·A logA · log[R

2
· log(min{p}�1)/(✏2)] · log[R/✏]).263

[15] propose a first-order framework for RMDPs over s-rectangular KL divergence ambiguity sets264

whose robust Bellman update enjoys a complexity of O(`2 ·S2
·A · log(✏�1)), where ` is the iteration265

number. A careful analysis results in an overall convergence rate for the optimal MDP policy of266

O(S3
·A2

· ✏�1 log[✏�1]). In contrast, the convergence rate of our robust value iteration amounts to267

O(S2
·A logA·log[R

2
·log(min{p}�1)/(✏2)]·log[R/✏]·log[✏�1]). Treating the problem parameters268

R, p and  as constants, our convergence rate simplifies to O(S2
· A logA · log[✏�2] · log2[✏�1]),269

which compares favourably against the convergence rate of the first-order scheme. Our numerical270

results in Section 6 show that this theoretical difference appears to carry over to a favourable empirical271

performance on test instances as well.272

We finally note the related work [1], which optimizes a linear function over the intersection of a273

probability simplex with a constraint on the KL divergence to a nominal distribution. While one274

could in principle modify that algorithm to solve our projection problem (4), the resulting algorithm275

would require an additional bisection and would thus be significantly slower than ours.276

5.2 Burg Entropy277

Similar to the KL divergence, the reduced projection problem (5) can be further simplified to a278

univariate convex optimization problem for the Burg entropy �(t) = � log t+ t� 1. The radii of279

this type of ambiguity sets can be selected via statistical bounds [27].280

Proposition 3. For the Burg entropy �(t) = � log t+ t� 1, if � > min{b}, then the optimal value281

of the projection problem (4) equals the optimal value of the univariate convex problem282

maximize
↵2[0,1]

X

s02S
psas0 · log

✓
1 + ↵

bs0 � �

� �min{b}

◆
. (7)

Similar to the KL divergence, the univariate optimization problem (7) can be solved efficiently.283

Theorem 3. If � � min{b}+ ! for some ! > 0, then the projection problem (4) can be solved to284

any �-accuracy in time O(S · log[max{b}/(�!)]).285

As with the KL divergence, the projection problem (4) corresponding to the Burg entropy can be286

solved in a practical complexity of O(S3) as an exponential cone program, whereas we are not aware287
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of any state-of-the-art solvers equipped with theoretical guarantees. To our best knowledge, RMDPs288

with s-rectangular Burg entropy ambiguity sets have not been studied previously in the literature.289

Corollary 2. The robust Bellman iteration (3) over a Burg entropy ambiguity set can be computed to290

any accuracy ✏ > 0 in time O(S2
·A logA · log[R

2
/(✏2)] · log[R/✏]).291

Similar to the previous subsection, we note that the related paper [1] optimizes a linear function over292

the intersection of a probability simplex with a bound on the Burg entropy to a nominal distribution.293

While that algorithm could in principle be employed to solve our projection problem (4), the resulting294

solution scheme would not be competitive due to the inclusion of an additional bisection.295

5.3 Variation Distance296

We first provide an equivalent univariate optimization problem for the reduced projection problem (5)297

corresponding to the variation distance �(t) = |t� 1|. The radii of this type of ambiguity sets can be298

selected via statistical bounds [57].299

Proposition 4. For the variation distance �(t) = |t � 1|, the optimal value of the projection300

problem (4) equals the optimal value of the univariate convex problem301

maximize
↵2R+

2 + ↵(min{b}� �)�
X

s02S
psas0 · [2 + ↵ · (min{b}� bs0)]+ . (8)

Once more, the univariate optimization problem (8) admits an efficient solution.302

Theorem 4. The projection problem (4) can be solved exactly in time O(S logS).303

Note that in contrast to the previous results, Theorem 4 employs a binary search and thus offers an304

exact solution to the projection problem (4). Our result of Theorem 4 matches the complexity of the305

homotopy continuation method proposed by [20]. The correctness and runtime of their algorithm,306

however, relies on lengthy ad hoc arguments, whereas Theorem 4 relies on the groundwork laid by307

