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Abstract

Federated learning (FL) is a collaborative machine learning paradigm to train1

models from decentralized private data. Most FL research focuses on model-2

homogeneous setting where models deployed across all the participating clients3

and the server are required to be identical. However, in real-world scenarios,4

such a requirement acts as a constraint that restricts the outreach to clients with5

heterogeneous device resources and unfairly excludes users with low-end devices6

who would otherwise benefit from FL. In this work, we propose a simple yet7

effective model-heterogeneous FL method named FedRolex to tackle this con-8

straint. Unlike the model-homogeneous scenario, the fundamental challenge of9

model heterogeneity in FL is that different parameters of the global model are10

trained on heterogeneous data distributions. Our method addresses this challenge11

by rolling the sub-model in each federated iteration so that the parameters of the12

global model are evenly trained on the global data distribution across all devices,13

making it more akin to model-homogeneous training. Our experiments show that14

FedRolex outperforms other state-of-the-art model-heterogeneous FL methods,15

especially under high data-heterogeneity scenarios. We have conducted ablation16

studies to show that submodel rolling is an effective technique to reduce the gap17

between model-heterogeneous and standard model-homogeneous settings. Lastly,18

we consider the distribution of client capabilities that is similar to real-world in-19

come distribution instead of the uniform distribution used in existing works. Our20

results show a consistent improvement in the accuracies on low-end devices, which21

enhances the inclusiveness of federated learning.22

1 Introduction23

Cross-device federated learning (FL) was originally proposed by McMahan et al. (2017) as a privacy-24

preserving machine learning paradigm to train a machine learning model on a federation of resource-25

constrained edge devices without accessing their data. This idea has far-reaching applications, which26

are made urgent by modern demands for privacy. Indeed, the goal of strong data privacy is a central27

motivation for FL. By storing data locally, instead of replicating them on a remote server, the attack28

surface of the system is decreased (Jere et al., 2020), and by using focused ephemeral updates and29

early aggregation, the communication cost is also minimized (Nishio and Yonetani, 2019).30

Majority of the existing cross-device FL studies focus on model-homogeneous setting, where models31

deployed across all the participating clients and the server are required to be identical. In practice,32

device heterogeneity is a realistic constraint to consider for deploying in real-world environments.33

Different edge devices have different on-device resources and, hence, are only capable of training34

models with capacities that match their on-device resources. Having the same model on all the35

devices forces a limitation that restricts the outreach to clients with heterogeneous device resources36

and unfairly excludes users with low-end devices who would otherwise benefit from FL.37
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Table 1: Comparison of FedRolex with model-homogeneous and model-heterogeneous FL methods.

Model
Heterogeneity

Need of
Public Data

Scaling to Large
Federations

Server Model
Size

FedAvg McMahan et al. (2017) No No Scalable = Client Model
FedProx Li et al. (2020) No No Scalable = Client Model
SCAFFOLD Karimireddy et al. (2020) No No Scalable = Client Model
FedBE Chen and Chao (2020) No Unlabeled Computationally Expensive = Client Model
FedDF Lin et al. (2020) Yes Unlabeled Computationally Expensive = Largest Client Model
FedGKT He et al. (2020) Yes No Computationally Expensive � Largest Client Model
FedGEMS Cheng et al. (2021) Yes Labeled Computationally Expensive � Largest Client Model
Fed-ET Cho et al. (2022) Yes Unlabeled Computationally Expensive � Largest Client Model
Federated Dropout Caldas et al. (2018) Yes No Large Federation Required � Largest Client Model
HeteroFL Diao et al. (2020) Yes No Scalable = Largest Client Model
FjORD Horvath et al. (2021) Yes No Scalable = Largest Client Model
FedRolex Yes No Scalable � Largest Client Model

To tackle this constraint, recent works proposed model-heterogeneous FL, where models with different38

capacities are trained on edge devices with heterogeneous resources during the federated training39

process. One fundamental challenge in model-heterogeneous FL is the aggregation of heterogeneous40

client models. Lopes et al. (2017); He et al. (2020); Cho et al. (2022) proposed to use knowledge41

distillation (KD) (Hinton et al., 2015), where the client models serve as teachers and server ensembles42

the knowledge distilled from the individual client models. However, KD-based methods generally43

require access to public data to achieve competitive model accuracy, where the accessibility of high-44

quality public data is not always practical. Moreover, KD becomes computationally expensive when45

the cohort size in each FL round scales up. To remove the dependency on public data, another set of46

studies focuses on designing partial training (PT) based techniques such as federated dropout (Caldas47

et al., 2018), ordered dropout (Horvath et al., 2021), and static sub-model extraction (Diao et al.,48

