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Abstract

The FedProx algorithm is a simple yet powerful distributed proximal point opti-1

mization method widely used for federated learning (FL) over heterogeneous data.2

Despite its popularity and remarkable success witnessed in practice, the theoretical3

understanding of FedProx is largely underinvestigated: the appealing convergence4

behavior of FedProx is so far characterized under certain non-standard and unre-5

alistic dissimilarity assumptions of local functions, and the results are limited to6

smooth optimization problems. In order to remedy these deficiencies, we develop7

a novel local dissimilarity invariant convergence theory for FedProx and its mini-8

batch stochastic extension through the lens of algorithmic stability. As a result, we9

contribute to derive several new and deeper insights into FedProx for non-convex10

federated optimization including: 1) convergence guarantees independent on lo-11

cal dissimilarity type conditions; 2) convergence guarantees for non-smooth FL12

problems; and 3) linear speedup with respect to size of minibatch and number of13

sampled devices. Our theory for the first time reveals that local dissimilarity and14

smoothness are not must-have for FedProx to get favorable complexity bounds.15

1 Introduction16

Federated Learning (FL) has recently emerged as a promising paradigm for communication-efficient17

distributed learning on remote devices, such as smartphones, internet of things, or agents [Konečnỳ18

et al., 2016, Yang et al., 2019]. The goal of FL is to collaboratively train a shared model that works19

favorably for all the local data but without requiring the learners to transmit raw data across the20

network. The principle of optimizing a global model while keeping data localized can be beneficial21

for both computational efficiency and data privacy [Bhowmick et al., 2018]. While resembling22

the classic distributed learning regimes, there are two most distinct features associated with FL: 1)23

large statistical heterogeneity of local data mainly due to the non-iid manner of data generalization24

and collection across the devices [Hard et al., 2020]; and 2) partial participation of devices in the25

network mainly due to the massive number of devices. These fundamental challenges make FL highly26

demanding to tackle, both in terms of optimization algorithm design and in terms of theoretical27

understanding of convergence behavior [Li et al., 2020a].28

FL is most conventionally formulated as the following problem of global population risk minimization29

averaged over a set of M devices:30

min
w∈Rp

R̄(w) :=
1

M

M∑
m=1

{
R(m)(w) := EZ(m)∼D(m) [`(m)(w;Z(m))]

}
, (1)

where R(m) is the local population risk on device m, `(m) : Rp × Z(m) 7→ R+ is a non-negative31

loss function whose value `(w;Z(m)) measures the loss over a random data point Z(m) ∈ Z(m) with32
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parameter w, D(m) represents an underlying random data distribution over Z(m). Since the data33

distribution is typically unknown, the following empirical risk minimization (ERM) version of (1) is34

often considered alternatively:35

min
w∈Rp

R̄erm(w) :=
1

M

M∑
m=1

{
R(m)

erm (w) :=
1

Nm

Nm∑
i=1

`(m)(w; z
(m)
i )

}
, (2)

where R(m)
erm is the local empirical risk over the training sample D(m) = {z(m)

i }Nmi=1 on device m. The36

sample size Nm may vary significantly across devices, which can be regarded as another source of37

data heterogeneity. Federated optimization algorithms for solving (1) or (2) have attracted significant38

research interest from both academia and industry, with a rich body of efficient solutions developed39

that can flexibly adapt to the communication-computation tradeoffs and data/system heterogeneity.40

Several popularly used FL algorithms for this setting include FedAvg [McMahan et al., 2017],41

FedProx [Li et al., 2020b], SCAFFOLD [Karimireddy et al., 2020], and FedPD [Zhang et al., 2020], to42

name a few. A consensus among these methods on communication-efficient implementation is trying43

to extensively update the local models (e.g., with plenty epochs of local optimization) over subsets44

of devices so as to quickly find an optimal global model using a minimal number of inter-device45

communication rounds for model aggregation.46

In this paper, we revisit the FedProx algorithm which is one of the most prominent frameworks for47

heterogeneous federated optimization. Reasons for the interests of FedProx include implementation48

simplicity, low communication cost, promise in dealing with data heterogeneity and tolerance to49

partial participation of devices [Li et al., 2020b]. We analyze its convergence behavior, expose50

problems, and propose alternatives more suitable for scaling up and generalization. We contribute51

to derive some new and deeper theoretical insights into the algorithm from a novel perspective of52

