
Learning One Representation to Optimize All

Rewards

Anonymous Author(s)

Affiliation
Address
email

Abstract

We introduce the forward-backward (FB) representation of the dynamics of a1

reward-free Markov decision process. It provides explicit near-optimal policies for2

any reward specified a posteriori. During an unsupervised phase, we use reward-3

free interactions with the environment to learn two representations via off-the-shelf4

deep learning methods and temporal difference (TD) learning. In the test phase, a5

reward representation is estimated either from reward observations or an explicit6

reward description (e.g., a target state). The optimal policy for that reward is7

directly obtained from these representations, with no planning. We assume access8

to an exploration scheme or replay buffer for the first phase.9

The unsupervised FB loss is well-principled: if training is perfect, the policies10

obtained are provably optimal for any reward function. With imperfect training,11

the sub-optimality is proportional to the unsupervised approximation error. The12

FB representation learns long-range relationships between states and actions, via a13

predictive occupancy map, without having to synthesize states as in model-based14

approaches.15

This is a step towards learning controllable agents in arbitrary black-box stochastic16

environments. This approach compares well to goal-oriented RL algorithms on17

discrete and continuous mazes, pixel-based MsPacman, and the FetchReach virtual18

robot arm. We also illustrate how the agent can immediately adapt to new tasks19

beyond goal-oriented RL.20

1 Introduction and Related Work21

We consider one kind of unsupervised reinforcement learning problem: Given a Markov decision22

process (MDP) but no reward information, is it possible to learn and store a compact object that,23

for any reward function specified later, provides the optimal policy for that reward, with a minimal24

amount of additional computation? In a sense, such an object would encode in a compact form the25

solutions of all possible planning problems in the environment. This is a step towards building agents26

that are fully controllable after first exploring their environment in an unsupervised way.27

Goal-oriented RL methods [ACR+17, PAR+18] compute policies for a series of rewards specified in28

advance (such as reaching a set of target states), but cannot adapt in real time to new rewards, such as29

weighted combinations of target states or dense rewards.30

Learning a model of the world is another possibility, but it still requires explicit planning for each31

new reward; moreover, synthesizing accurate trajectories of states over long time ranges has proven32

difficult [Tal17, KST+18].33
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Instead, we exhibit an object that is both simpler to learn than a model of the world, and contains the34

information to recover near-optimal policies for any reward provided a posteriori, without a planning35

phase.36

[BBQ+18] learn optimal policies for all rewards that are linear combinations of a finite number of37

feature functions provided in advance by the user. This limits applications: e.g., goal-oriented tasks38

would require one feature per goal state, thus using infinitely many features in continuous spaces.39

We reuse a policy parameterization from [BBQ+18], but introduce a novel representation with better40

properties, based on state occupancy prediction instead of expected featurizations. We use theoretical41

advances on successor state learning from [BTO21]. We obtain the following.42

• We prove the existence of a learnable “summary” of a reward-free discrete or continuous MDP,43

that provides an explicit formula for optimal policies for any reward specified later. This takes the44

form of a pair of representations F : S ⇥A⇥ Z ! Z and B : S ⇥A! Z from state-actions into45

a representation space Z ' Rd, with policies ⇡z(s) := argmaxa F (s, a, z)>z . Once a reward is46

specified, a value of z is computed from reward values and B; then ⇡z is used. Rewards may be47

specified either explicitly as a function, or as target states, or by samples as in usual RL setups.48

• We provide a well-principled unsupervised loss for F and B. If FB training is perfect, then the49

policies are provably optimal for all rewards (Theorem 1). With imperfect training, sub-optimality50

is proportional to the FB training error (Theorems 5–6). In finite spaces, perfect training is51

possible with large enough dimension d (Proposition 3). Explicitly, F and B are trained so that52

F (s, a, z)>B(s0, a0) approximates the long-term probability to reach s
0 from s if following ⇡z .53