2020), where each client trains a smaller sub-model of the larger global model on the server. However,49

the fundamental issue of existing PT-based methods is that the sub-models are extracted in ways such50

that the parameters of the global model obtained by aggregating the extracted sub-models are not51

evenly trained, making the global model vulnerable to a phenomenon called client drift (Wang et al.,52

2021). This phenomenon becomes more prominent when the cohort size in each communication53

round is small or data heterogeneity across clients becomes more severe, resulting in lower global54

model accuracy.55

In this work, we propose a simple yet effective PT-based model-heterogeneous FL method named56

FedRolex that tackles the fundamental issue of existing PT-based methods. Compared to existing57

PT-based methods, FedRolex proposes a rolling sub-model extraction scheme, where the sub-model58

is extracted from the global model using a rolling window that advances in each communication round.59

As such, sub-models are extracted from different parts of the global model in different rounds. Since60

the extraction window is rolling in each round, parameters of the global model are evenly trained to61

minimize the client drift. Throughout communication rounds, all the parameters of the global model62

are updated over the entire data distribution. As we show in §4.2, such rolling sub-model extraction63

strategy significantly reduces the gap between model-heterogeneous and model-homogeneous setting.64

We evaluate the performance ofFedRolex on two datasets – CIFAR-10 and CIFAR-100 – and65

compare it against state-of-the-art KD-based model-heterogeneous FL methods FedDF (Lin et al.,66

2020), DS-FL (Itahara et al., 2020) and Fed-ET (Cho et al., 2021) as well as PT-based model-67

heterogeneous FL methods HeteroFL (Diao et al., 2020) and Federated Dropout (Caldas et al., 2018)1.68

Our results show that FedRolex consistently outperforms state-of-the-art PT-based methods in both69

high and low data heterogeneity scenarios. FedRolex also outperforms state-of-the-art KD-based70

methods in low data heterogeneity scenario as well as on the more challenging CIFAR-100 dataset71

in high data heterogeneity scenario without public data. Furthermore, we show that our proposed72

rolling sub-model extraction scheme is flexible to train a global model that can be much larger than73

the largest client model. Lastly, we conducted an experiment that uses real-world household income74

distribution to emulate real-world device distribution. Our results show that FedRolex effectively75

boosts the model accuracy of low-end devices, which enhances the inclusiveness of federated learning.76

The code of FedRolex will be publicly available on Github.77

1We did not compare with FjORD because its code is not open-source and we could not reproduce their
results following the paper.
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2 Related Work78

Our work focuses on model-heterogeneous FL where existing methods can be generally grouped into79

two categories: knowledge distillation (KD) based and partial training (PT) based methods.80

Knowledge Distillation (KD) based Model-Heterogeneous FL. In knowledge distillation (Hinton81

et al., 2015; Mirzadeh et al., 2020; Liu et al., 2019), the core idea is to compress a large pre-trained82

model by teaching a smaller network, step by step, exactly what to do using the larger pre-trained83

network. However, this has been adapted in FL systems to train a single model from a federation of84

client models trained on private distributed data. In FedDF, (Lin et al., 2020) uses KD from a set of85

classifiers pooled from a federation of client devices with their own private data. The logit outputs86

of each of the classifiers against a public dataset input are then used to train a student model at the87

server and thereby distill knowledge. In DS-FL (Itahara et al., 2020), an unlabeled public dataset88

is similarly used. The logit output for this dataset is aggregated and averaged at the server and is89

broadcast back to the clients. Local models now train on the additional pseudo-labeled data, and90

performance is enhanced owing to the data augmentation effect. Fed-ET (Cho et al., 2022) considers91

a weighted consensus distillation approach with diversity regularization that enables training of a92

large server model with smaller models at the clients. These models have several drawbacks. KD is93

generally a computationally expensive task and so the costs blow up as the system scales up for larger94