algorithmic stability theory.53

1.1 Review of FedProx54

For solving FL problems in the presence of data heterogeneity, methods such as FedAvg based on55

local stochastic gradient descent (SGD) can fail to converge in practice when the selected devices56

perform too many local updates [Li et al., 2020b]. To mitigate this issue, FedProx [Li et al., 2020b]57

was recently proposed for solving the empirical FL problem (2) using the (inexact) proximal point58

update for local optimization. The benefits of FedProx include: 1) it provides more stable local59

updates by explicitly enforcing the local optimization in the vicinity of the global model to date; 2)60

the method comes with convergence guarantees for both convex and non-convex functions, even61

under partial participation and very dissimilar amounts of local updates [Li et al., 2020a]. More62

specifically, at each time instance t, FedProx uniformly randomly selects a subset It ⊆ [M ] of63

devices and introduces for each device ξ ∈ It the following proximal point ERM sub-problem for64

local update around the previous global model wt−1:65

w
(ξ)
t ≈ arg min

w∈Rp

{
Q(ξ)

erm(w;wt−1) := R(ξ)
erm(w) +

1

2ηt
‖w − wt−1‖2

}
, (3)

where ηt > 0 is the learning rate that controls the impact of the proximal term. Then the global model66

is updated by uniformly aggregating those local updates from It as67

wt =
1

|It|
∑
ξ∈It

w
(ξ)
t .

In the extreme case of allowing ηt → +∞ in (3), FedProx reduces to the regime of FedAvg if using68

SGD for local optimization. Since its inception, FedProx and its variants have received significant69

interests in research [Pathak and Wainwright, 2020, Nguyen et al., 2020, Li et al., 2019a] and become70

an algorithm of choice in application areas such as automatous driving [Donevski et al., 2021] and71

computer vision [He et al., 2021]. Theoretically, FedProx comes with convergence guarantees72

under the following bounded local gradient dissimilarity assumption that captures the statistical73

heterogeneity of local objectives across the network:74

Definition 1 ((B,H)-LGD). We say the local functions R(m) have (B,H)-local gradient dissimi-75

larity (LGD) if the following holds for all w ∈ Rp:76

1

M

M∑
m=1

‖∇R(m)(w)‖2 ≤ B2‖∇R̄(w)‖2 +H2.
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The definition naturally extends to the local empirical risks {R(m)
erm }Mm=1.77

Specially in the homogenous setting whereR(m) ≡ R̄, ∀m ∈ [M ], we haveB = 1 andH = 0. Under78

(B, 0)-LGD and some regularization condition on the modulus B, it was shown that FedProx for79

non-convex problems requires T = O
(

1
ε

)
rounds of inter-device communication to reach an ε-80

stationary solution, i.e., 1
T

∑T
t=1 ‖∇R̄erm(wt)‖2 ≤ ε [Li et al., 2020b]. Similar guarantees have also81

been established for a variant of FedProx with non-uniform model aggregation [Nguyen et al., 2020].82

Open issues and motivation. In spite of the remarkable success achieved by FedProx and its variants,83

there are still a number of important theoretical issues regarding the unrealistic assumptions, restrictive84

problem regimes and expensive local oracle cost that remain open for exploration, as specified below.85

• Local dissimilarity. The appealing convergence behavior of FedProx is so far characterized under86

a key but non-standard (B,H)-LGD (cf. Definition 1) condition with B > 0 and H = 0. Such a87

condition is obviously unrealistic in practice: it essentially requires the local objectives share the88

same stationary point as the global objective since ‖∇R̄erm(w)‖ = 0 implies ‖∇R(m)
erm (w)‖ = 0 for89

all m ∈ [M ]. However, if the optima of R(m)
erm are exactly (or even approximately) the same, there90

would be little point in distributing data across devices for federated learning. It is thus desirable to91

understand the convergence behavior of FedProx for heterogeneous FL without imposing stringent92

local dissimilarity conditions like (B, 0)-LGD with B > 0.93

• Non-smooth optimization. The existing convergence guarantees of FedProx are only available94

for FL with smooth losses. More often than not, however, FL applications involve non-smooth95

objectives due to the popularity of non-smooth losses (e.g., hinge loss and absolute loss) in machine96

learning, and training deep neural networks with non-smooth activation like ReLU. Therefore, it is97

desirable to understand the convergence behavior of FedProx in non-smooth problem regimes.98