Theorem 1 and Proposition 1. Problem (4) can also be solved as a linear program with a practical308

complexity of O(S3) and a theoretical complexity of O(S3.5).309

Corollary 3. The robust Bellman iteration (3) over a variation distance ambiguity set can be310

computed to any accuracy ✏ > 0 in time O(S2 logS ·A · log[R/✏]).311

[41] study the related problem of optimizing a linear function over the intersection of a probability312

simplex with an unweighted 1-norm constraint, and they identify structural properties of the optimal313

solutions. Since the linear function and the norm constraint are in different places of the optimization314

problem, however, their findings are not directly applicable to our setting.315

5.4 �2-Distance316

In contrast to the previous subsections, we directly solve the bivariate problem (5) for the �2-distance317

�(t) = (t� 1)2 without first formulating an associated univariate optimization problem. The radii318

this type of ambiguity sets can be selected via statistical bounds [33, 57].319

Theorem 5. For the �2
-distance �(t) = (t� 1)2, the optimal value of the projection problem (4)320

can be computed exactly in time O(S logS).321

Theorem 5 splits the bivariate piecewise quadratic optimization problem (5) corresponding to the322

�2-distance into S + 1 bivariate quadratic problems by sorting the components of b. Each of these323

S + 1 problems can be reduced to the solution of 3 univariate quadratic problems that themselves324

admit analytical solutions.325

Corollary 4. The robust Bellman iteration (3) over a �2
-distance ambiguity set can be computed to326

any accuracy ✏ > 0 in time O(S2 logS ·A · log[R/✏]).327

The projection problem (4) for the �2-distance ambiguity set can be solved as a quadratic program328

with a practical complexity of O(S3) as well as a theoretical complexity of O(S3.5).329

The first-order framework of [15] also applies to RMDPs over s-rectangular spherical uncertainty330

sets. In that case, the robust Bellman update enjoys a complexity of O(`2 ·S2
·A · log2(✏�1)), where331
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S MOSEK fast MOSEK/fast

20 1.00 0.01 175.35
100 7.53 0.02 317.80
400 17.87 0.09 190.95

1,000 49.23 0.24 208.20
4,000 235.43 0.94 249.18

S = A MOSEK fast MOSEK/fast

20 12.98 1.06 12.21
100 637.78 25.25 25.28
400 24,308.16 343.37 70.79
600 47,473.61 731.17 64.93
700 63,318.00 1,084.65 58.38

Table 2: Comparison of our algorithms (‘fast’) vs. MOSEK for the projection problem (left) and the
Bellman update (right) on KL-divergence constrained ambiguity sets. Runtimes are reported in ms.

S = A f-o (3 its) f-o (5 its) fast f-o/fast (3 its) f-o/fast (5 its)

20 9.12 25.25 1.06 8.58 23.75
100 183.34 508.83 25.25 7.26 20.15
400 2,821.52 7,833.65 343.37 8.21 22.81
600 6,434.55 17,828.39 731.17 8.80 24.38
700 8,523.80 23,702.00 1,084.65 7.86 21.85

Table 3: Comparison of our algorithms (‘fast’) vs. the first-order method of [15] (after ` = 3, 5 its.)
for the Bellman update on KL-divergence constrained ambiguity sets. Runtimes are reported in ms.

` is the iteration number. A careful analysis results in an overall convergence rate for the optimal332

MDP policy of O(S3 logS ·A2
· ✏�1 log[✏�1]). In contrast, the convergence rate of our robust value333

iteration amounts to O(S2 logS ·A · log[R/✏] · log[✏�1]). Treating the parameter R as a constant, our334

convergence rate simplifies to O(S2 logS ·A · log2[✏�1]), which compares favourably against the335

convergence rate of [15]. We remark, however, that the spherical ambiguity sets of [15] differ from336

the �2-distance ambiguity sets studied here, and as such the two methods are not directly comparable.337

We also note that our �2-distance ambiguity sets enjoy a strong statistical justification [4, 6].338