• We provide a TD-like algorithm to train F and B for this unsupervised loss, with function54

approximation, adapted from recent methods for successor states [BTO21]. No sparse rewards are55

used: every transition reaches some state s
0, so every step is exploited. As usual with TD, learning56

seeks a fixed point but the loss itself is not observable.57

• We prove viability of the method on several environments from mazes to pixel-based MsPacman58

and a virtual robotic arm. For single-state rewards (learning to reach arbitrary states), we provide59

quantitative comparisons with goal-oriented methods such as HER. (Our method is not a substitute60

for HER: in principle they could be combined, with HER improving replay buffer management61

for our method.) For more general rewards, which cannot be tackled a posteriori by trained62

goal-oriented models, we provide qualitative examples.63

• We also illustrate qualitatively the sub-optimalities (long-range behavior is preserved but local64

blurring of rewards occurs) and the representations learned.65

Related work. [BBQ+18] learn optimal policies for rewards that are linear combinations of a66

finite number of feature functions provided in advance by the user. This approach cannot tackle67

generic rewards or goal-oriented RL: this would require introducing one feature per possible goal68

state, requiring infinitely many features in continuous spaces.69

Our approach does not require user-provided features describing the future tasks, thanks to using70

successor states [BTO21] where [BBQ+18] use successor features. Schematically, and omitting71

actions, successor features start with user-provided features ', then learn  such that  (s0) =72 P
t�0 �

t E['(st) | s0]. This limits applicability to rewards that are linear combinations of '. Here73

we use successor state probabilities, namely, we learn two representations F and B such that74

F (s0)>B(s0) =
P

t�0 �
t Pr(st = s

0 | s0). This does not require any user-provided input.75

Thus we learn two representations instead of one. The learned backward representation B is absent76

from [BBQ+18]. B plays a different role than the user-provided features ' of [BBQ+18]: learning77

of F given B is not learning of  given '. The features ' of [BBQ+18] are split between our learned78

B and the functions ' we can use if the reward is known to depend only on some features of the state.79

We use a similar parameterization of policies by F (s, a, z)>z as in [BBQ+18], for similar reasons,80

although z encodes a different object.81

Successor representations where first defined in [Day93] for finite spaces, corresponding to an older82

object from Markov chains, the fundamental matrix [KS60, Bré99, GS97]. [SBG17] argue for their83

relevance for cognitive science. For successor representations in continuous spaces, a finite number84

of features ' are specified first; this can be used for generalization within a family of tasks, e.g.,85

[BDM+17, ZSBB17, GHB+19, HDB+19]. [BTO21] moves from successor features to successor86

states by providing pointwise occupancy map estimates even in continuous spaces, without using the87

sparse reward st=s0 . We borrow a successor state learning algorithm from [BTO21]. [BTO21] also88
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introduced simpler versions of F and B for a single, fixed policy; [BTO21] does not consider the89

every-optimal-policy setting.90

There is a long literature on goal-oriented RL. For instance, [SHGS15] learn goal-dependent value91

functions, regularized via an explicit matrix factorization. Goal-dependent value functions have92

been investigated in earlier works such as [FD02] and [SMD+11]. Hindsight experience replay93

(HER) [ACR+17] improves the sample efficiency of multiple goal learning with sparse rewards. A94

family of rewards has to be specified beforehand, such as reaching arbitrary target states. Specifying95

rewards a posteriori is not possible: for instance, learning to reach target states does not extend96

to reaching the nearest among several goals, reaching a goal while avoiding forbidden states, or97

maximizing any dense reward.98

Hierarchical methods such as options [SPS99] can be used for multi-task RL problems. However,99

policy learning on top of the options is still needed after the task is known.100

For finite state spaces, [JKSY20] use reward-free interactions to build a training set that summarizes101

a finite environment, in the sense that any optimal policies later computed on this training set instead102

of the true environment are provably "-optimal, for any reward. They prove tight bounds on the103

necessary set size. Policy learning still has to be done afterwards for each reward.104

2 Problem and Notation105

We consider the following informal problem: Given a reward-free MDP (S,A, P, �), can we compute106

a convenient learnable object E such that, once a reward function r : S ⇥A! R is specified, we can107

easily (with no planning) compute, from E and r, a policy ⇡ whose performance is close to maximal?108

Here M = (S,A, P, �) denotes a reward-free Markov decision process with state space S (discrete or109

continuous), action space A (discrete for simplicity, but this is not essential), transition probabilities110