• Local oracle complexity. Unlike the (stochastic) first-order oracles such as SGD used by FedAvg,99

the proximal point oracle (3) for local update is by itself a full-batch ERM problem which tends to100

be expensive to solve even approximately per-iteration. Plus, due to the potentially imbalanced101

data distribution over devices, the computational overload of the proximal point oracle could102

vary significantly across the network. Therefore, it is important to investigate whether using the103

stochastic approximation to the proximal point oracle (3) can provably improve the computational104

efficiency of FedProx.105

Last but not least, existing convergence analysis of FedProx mainly focuses on the empirical FL106

problem (2). The optimality in terms of the population FL problem (1) is not yet clear for FedProx.107

The primary goal of this work is to remedy these theoretical issues simultaneously, so as to lay a108

more solid theoretical foundation for the popularly applied FedProx algorithm.109

1.2 Our Contributions110

In this paper, we make progress towards understanding the convergence behavior of FedProx for111

non-convex heterogenous FL under weaker and more realistic conditions. The main results are a set112

of local dissimilarity invariant bounds for smooth or non-smooth problems.113

Main results for the vanilla FedProx. As a starting point to address the restrictiveness of local114

dissimilarity assumption, we provide a novel convergence analysis for the vanilla FedProx algorithm115

independent of local dissimilarity type conditions. For smooth and non-convex optimization problems,116

our result in Theorem 1 shows that the rate of convergence to a stationary point is upper bounded by117

1

T

T−1∑
t=0

E
[∥∥∇R̄erm(wt)

∥∥2
]
. max

{
1

T 2/3
,

1√
TI

}
, (4)

where I is the number devices randomly selected for local update at each iteration. If all the devices118

participate in the local updates for every round, i.e. It = [M ], the rate of convergence can be improved119

to O( 1
T 2/3 ). For T < I3, the rate in (4) is dominated by O( 1

T 2/3 ) which gives the communication120

complexity 1
ε3/2

to achieve an ε-stationary solution. On the other hand when T ≥ I3, the rate is121

dominated by O( 1√
TI

) which gives the communication complexity 1
Iε2 . Compared to the already122

known O( 1
ε ) complexity bound of FedProx under the unrealistic (B, 0)-LGD condition [Li et al.,123
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2020b], our rate in (4) is slower but it holds without needing to impose stringent regularity conditions124

on the dissimilarity of local functions, and it reveals the effect of device sampling for accelerating125

convergence. Further for non-smooth and non-convex problems, we establish in Theorem 2 the126

following rate of convergence127

1

T

T−1∑
t=0

E
[∥∥∇R̄erm(wt)

∥∥2
]
.

1√
T
, (5)

which is invariant to the number of selected devices in each round. In the case of I = O(1),128

the bounds in (4) and (5) are comparable, which indicates that smoothness is not must-have for129

FedProx to get sharper convergence bound especially with low participation ratio. On the other end130

when I = O(M), the bound (5) for non-smooth problems is slower than the bound (4) for smooth131

functions in large-scale networks.132

Main results for minibatch stochastic FedProx. Then as the chief contribution of the present work,133

we propose a minibatch stochastic extension of FedProx along with its population optimization134

performance analysis from a novel perspective of algorithmic stability theory. Inspired by the recent135

success of minibatch stochastic proximal point methods (MSPP) [Li et al., 2014, Wang et al., 2017,136

Asi et al., 2020, Deng and Gao, 2021], we propose to implement FedProx using MSPP as the local137

update oracle. The resulting method, which is referred to as FedMSPP, is expected to attain improved138

trade-off between computation, communication and memory efficiency for large-scale FL. In the case139

of imbalanced data distribution, minibatching is also beneficial for making the local computation140

more balanced across the devices. Based on some extended uniform stability arguments for gradients,141

we show in Theorem 3 the following local dissimilarity invariant rate of convergence for FedMSPP in142

terms of population optimality:143

1

T

T−1∑
t=0

E
[∥∥∇R̄(wt)

∥∥2
]
. max

{
1

T 2/3
,

1√
TbI

}
, (6)

where b is the minibatch size of local update. For empirical FL, identical bound holds under sampling144

according to empirical distribution. For T < (bI)3, the rate in (6) is dominated by O( 1
T 2/3 ) which145

gives the communication complexity 1
ε3/2

, and it matches that of the vanilla FedProx. For sufficiently146

large T ≥ (bI)3, the rate is dominated by O( 1√
TbI

) which gives the communication complexity 1
bIε2 .147

This shows that local minibatching and device sampling are both beneficial for linearly speeding148

up communication. Further, when applied to non-smooth problems, we can similarly show that149

FedMSPP converges at the rate of150

1

T

T−1∑
t=0

E
[∥∥∇R̄(wt)

∥∥2
]
.