Computing unweighted 2-norm projections of points onto S-dimensional probability simplices has339

manifold applications in image processing, finance, optimization and machine learning [1, 8]. [31]340

proposes one of the earliest algorithms that computes this projection in time O(S2) by iteratively341

reducing the dimension of the problem using Lagrange multipliers. The minimum complexity of342

O(S) is achieved, among others, by [28] through a linear-time median-finding algorithm and by [37]343

through a filtered bucket-clustering method. Note, however, that these algorithms do not account344

for the weights and the additional inequality constraint present in our generalized projection (4).345

The unweighted 2-norm projection of a point onto the intersection of the S-dimensional probability346

simplex with an axis-parallel hypercube is computed by [54] through a sorting-based method and347

by [2] through Newton’s method, respectively. [39] optimize a linear function over the intersection348

of a probability simplex with an unweighted 2-norm constraint through an iterative dimension349

reduction scheme. [1], finally, study algorithms that optimize linear functions over the intersection of350

a probability simplex and a bound on the unweighted 2-norm distance to a nominal distribution.351

6 Numerical Results352

We compare our fast suite of algorithms with the state-of-the-art solver MOSEK 9.3 [3] (commercial)353

and the first-order method of [15]. Tables 2–3 report average computation times over 50 randomly354

generated test instances for the KL-divergence case, and show that the proposed algorithms outper-355

forms other methods. Similar experimental results for the �2-distance is provided in the Appendix,356

which provides the details of all the experiments.357

7 Conclusion358

We consider the robust MDPs with s-rectangular �-divergence ambiguity sets. We develop efficient359

algorithms for computing the robust Bellman updates for several important special cases of this360

ambiguity set. Our experimental results indicate that the proposed algorithms outperform MOSEK.361

Future work should address extensions to the developments of scalable model-free algorithms.362
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[46] A. Ruszczyński. Risk-averse dynamic programming for Markov decision processes. Mathemat-467

ical Programming, 125(2):235–261, 2010.468

[47] J. K. Satia and R. E. Lave Jr. Markovian decision processes with uncertain transition probabilities.469

Operations Research, 21(3):728–740, 1973.470

[48] A. Shapiro. Rectangular sets of probability measures. Operations Research, 64(2):528–541,471

2016.472

[49] A. Shapiro. Distributionally robust optimal control and MDP modeling. Operations Research473

Letters, 49(3):809–814, 2021.474

[50] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second475

edition, 2018.476

[51] A. Tamar, Y. Glassner, and S. Mannor. Policy gradients beyond expectations: Conditional477

value-at-risk. Available on arXiv, 2014.478

[52] A. Tamar, S. Mannor, and H. Xu. Scaling up robust MDPs using function approximation. In479

Proceedings of the 31st International Conference of Machine Learning, 2014.480

[53] A. Tirinzoni, X. Chen, M. Petrik, and B. D. Ziebart. Policy-conditioned uncertainty sets for481

robust Markov decision processes. In Advances in Neural Information Processing Systems,482

volume 31, pages 8953–8963, 2018.483

[54] W. Wang and C. Lu. Projection onto the capped simplex. Available on arXiv, 2015.484

[55] Y. Wang and S. Zou. Online robust reinforcement learning with model uncertainty. In Advances485

in Neural Information Processing Systems, volume 34, pages 7193–7206, 2021.486

[56] Yue Wang and Shaofeng Zou. Policy gradient method for robust reinforcement learning. In487

Proceedings of the 39th International Conference on Machine Learning, pages 23484–23526,488

2022.489

[57] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. J. Weinberger. In-490

equalities for the l1 deviation of the empirical distribution. Technical Report,491

https://www.hpl.hp.com/research/info theory/papers/HPL-2003-97R1Web.pdf,492

2003.493

[58] W. Wiesemann, D. Kuhn, and B. Rustem. Robust Markov decision processes. Mathematics of494

Operations Research, 38(1):153–183, 2013.495

[59] H. Xiao, K. Yang, and X. Wang. Robust power control under channel uncertainty for cognitive496

radios with sensing delays. IEEE Transactions on Wireless Communications, 12(2):646–655,497