models and more clients. These are also typically restricted to classification tasks as they depend on95

logits for implementing KD. The methods are also likely to face deployment issues, especially for96

tasks with a large number of possible output classes.97

Partial Training (PT) based Model-Heterogeneous FL. There have been several studies employing98

different methods to train models of different sizes. These generally follow PT. HeteroFL (Diao99

et al., 2020) uses this concept to aggregate models of different sizes. Fjord (Horvath et al., 2021) uses100

ordered dropout, which similarly samples submodels from a global model, trains them, and then does101

a weighted aggregation. PruneFL (Jiang et al., 2022) uses model pruning to extract submodels. These102

algorithms are easily scalable and have minimum overheads on the server. However, these methods103

have a significant drawback in the sense that different parts of the model are restricted to seeing104

updates from a fixed pool of client data. This limits the performance as the global knowledge is105

concentrated on a smaller portion of the model. Furthermore, the server model capability is restricted106

to the same capability as the largest client model. Servers are usually much more computationally107

capable and so should be able to use a larger model. In comparison, Federated Dropout (Caldas108

et al., 2018; Guliani et al., 2022; Ro et al., 2022) can train on larger global models and use its entire109

capability, especially when the dataset and the number of clients are large. Here, a portion of the110

parameters in each layer of the global model is dropped, leaving a smaller submodel. Submodels are111

trained on the client devices according to their capacities and the updates are aggregated via weighted112

averaging similar to traditional dropout. However, as reported by Bouacida et al. (2020), the approach113

works well only with less heterogeneous data and large client pools. This is because of high variance114

in heterogeneous data when only a small subset of the client pool is selected.115

3 Our Method116

3.1 Problem Formulation of Model-Heterogeneous FL117

Consider N different client devices, N , with different compute capacities {C1, C2, ..., CN} and pri-118

vate data {D1, D2, ..., DN}, each with different distributions. The objective is to train a large global119

model characterized by the set of trainable model parameters ✓. Therefore, model-heterogeneous FL120

can be formulated as the following distributed optimization problem:121

min
✓

(
F (✓) ,

NX

n=1

pnFn(✓)

)
(1)

where F (✓) = E⇠⇠Dl(✓; ⇠), Fn(·) is the local objective function on the client dataset Dn =122

{dn,1, dn,2, dn,3...dn,mn} with respect to the user defined loss function l(·; ·) and pn is the corre-123

sponding weight of the n
th client such that pn � 0 and

PN
n=1 pn = 1. The n

th device contains mn124

data points and has model parameters ✓n (this can be changed from one iteration to another). The125

size of ✓n depends on the client’s model capacity Cn and are extracted from the global model i.e.,126
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Figure 1: Illustrated overview of rolling window for round numbers j = 0, 1, and 2 for client
capacities set {1, 1/2, 1/4}. The orange squares indicate kernels extracted and trained on client device
whereas the gray ones indicate deselected kernels. For �n = 1, all kernels are used for all convolution
layers in all rounds. For �n = 1/2, the first 4 kernels are extracted for the 1st convolution layer and
the first 8 are extracted from the next at round j = 0. In round j = 1, kernels 1 through 5 are selected
from the first convolution layer and 1 through 9 for the second. For j = 2, kernels 2 through 6 are
selected from the first convolution layer and 2 through 10 for the second. This is similarly played out
for �n = 1/4 except here only 2 kernels are selected from the first convolution layer and 4 from the
second.

✓n ⇢ ✓. The local objective function Fn(·) is thereby rewritten as:127

Fn(✓n) ,
1

mn

mnX

k=1

l(✓n; dn,k). (2)

For simplicity, we abuse the notation of l by ignoring the other parameters in ✓ but not in ✓n. The128

core of the optimization problem is to select subset ✓n from the global model parameters ✓ based on129

model capacity Cn.130

3.2 FedRolex: Model-Heterogeneous FL with Rolling Sub-model Extraction131

We propose a more optimal way to extract and train the sub-models that are more consistent with132

practical applications than previous methods. In our work, we extract subsets from a rolling window133

that advances and loops over all the kernels of each convolution layer in the model. Consider134