1√
T
,

which is comparable to that of (6) when b = O(1) and I = O(1), but without showing the effect of151

linear speedup with respect to b and I .152

Comparison with prior results. In Table 1, we summarize our communication complexity bounds153

for FedProx (FedMSPP) and compare them with several related heterogeneous FL algorithms in154

terms of the dependency on local dissimilarity, applicability to non-smooth problems and tolerance155

to partial participation. A few observations are in order. First, regarding the requirement of local156

dissimilarity, all of our O( 1
ε2 ) bounds are independent of local dissimilarity conditions, and they are157

comparable to those of SCAFFOLD and FCO (for convex problems) which are also invariant to local158

dissimilarity. Second, with regard to the applicability to non-smooth optimization, our convergence159

guarantees in Theorem 2 and Theorem 4 are established for non-smooth and weakly convex functions.160

While FCO is the only one in the other considered algorithms that can be applied to non-smooth161

problems, it is customized for federated convex composite optimization with potentially non-smooth162

regularizers [Yuan et al., 2021]. Third, in terms of tolerance to partial participation, all of our results163

are robust to device sampling, and the O( 1
bIε2 ) bound in Theorem 3 for FedMSPP is comparable to164

the best known results under partial participation as achieved by FedAvg and SCAFFOLD. If assuming165

that all the devices participate in local update for each communication round and under certain local166

dissimilarity conditions, substantially fasterO( 1
ε ) bounds are possible for STEM and FedPD, while the167

O( 1
ε3/2

) bounds can be achieved by FedAvg [Khanduri et al., 2021]. To summarize the comparison,168
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Method Work Commun. Complex. LD Independ. NS PP
FedProx [Li et al., 2020b] O

(
1
ε

)
7 7 3

Theorem 1 (ours) O
(

1
Iε2 + 1

ε3/2

)
3 7 3

Theorem 2 (ours) O
(

1
ε2

)
3 3 3

FedMSPP Theorem 3 (ours) O
(

1
bIε2 + 1

ε3/2

)
3 7 3

Theorem 4 (ours) O
(

1
ε2

)
3 3 3

FedAvg [Karimireddy et al., 2020] O
(

1
bIε2 + 1

ε3/2
+ 1

ε

)
7 7 3

[Yu et al., 2019] O
(

1
bMε2 + Mb

ε

)
7 7 7

[Khanduri et al., 2021] O
(

1
ε3/2

)
7 7 7

SCAFFOLD [Karimireddy et al., 2020] O
(

1
bIε2 + (M/I)2/3

ε

)
3 7 3

FedPD [Zhang et al., 2020] O
(

1
ε

)
7 7 7

STEM [Khanduri et al., 2021] O
(

1
ε

)
7 7 7

FCO [Yuan et al., 2021] O
(

1
bMε2 + 1

ε

)
(convex composite) 3 3 7

Table 1: Comparison of heterogeneous FL algorithms in terms of communication complexity bounds
for reaching an ε-stationary solution, independence of local dissimilarity (LD), applicability to non-
smooth (NS) functions and tolerance to partial participation (PP). Except for FCO, all the results listed
are for non-convex functions. The involved quantities are M : total number of devices; I: number of
chosen devices for partial participation; b: minibatch size for local stochastic optimization.

our local dissimilarity invariant convergence bounds for FedProx (FedMSPP) are comparable to the169

best-known rates in the identical setting, while covering the generic non-smooth and non-convex170

cases which to our knowledge so far has not been possible for other FL algorithms.171

Highlight of contributions. The theoretical contributions of this work are highlighted as follows:172

• From the perspective of algorithmic stability theory, we provide a set of novel local dissimilarity173

invariant convergence guarantees for the widely used FedProx algorithm for non-convex heteroge-174

neous FL, with smooth or non-smooth local functions. Our theory for the first time reveals that175

local dissimilarity and smoothness are not necessary to guarantee the convergence of FedProx with176

reasonable rates.177

• We present FedMSPP as a minibatch stochastic extension of FedProx and analyze its convergence178

behavior in terms of population optimality, again without assuming any type of local dissimilarity179

conditions. The main result provably shows that FedMSPP enjoys linear speedup in terms of180

minibatching size and partial participation ratio.181

Paper organization. In Section 2 we present our local dissimilarity invariant convergence analysis for182

the vanilla FedProx with smooth or non-smooth loss functions. In Section 3 we propose FedMSPP as183

a minibatch stochastic extension of FedProx and analyze its convergence behavior through the lens of184

algorithmic stability theory. The concluding remarks are made in Section 4. Finally, all the technical185

proofs and some additional related work are relegated to the appendix sections.186