2013.498

12



[60] L. Xin and D. A. Goldberg. Distributionally robust inventory control when demand is a499

martingale. Available on arXiv, 2018.500

[61] H. Xu and S. Mannor. Distributionally robust Markov decision processes. In Advances in501

Neural Information Processing Systems, volume 23, pages 2505–2513, 2010.502

[62] H. Xu and S. Mannor. Distributionally robust Markov decision processes. Mathematics of503

Operations Research, 37(2):288–300, 2012.504

[63] P. Yu and H. Xu. Distributionally robust counterpart in Markov decision processes. IEEE505

Transactions on Automatic Control, 61(9):2538–2543, 2016.506

[64] Y. Zhang, L. N. Steimle, and B. T. Denton. Robust Markov decision processes for medical507

treatment decisions. Available on Optimization Online, 2017.508

13



Checklist509

1. For all authors...510

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s511

contributions and scope? [Yes] The abstract explains that the main contributions of the512

paper are (i) the development of a decomposition scheme that reduces the computation513

of a seemingly unstructured robust Bellman operator to the repeated solution of highly514

structured simplex projection problems and (ii) the fast solution of these simplex515

projection problems for several classes of �-divergences. These claims are backed up516

in the introduction and the remainder of the paper.517

(b) Did you describe the limitations of your work? [Yes] We took great care to ensure that518

our numerical results provide an objective and unbiased assessment of our solution519

approach. In particular, we see that in one of the cases, the outperformance of our520

approach over MOSEK slightly reduces for larger problem instances.521

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Robust522

MDPs are well-known in the literature, and our paper develops a new suite of fast523

algorithms to solve these problems. As such, there are no new negative societal impacts524

that we can identify.525

(d) Have you read the ethics review guidelines and ensured that your paper conforms to526

them? [Yes] We have carefully read those guidelines, and to our best understanding527

our paper fully complies with them.528

2. If you are including theoretical results...529

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All of our530

results state the full set of assumptions, with exception of the blanket assumptions that531

are assumed to hold throughout the paper and that are clearly marked as such.532

(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are533

contained in the appendix.534

3. If you ran experiments...535

(a) Did you include the code, data, and instructions needed to reproduce the main experi-536

mental results (either in the supplemental material or as a URL)? [Yes] All code, data537

and instructions for our experimental results are published on GitHub. To maintain538

anonymity during the review process, we do not provide a link in the current version of539

the paper.540

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they541

were chosen)? [Yes] All details are mentioned either in the numerical results section or542

in the appendix.543

(c) Did you report error bars (e.g., with respect to the random seed after running experi-544

ments multiple times)? [Yes] Included in the appendix.545

(d) Did you include the total amount of compute and the type of resources used (e.g., type546

of GPUs, internal cluster, or cloud provider)? [Yes] Included in the numerical results547

section.548

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...549

(a) If your work uses existing assets, did you cite the creators? [Yes] We use C++, Python550

and MOSEK, all of which are cited in the text.551

(b) Did you mention the license of the assets? [Yes] All licenses are mentioned.552

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]553

All code, data and instructions for our experimental results are published on GitHub. To554

maintain anonymity during the review process, we do not provide a link in the current555

version of the paper.556

(d) Did you discuss whether and how consent was obtained from people whose data you’re557

using/curating? [N/A] We use synthetic data in our experiments.558

(e) Did you discuss whether the data you are using/curating contains personally identifiable559

information or offensive content? [N/A] We use synthetic data in our experiments.560

5. If you used crowdsourcing or conducted research with human subjects...561

14



(a) Did you include the full text of instructions given to participants and screenshots, if562

applicable? [N/A] We use synthetic data in our experiments.563

(b) Did you describe any potential participant risks, with links to Institutional Review564

Board (IRB) approvals, if applicable? [N/A] We use synthetic data in our experiments.565

(c) Did you include the estimated hourly wage paid to participants and the total amount566

spent on participant compensation? [N/A] We use synthetic data in our experiments.567

15