✓
(j)
n selected from ✓ for client n at the j

th communication round. Assume that the proportion of135

kernels extracted from global parameter set ✓ at client n be �n, which belongs to the set of unique136

model capacities �. Let the total number of kernels in the i
th convolution layer be Ki. Then137

the parameters ✓
(j)
n,[i,·] for the i

th convolution layer in extracted model parameters ✓
(j)
n consist of138

{✓(j)n,[i,j mod Ki]
, ✓

(j)
n,[i,(j+1) mod Ki]

, ...✓
(j)
n,[i,(j+�nKi) mod Ki]

} where mod is the modulus operator.139

For j = 0, the window starts from the very first kernel index and kernel parameters for the sub-model140

are extracted starting from index j = 0. After each round, the value j is incremented by 1, and so the141

window advances forward over each round and loops back from the beginning after one complete142

cycle through all the kernels of a particular convolution layer. Over a sufficiently large number of143

communication rounds, all parts of the model will see the entire data distribution across the N clients.144

The process over three rounds is illustrated in Figure 1.145

Let, M ⇢ N be the set of selected clients from the client pool from which the server pulls model146

parameters at round j. Let ✓[i,k] be the k
th trainable weight of the i

th layer of global model and147

✓m,[i,k];m 2M be the k
th trainable weight of the i

th layer of the client m. The model parameters148

are aggregated as follows:149

✓[i,k] =
1P

m2M pm

X

m2M
pm✓m,[i,k] (3)
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Here, pm is an empirical weight given to a client. This can be based on a variety of factors like the150

client model capability, the number of data points a client has, etc. However, there is no theoretical151

foundation in the literature to quantify the relative importance of a client update nor are there152

empirical studies that accurately study this. We consider this tangent to our goals in this study and so,153

throughout the paper, unless otherwise stated, the weight of all clients are assumed to be the same, i.e,154

pm = 1. Finally, the optimal sub-model is extracted from the global model for each client according155

to client capability.156

Why Rolling Sub-model Extracting is better? PT-based algorithms HeteroFL and FjORD extract157

the model parameters ✓n from specific locations in the global model. Here the number of kernels158

extracted from each convolution layer for creating a client model is based on the client capacity, and159

the kernels are selected starting from the first index. The extracted sub-models are then trained on160

selected client devices from the client pool, and the updates for each parameter are aggregated and161

averaged based on the number of clients that participated in training for that parameter. The kernels162

in the beginning indices of each convolution layer will therefore see updates that were averaged163

across more clients than end indices. This means the expected value of the updates will tend more164

toward the optimal update. In comparison, the kernels at the end indices will see updates averaged165

across much fewer clients, and therefore the updates to these kernels will have more uncertainty.166

Essentially, the kernels will be unevenly trained. Dropout-based algorithms like Federated Dropout167

Caldas et al. (2018) propose random dropout to create smaller sub-models. Though the expected168

value of the frequency for updating each index is the same for all the indices in Federated Dropout,169

their exact frequencies are not the same in each experiment because of the randomness. In fact, given170

I indices, if one index is chosen at each round, the probability to update all indices once in I rounds is171 QI
i=1

i
I . Furthermore, the expected number of rounds to go through all indices at least once is close172

to I ln(I), see Appendix A.1. It shows that random dropout can not balance the update frequencies173

of the indices, and it takes a large number of rounds to update all the indices.174

Algorithm 1: FedRolex
1 Initialization ; ✓(0), N

Input :Dn �n 8n 2 N ,
Output :✓J

2 Server Executes
3 for j  0 to J do
4 Broadcast ✓(j)n,[i,j mod Ki ... (j+�nKi) mod Ki]

8i and n 2 N
5 Sample subset M from N
6 for each client m 2M do
7 clientStep(✓(j)n , Dn)
8 end
9 Aggregate ✓

(j+1)
[i,k] = 1P

m2M 1

P
m2M ✓m,[i,k]

10 end
11 Subroutine clientStep(✓(j)n , Dn)
12 mn  � len(Dn)
13 for k  0 to mn do
14 ✓n  � ✓n � ⌘rl(✓n; dn,k)
15 end
16 return ✓n

4 Experiments and Analysis175

4.1 Experimental Setup176

Datasets and Platform. We validate the performance of FedRolex on two public open-source177

datasets – CIFAR-10 and CIFAR-100 (Krizhevsky, 2009). We apply bounding box crop (Zoph et al.,178