2 Convergence of FedProx187

We begin by providing an improved analysis for the vanilla FedProx independent of the local188

dissimilarity type conditions. We first introduce notations that will be used in the analysis to follow.189

Notations. Throughout the paper, we use [n] to denote the set {1, ..., n}, ‖ · ‖ to denote the Euclidean190

norm and 〈·, ·〉 to denote the Euclidean inner product. We say a function f is G-Lipschitz continuous191

if |f(w) − f(w′)| ≤ G‖w − w′‖ for all w,w′ ∈ Rp, and it is L-smooth if |∇f(w) − ∇f(w′)| ≤192

L‖w − w′‖ for all w,w′ ∈ Rp. Moreover, we say f is ν-weakly convex if for any w,w′ ∈ Rp,193

f(w) ≥ f(w′) + 〈∂f(w′), w − w′〉 − ν

2
‖w − w′‖2,

where ∂f(w′) represents a subgradient of f evaluated at w′. We denote by194

fη(w) := min
u

{
f(u) +

1

2η
‖u− w‖2

}
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the η-Moreau-envelope of f , and by195

proxηf (w) := arg min
u

{
f(u) +

1

2η
‖u− w‖2

}
the proximal mapping associated with f . We also need to access the following definition of inexact196

local update oracle for FedProx.197

Definition 2 (Local inexact oracle of FedProx). Suppose that the local proximal point regularized198

objective Q(m)
erm (w;wt−1) (cf. (3)) admits a global minimizer. For each time instance t, we say that199

the local update oracle of FedProx is εt-inexactly solved with sub-optimality εt ≥ 0 if200

Q(m)
erm (w

(m)
t ;wt−1) ≤ min

w
Q(m)

erm (w;wt−1) + εt.

We assume that the objective value gap ∆̄erm := R̄erm(w0)−minw∈Rp R̄erm(w) is bounded.201

2.1 Results for Smooth Problems202

The following theorem is our main result on the convergence rate of FedProx for smooth and203

non-convex federated optimization problems.204

Theorem 1. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and L-smooth205

with respect to its first argument. Set |It| ≡ I and ηt ≡ 1
3L min

{
1

T 1/3 ,
√

I
T

}
. Suppose that the local206

update oracle of FedProx is εt-inexactly solved with εt ≤ min
{

2L2G2η3t
I2(Lηt+1) ,

G2ηt
2I(Lηt+1)

}
. Let t∗ be207

an index uniformly randomly chosen in {0, 1, ..., T − 1}. Then it holds that208

E
[∥∥∇R̄erm(wt∗)

∥∥2
]
.
(
L∆̄erm +G2

)
max

{
1

T 2/3
,

1√
TI

}
.

Proof. A proof of this result is deferred to Appendix B.1.209

A few remarks are in order.210

Remark 1. Compared to the O( 1
T ) bound from Li et al. [2020b], our rate established in Theorem 1211

is slower but it is valid without assuming the unrealistic (B, 0)-LGD conditions and imposing strong212

regularization conditions on I [see, e.g., Li et al., 2020b, Remark 5]. Moreover, the dominant term213
1√
TI

in our bound reveals the benefit of device sampling for linear speedup which is not clear in the214

original analysis of Li et al. [2020b].215

Remark 2. In the extreme case of full device participation, i.e., It ≡ [M ], the terms related to I in216

Theorem 1 can be removed and thus the convergence rate becomes 1
T 2/3 under ηt = O( 1

LT 1/3 ). In217

this same setting, we comment that the rate can also be improved to O( 1
T ) using our proof augments218

if (B, 0)-LGD is additionally assumed.219

Remark 3. The G-Lipschitz-loss assumption in Theorem 1 can be alternatively replaced by the220

bounded gradient condition as commonly used in the analysis of FL algorithms [Li et al., 2020b,221

Zhang et al., 2020]. Despite that our analysis does not explicitly access to any local dissimilarity222

conditions, the assumed G-Lipschitz (or bounded gradient) condition actually implies that the local223

objective gradients are not too dissimilar, which shares a close spirit to the typically assumed (0, H)-224

LGD condition [Karimireddy et al., 2020] and inter-client-variance condition [Khanduri et al., 2021].225

It is noteworthy that these mentioned client heterogeneity conditions are substantially milder than the226

(B, 0)-LGD condition as required in the original analysis of FedProx.227

2.2 Results for Non-smooth Problems228

Now we turn to study the convergence of FedProx for weakly convex but not necessarily smooth229

problems. For the sake of presentation clarity, we work on the exact FedProx in which the local230

update oracle is assumed to be exactly solved, i.e. εt ≡ 0. Extension to the inexact case is more or231

less straightforward, though with somewhat more involved perturbation treatments. We assume that232

the objective value gap ∆̄erm,ρ := R̄erm,ρ(w0)−minw R̄erm,ρ(w) associated with ρ-Moreau-envelope233

of R̄erm is bounded. The following is our main result on the convergence of FedProx for non-smooth234

and weakly convex problems.235
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Theorem 2. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and ν-weakly236

convex with respect to its first argument. Set ηt ≡ ρ√
T

for arbitrary ρ < 1
2ν . Suppose that the local237

update oracle of FedProx is exactly solved with εt ≡ 0. Let t∗ be an index uniformly randomly238

chosen in {0, 1, ..., T − 1}. Then it holds that239

E
[∥∥∇R̄erm,ρ(wt∗)

∥∥2
]
.

∆̄erm,ρ + ρG2

ρ
√
T

.

Proof. The proof technique is inspired by the arguments from Davis and Drusvyatskiy [2019] devel-240

oped for analyzing stochastic model-based algorithms, with several new elements along developed241

for handling the challenges introduced by the model averaging and partial participation mechanisms242

associated with FedProx. A particular crux here is that due to the random subset model aggregation243

of wt = 1
|It|
∑
ξ∈It w

(ξ)
t , the local function values R(ξ)

erm(wt) are no longer independent of each other244

though ξ is uniformly random. As a consequence, 1
|It|
∑
ξ∈It R

(ξ)
erm(wt) is not an unbiased estimation245

of R̄erm(wt). To overcome this technical obstacle, we make use of a key observation that w(m)
t246

will be almost surely close enough to wt−1 if the learning rate ηt is small enough (which is the247

case in our choice of ηt), and thus we can replace the former with the latter whenever beneficial248

but without introducing too much approximation error. A full proof of this result can be found in249

Appendix B.2.250

A few comments are in order.251

Remark 4. To our best knowledge, Theorem 2 is the first convergence guarantee for FL algorithms252

applicable to generic non-smooth and weakly convex problems. This is in sharp contrast with253

FCO [Yuan et al., 2021] which focuses on composite convex and non-smooth problems such as `1-254

estimation, or Fed-HT [Tong et al., 2020] which is specially customized for cardinality-constrained255

sparse learning problems where the non-convexity essentially arises from the `0-constraint.256

Remark 5. Let us consider w̄t∗ := proxρR̄erm
(wt∗), the proximal mapping of wt∗ associated with257

R̄erm. In view of a feature of Moreau envelope to characterize stationarity [Davis and Drusvyatskiy,258

2019], if wt∗ has small gradient norm
∥∥∇R̄erm,ρ(wt∗)

∥∥, then w̄t∗ must be a near-stationary solution259

andwt∗ stays in the proximity of w̄t∗ due to the identity ‖wt∗−w̄t∗‖ = ρ
∥∥∇R̄erm,ρ(wt∗)

∥∥. Therefore,260

the bound in Theorem 2 suggests that in expectation w̄t∗ converges to a stationary solution and wt∗261

converges to w̄t∗ , both at the rate of O( 1√
T

).262

Remark 6. We comment that the bound in Theorem 2 is not dependent on I , the number of selected263

devices. For I = O(1) and sufficiently large T > O(I3), the bounds Theorem 1 and Theorem 2 are264

comparable to each other, which demonstrates that the smoothness is not must-have for FedProx to265

get sharper convergence bound with small device sampling rate. However, in the near-full participa-266

tion setting where I = O(M), the bound in Theorem 2 for non-smooth problems will be slower when267