2020) to augment the images. To simulate the non-iid nature of the data, we use balanced non-iid data179

distribution following HeteroFL. We skew the data distribution by restricting the clients to having180
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a fixed number of unique labels L. We define L = 2 as high data heterogeneity (i.e., high non-iid)181

and L = 5 as low data heterogeneity (i.e., low non-iid) for CIFAR-10. Similarly, we use L = 20182

as high non-iid and L = 50 as low non-iid for CIFAR-100. These roughly correspond to Dirichlet183

distribution DirK(↵) with ↵ set to 0.1 and 0.5, respectively. The data is partitioned into 100 non-iid184

partitions and assigned to the client pool. In each communication round, 10% of the clients are185

randomly selected from the client pool of 100. We run our experiments on 8 Nvidia A6000 GPUs186

using the PyTorch library for machine learning and the Ray library for simulating the distributed187

system.188

Models. We use pre-activated ResNet18 (PreResNet18) models (He et al., 2016). We replace the189

batch Normalization in PreResNet18 with static batch normalization (Diao et al., 2020; Andreux190

et al., 2020) and add a scaler module after each convolution layer (Diao et al., 2020). We list the exact191

architecture of the model in Appendix A.2. To simplify our experiments and ablation studies, the192

model sizes are restricted to a set of 5, i.e, �n would take any value in {1, 1/2, 1/4, 1/8, 1/16}. Note that193

we only vary the number of kernels in convolution layers in our method, HeteroFL, and Federated194

Dropout to keep the comparison fair. We provide pseudocode for both HeteroFL and our Federated195

Dropout variant in Appendix A.3. Unless otherwise stated, the client capacity distribution is assumed196

to be uniform over the entire client pool for all methods.197

Baselines. We compare FedRolex against state-of-the-art PT-based methods HeteroFL and Federated198

Dropout and state-of-the-art KD-based methods FedDF, DS-FL, and Fed-ET obtained from Lin et al.199

(2020). For a fair comparison, all the baselines from the PT-based methods are trained on the same200

learning rate, the same number of communication rounds, and the same multi-step learning rate decay201

schedule. The exact schedule for each dataset and experiment is given in Appendix A.2.202

Evaluation Metrics. We use local and global model accuracy as our evaluation metrics. Specifically,203

global model accuracy is defined as the mean accuracy on the test set totally held out during training;204

local model accuracy is defined as the mean accuracy of the server model on each of the client205

datasets. Since there is some randomness due to the non-iid partitioning, we run our experiments206

on 5 different seeds and list the mean and standard deviation of our metrics. Note that the results of207

KD-based methods were obtained from Cho et al. (2022) using 3 different seeds.208

4.2 Performance Comparison with State-of-the-Art Model-Heterogeneous FL Methods209

Table 2 shows the global model accuracy comparison between FedRolex and the baselines under210

both high and low data heterogeneity settings. We also include the global model accuracy of two211

model-homogeneous cases where all clients have the highest capacity (� = 1.0) and lowest capacity212

(� = 0.0625) representing the upper and lower-bound performance, respectively. We have three213

key observations. (1) In comparison with state-of-the-art PT-based methods, FedRolex consistently214

outperforms HeteroFL and Federated Dropout in both high and low data heterogeneity scenarios. In215

particular, under high data heterogeneity, Federated Dropout that uses random dropout has drastically216

worse performance than FedRolex and HeteroFL which both extract sub-models in a deterministic217

manner. (2) In comparison with state-of-the-art KD-based methods, FedRolex only performs worse218

than Fed-ET and FedDF on CIFAR-10 under high data heterogeneity, but outperforms all the state-of-219

the-arts in more challenging CIFAR-100 dataset that has many more classes than CIFAR-10 under220

both high and low data heterogeneity scenarios. It is important to emphasize that KD-based methods221

leverage public data to boost their model accuracy while FedRolex does not. (3) In comparison with222

model-homogeneous cases, compared to other PT-based methods, FedRolex considerably reduces223

the gap between model-heterogeneous and model-homogeneous setting, particularly on CIFAR-10224

under low data heterogeneity. Note that Fed-ET achieves a higher global model accuracy than the225

model-homogeneous upper bound on CIFAR-10 under high data heterogeneity, which showcases the226

advantage of having access to public data.227

4.3 Impact of Model Capacity Distribution228

In our previous experiment, in line with existing model-heterogeneous FL studies, we have performed229

our experiment where the distributions of model capacities are uniform for a fair comparison. In230

practical scenarios, however, the distributions of model capacities will likely be skewed. Therefore,231

we conduct an experiment to understand how global model accuracy changes when the proportion of232

higher capacity clients varies. To do so, we set the proportion of large to small models to ⇢ and the233
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Table 2: The global model accuracy comparison on CIFAR-10 and CIFAR-100 under both high and
low data heterogeneity.

Method High Data Heterogeneity Low Data Heterogeneity

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

KD based
FedDF 73.81 (± 0.42) 31.87 (± 0.46) 76.55 (± 0.32) 37.87 (± 0.31)
DS-FL 65.27 (± 0.53) 29.12 (± 0.51) 68.44 (± 0.47) 33.56 (± 0.55)
Fed-ET 78.66 (± 0.31) 35.78 (± 0.45) 81.13 (± 0.28) 41.58 (± 0.36)

PT based
HeteroFL 63.90 (± 2.74) 52.38 (± 0.80) 73.19 (± 1.71) 57.44 (± 0.42)

Federated Dropout 46.64 (± 3.05) 45.07 (± 0.07) 76.20 (± 2.53) 46.40 (± 0.21)
FedRolex 69.44 (± 1.50) 56.57 (± 0.15) 84.45 (± 0.36) 58.73 (± 0.33)

Homogeneous (Smallest) 38.82 (± 0.88) 12.69 (± 0.50) 46.86 (± 0.54) 19.70 (± 0.34)
Homogeneous (Largest) 75.74 (± 0.42) 60.89 (± 0.60) 84.48 (± 0.58) 62.51 (± 0.20)

set of unique client capacities is � = {1, 1/16} where ⇢ = 1 represents the edge case in which the234

models of all clients have the architecture of the full ResNet18 model, and ⇢ = 0 is the other edge235

case in which all clients have the smallest model.236

Figure 2 shows how global model accuracy changes when ⇢ varies from 0 to 1 for CIFAR-10 and237

CIFAR-100 under both high and low data heterogeneity. We have three key observations. (1) For238

CIFAR-10, there is a large gap in global model accuracy between high and low data heterogeneity239

for a wide range of ⇢ (from 0.1 to 1). This is because CIFAR-10 is a relatively simple task and240

hence the global model accuracy is bottlenecked by the level of data heterogeneity instead of model241

capacity. This result indicates that having more high-capacity models in the cohort has limited242

contribution to global model accuracy. (2) For the more challenging CIFAR-100, the gap in global243

model accuracy is much lower between high and low data heterogeneity. In contrast to CIFAR-10, the244

global model accuracy is bottlenecked by the highest capacity of the models rather than the level of245

data heterogeneity. (3) For both CIFAR-10 and CIFAR-100, we observe that having a small fraction246

of high-capacity models is enough to significantly boost the global model accuracy.247

(i) (ii)

Figure 2: Impact of model capacity distribution on global model accuracy under low and high data
heterogeneity for (i) CIFAR-10 and (ii) CIFAR-100.

4.4 Training Large Server Models248

One limitation of HeteroFL and FjORD is that the server model size is restricted to the highest249

capacity client model. In contrast, FedRolex is flexible to train a global model that can be much250

larger than the largest client model. This is more akin to real-world settings where the server has a251

much higher capacity.252

We consider the case where the global model size is � times the size of the highest capacity client253

model. Figure 3 shows the global model accuracy of � = {2, 4, 8, 16} for CIFAR-10 and CIFAR-100254

under high and low data heterogeneity. As shown, for both CIFAR-10 and CIFAR-100, the global255

model accuracy drastically drops when � increases from 2 to 4 but stay relatively stable when �256
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increases from 4 to 8 and from 8 to 16. This result indicates that there is a minimum client model257

capacity below which the server model cannot be trained effectively.258

(i) (ii)

Figure 3: The global model accuracy when the server model is � times the size of the largest client
model under low and high data heterogeneity for (i) CIFAR-10 and (ii) CIFAR-100.