M is large. Extremely when It = [M ], the O( 1√
T

) bound is substantially inferior to the smooth case268

which has improved rate of O( 1
T 2/3 ) as discussed in Remark 2.269

3 Convergence of FedProx with Stochastic Minibatching270

When it comes to the implementation of FedProx, a notable challenge is that the local proximal271

point update oracle (3) is by itself a full-batch ERM problem which would be expensive to solve272

even approximately in large-scale settings. Moreover, in the settings where the data distribution over273

devices is highly imbalanced, the computational overload of local update could vary significantly274

across the network, which impairs communication efficiency. It is thus desirable to seek stochastic275

approximation schemes for hopefully improving the local oracle update efficiency and overload276

balance of FedProx. To this end, inspired by the recent success of minibatch stochastic proximal point277

methods (MSPP) [Asi et al., 2020, Deng and Gao, 2021], we propose to implement FedProx using278

MSPP as the local stochastic optimization oracle. More precisely, letB(m)
t = {z(m)

i,t }bi=1
i.i.d.∼ (D(m))b279

be a minibatch of b i.i.d. samples drawn from the distribution D(m) at device m and time instance280

t ≥ 1. We denote281

R
(m)

B
(m)
t

(w) :=
1

b

b∑
i=1

`(m)(w; z
(m)
i,t ) (7)
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Algorithm 1: FedMSPP: Federated Minibatch Stochastic Proximal Point
Input :Minibatch size b; learning rates {γt}t∈[T ].
Output :wT .
Initialization Set w0, e.g., typically as a zero vector.
for t = 1, 2, ..., T do

/* Device selection and model broadcast on the server */
Server uniformly randomly selects a subset It ⊆ [M ] of devices and sends wt−1 to all the
selected devices;
/* Local model updates on the selected devices */
for ξ ∈ It in parallel do

Device ξ samples a minibatch B(ξ)
t = {z(ξ)

i,t }bi=1
i.i.d.∼ (D(ξ))b.

Device ξ inexactly updates the its local model as

w
(ξ)
t ≈ arg min

w∈W

{
Q

(ξ)

B
(ξ)
t

(w;wt−1) := R
(ξ)

B
(ξ)
t

(w) +
1

2ηt
‖w − wt−1‖2

}
, (8)

where R(ξ)

B
(ξ)
t

(w) is given by (7).

Device ξ sends w(ξ)
t back to server.

end
/* Model aggregation on the server */
Sever aggregates the local models received from It to update the global model as
wt = 1

|It|
∑
ξ∈It w

(ξ)
t .

end

as the local minibatch empirical risk function over B(m)
t . The only modification we propose to282

make here is to replace the empirical risk R(m)
erm (w) in the original update form (3) with its minibatch283

counterpart R(m)

B
(m)
t

(w). The resultant FL framework, which we refer to as FedMSPP (Federated284

MSPP), is outlined in Algorithm 1. Clearly, the vanilla FedProx is a special case of FedMSPP when285

applied to the federated ERM form (2) with full data batch B(m)
t ≡ D(m).286

3.1 Results for Smooth Problems287

We first analyze the convergence rate of FedMSPP for smooth and non-convex problems using the288

tools borrowed from algorithmic stability theory. Analogous to the Definition 2, we introduce the289

following definition of inexact local update oracle for FedMSPP.290

Definition 3 (Local inexact oracle of FedMSPP). Suppose that the local proximal point regularized291

objective Q(m)

B
(m)
t

(w;wt−1) (cf. (8)) admits a global minimizer. For each time instance t, we say that292

the local update oracle of FedMSPP is εt-inexactly solved with sub-optimality εt ≥ 0 if293

Q
(m)

B
(m)
t

(w
(m)
t ;wt−1) ≤ min

w
Q

(m)

B
(m)
t

(w;wt−1) + εt.

We also assume that the population value gap ∆̄ = R̄(w(0)) − minw∈Rp R̄(w) is bounded. The294

following theorem is our main result on FedMSPP for smooth and non-convex FL problems.295

Theorem 3. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and L-smooth296

with respect to its first argument. Set |It| ≡ I and ηt ≡ 1
8L min

{
1

T 1/3 ,
√

bI
T

}
. Suppose that the297

local update oracle of FedMSPP is εt-inexactly solved with εt ≤ min
{

G2ηt
2(Lηt+1) ,

G2ηt
8b2 ,

L2G2η3t
2bI(Lηt+1)

}
.298

Let t∗ be an index uniformly randomly chosen in {0, 1, ..., T − 1}. Then it holds that299