4.5 Enhance Inclusiveness of FL in Real-world Distribution259

A primary goal of our method is to enhance the inclusiveness of FL. If the highest model capacity is260

used for deployment, a lot of data from the low-end devices will be unused. The exclusion of low-end261

devices limits the usefulness of the global model for these low-end devices. For example, low-end262

devices may have more grainy, low-resolution photos which will not be used in training, and so, the263

server model cannot make accurate predictions on such images and hence limiting its usefulness264

for these devices. If we consider homogeneous FL where we want to include all the client data in265

training, the smallest model would need to be used. The accuracy of the model is then limited by the266

lowest capacity client.267

In this experiment, we show that FedRolex is a valid solution that enhances the inclusiveness of268

federated learning. To illustrate our point, we conducted an experiment that uses real-world household269

income distribution to emulate real-world device distribution. Specifically, we retrieve household270

income distribution information from Bureau (2021). We map �n = 1/16 with the income group with271

earning less than $75000 and assign proportions of remaining groups in $25000 increments with272

increasing values of �n in the statistic. Detailed mapping of this distribution to the corresponding273

income distribution is given in Appendix A.2.274

Table 3: Performance of FedRolex under Real-World Distribution.

Method High Heterogeneity Low Heterogeneity

Dataset Local Accuracy Global Accuracy Local Accuracy Global Accuracy

CIFAR-10
Homogeneous (smallest) 85.90 (± 0.46) 38.82 (± 0.88) 66.02 (± 0.52) 46.86 (± 0.54)
Homogeneous (largest) 95.54 (± 0.26) 75.74 (± 0.41) 93.54 (± 0.44) 84.48 (± 0.58)

FedRolex 94.05 (± 1.01) 63.17 (± 1.45) 91.03 (± 0.36) 80.14 ± 0.52)

CIFAR-100
Homogeneous(smallest) 34.51 (± 0.56) 12.69 (± 0.50) 33.22 (± 0.10) 19.70 (± 0.34)
Homogeneous(largest) 81.99 (± 0.78) 60.89 (± 0.60) 76.43 (± 0.54) 62.51 (± 0.20)

FedRolex 73.33 (± 0.96) 45.78 (± 1.71) 66.31 (± 0.34) 48.44 (± 0.51)

Table 3 shows the global and local model accuracy of FedRolex on this emulated setting compared275

to two model-homogeneous cases where all clients have the smallest and largest model capacities,276

representing lower and upper bound on accuracy respectively. We make two key observations (1)277

FedRolex consistently and significantly outperforms the lower bound model-homogeneous case278

in terms of local model accuracy for CIFAR-10 and CIFAR-100 under both high and low data279

heterogeneity. This result indicates that FedRolex is able to effectively boost the local model280

accuracy of low-end devices, which would otherwise not benefit from FL. (2) FedRolex achieves281

a local model accuracy that is close to the upper bound model-homogeneous case, especially for282

CIFAR-10 under both high and low data heterogeneity. This result indicates that FedRolex is able283

to significantly reduce the gap with the best-performing scenario without being constrained to only284

using high-end devices.285
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(i) (ii) (iii) (iv)

Figure 4: The local model accuracy distribution of FedRolex (in orange color) and the smallest ho-
mogeneous case (in blue color) for CIFAR-10 and CIFAR-100 under low and high data heterogeneity.

Finally, Figure 4 provides a detailed illustration of how the local model accuracy shifts for CIFAR-10286

and CIFAR-100 under low and high data heterogeneity when FedRolex is used compared to the287

smallest homogeneous case with the same client outreach. As shown, the local model accuracy of288

individual clients is significantly boosted by FedRolex.289

5 Conclusion290

In this work, we present a partial training (PT)-based model-heterogeneous method named FedRolex291

that tackles the fundamental issue of existing PT-based methods. At the core of FedRolex is a rolling292

sub-model extraction scheme that enables parameters of the global model to be evenly trained to293

minimize the client drift. Our experimental results show that FedRolex consistently outperforms294

state-of-the-art PT-based methods in both high and low data heterogeneity scenarios. We demonstrate295

its effectiveness in real-world scenarios by showing its performance on a more practical model296

capacity distribution and show FedRolex contributes to making FL more inclusive. FedRolex297

however is not tested on other tasks like language modeling and is left for future work. Future298

directions, therefore, include validating its performance on different kinds of tasks.299
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