E
[∥∥∇R̄(wt∗)

∥∥2
]
.
(
L∆̄ +G2

)
max

{
1

T 2/3
,

1√
TbI

}
.
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Proof. Let us consider d(m)
t = ∇R(m)

B
(m)
t

(w
(m)
t ) which is roughly the local update direction on device300

m, in the sense that w(m)
t ≈ wt−1 − ηtd(m)

t given that the local update oracle is solved to sufficient301

accuracy. As a key ingredient of our proof, we show via some extended uniform stability arguments302

in terms of gradients (see Lemma 3) that the averaged directions dt := 1
|It|
∑
ξ∈It d

(ξ)
t aligns well303

with the global gradient ∇R̄(wt−1) in expectation (see Lemma 11). Therefore, in average it roughly304

holds that wt = 1
|It|
∑
ξ∈It w

(ξ)
t ≈ wt−1 − ηtdt ≈ wt−1 − ηt∇R̄(wt−1), which suggests that wt is305

updated roughly along the direction of global gradient descent and thus guarantees quick convergence.306

Based on this novel analysis, we are free of imposing any kind of local dissimilarity conditions on307

local objectives. See Appendix C.1 for a full proof of this result.308

Remark 7. For T ≥ (bI)3, the bound in Theorem 3 is dominated by O( 1√
TbI

) which gives the309

communication complexity 1
bIε2 . This shows that FedMSPP enjoys linear speedup both in the size of310

local minibatching and in the size of device sampling.311

Remark 8. While the bound in Theorem 3 is derived for the population form of FL in (1), identical312

bound naturally holds for the empirical form (2) under minibatch sampling according to local data313

empirical distribution.314

3.2 Results for Non-smooth Problems315

Analogues to FedProx , we can further show that FedMSPP converges reasonably well when applied316

to weakly convex and non-smooth problems. We assume that the objective value gap ∆̄ρ :=317

R̄ρ(w0)−minw R̄ρ(w) associated with ρ-Moreau-envelope of R̄ is bounded. The following is our318

main result in this line.319

Theorem 4. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and ν-weakly320

convex with respect to its first argument. Set ηt ≡ ρ√
T

for arbitrary ρ < 1
2ν . Suppose that the local321

update oracle of FedMSPP is exactly solved with εt ≡ 0. Let t∗ be an index uniformly randomly322

chosen in {0, 1, ..., T − 1}. Then it holds that323

E
[∥∥∇R̄erm,ρ(wt∗)

∥∥2
]
.

∆̄ρ + ρG2

ρ
√
T

.

Proof. The proof argument is a slight adaptation of that of Theorem 2 to the population FL setup (1)324

with FedMSPP. For the sake of completeness, a full proof is reproduced in Appendix C.2.325

We comment in passing that the discussions made in Remarks 4-6 immediately extend to Theorem 4.326

4 Conclusions327

In this paper, we have exposed three shortcomings of the prior analysis for FedProx in unrealistic328

assumptions about local dissimilarity, inapplicability to non-smooth problems and expensive (and329

potentially imbalanced) computational cost of local update. In order to tackle these issues, we330

developed a novel convergence theory for the vanilla FedProx and its minibatch stochastic variant,331

FedMSPP, through the lens of algorithmic stability theory. In a nutshell, our results reveal that with332

minimal modifications, FedProx is able to kill three birds with one stone: it enjoys favorable rates333

of convergence which are simultaneously invariant to local dissimilarity, applicable to smooth or334

non-smooth problems, and scaling linearly with respect to local minibatch size and device sampling335

ratio for smooth problems. To the best of our knowledge, the present work is the first theoretical336

contribution that achieves all these appealing properties in a single FL framework.337

Limitations. While our results in Theorem 2 and Theorem 4 for the first time guarantee that338

FedProx and FedMSPP converge non-asymptotically for non-smooth and weakly-convex problems,339

the corresponding rates of convergence so far cannot demonstrate any linear speedup effort with340

respect to device sampling ratio and local minibatch size. This is as opposed to what have been341

shown for smooth problems in Theorem 1 and Theorem 3, and thus we view it as a limitation of the342

techniques used by our analysis. In the smooth-loss case, the comparison in Table 1 suggests that our343

results in Theorem 1 and Theorem 3 are no stronger in convergence rate than those of the existing FL344

methods based on local SGD update, despite that FedProx requires a more complex local oracle.345
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