P (s0|s, a) from state s to s
0 given action a, and discount factor 0 < � < 1 [SB18]. If S is finite,111

P (s0|s, a) can be viewed as a matrix; in general, for each (s, a) 2 S⇥A, P (ds0|s, a) is a probability112

measure on s
0 2 S. The notation P (ds0|s, a) covers all cases. All functions are assumed to be113

measurable.114

Given (s0, a0) 2 S ⇥A and a policy ⇡ : S ! Prob(A), we denote Pr(·|s0, a0,⇡) and E[·|s0, a0,⇡]115

the probabilities and expectations under state-action sequences (st, at)t�0 starting with (s0, a0) and116

following policy ⇡ in the environment, defined by sampling st ⇠ P (dst|st�1, at�1) and at ⇠ ⇡(st).117

Given a reward function r : S ⇥ A ! R, the Q-function of ⇡ for r is Q
⇡
r (s0, a0) :=118 P

t�0 �
t E[r(st, at)|s0, a0,⇡]. We assume that rewards are bounded, so that all Q-functions are119

well-defined. We state the results for deterministic reward functions, but this is not essential. We abuse120

notation and write greedy policies as ⇡(s) = argmaxa Q(s, a) instead of ⇡(s) 2 argmaxa Q(s, a).121

Ties may be broken any way.122

3 Encoding All Optimal Policies via the Forward-Backward Representation123

We first present the forward-backward (FB) representation of an MDP as a way to summarize all124

optimal policies via explicit formulas. The resulting learning procedure is described in Section 4.125

We set a representation space Z = Rd, used to represent both states and reward functions. We learn a126

pair of “forward” and “backward” representations127

F : S ⇥A⇥ Z ! Z, B : S ⇥A! Z (1)
For each z 2 Z, we define the policy ⇡z(s) := argmaxa F (s, a, z)>z.128

The main idea is to train F and B such that F (s0, a0, z)>B(s0, a0) is approximately the long-term129

probability to reach (s0, a0) if starting at (s0, a0) and following policy ⇡z . Then, by Theorem 1, for130

any reward function r, the optimal policy for r is the policy ⇡z with z := E[r(s, a)B(s, a)].131

Intuitively, F represents the future of a state under a certain policy. B represents the past of a state,132

or the ways to reach that state (Appendix B.4). If F>
B is large, then it is possible to reach the second133

state from the first. This is akin to a model of the environment, without synthesizing state trajectories.134

In short, if we can learn two representations F and B of state-actions such that F>
B approximates135

the long-term transitions of the policies ⇡z , then we can compute all optimal policies from F and B.136
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More precisely, for any policy ⇡ and state-action (s0, a0), define the successor measure M⇡(s0, a0, ·)137

as the measure over S ⇥A representing the expected discounted time spent in each set X ⇢ S ⇥A:138

M
⇡(s0, a0, X) :=

X

t�0

�
t Pr ((st, at) 2 X | s0, a0, ⇡) (2)

for each X ⇢ S ⇥A. Viewing M as a measure deals with both discrete and continuous spaces. M⇡139

can be learned via a Bellman equation (Section 4). In practice, M⇡ will be represented by a function140

m
⇡(s0, a0, s0, a0) taking a pair of state-actions and returning a number. Namely, assume that we can141

sample state-action pairs from some unknown distribution ⇢(ds, da), e.g., from a replay buffer or142

exploration policy. We define m
⇡ as the density of M⇡ with respect to ⇢:143

M
⇡(s0, a0, ds

0
, da0) =: m⇡(s0, a0, s

0
, a

0) ⇢(ds0, da0) (3)
so that m⇡ is an ordinary function (or a distribution, see Appendix B.6).144

The next theorem states that, if F>
B ⇡ m, then all optimal policies can be read on F and B.145

Theorem 1 (Forward-backward representation of an MDP). Consider an MDP with state space146

S and action space A. Let Z = Rd be some representation space. Let F : S ⇥ A ⇥ Z ! Z and147

B : S⇥A! Z be two functions. For each z 2 Z, define the policy ⇡z(s) := argmaxa F (s, a, z)>z.148

Let ⇢ be any probability distribution on S ⇥ A (e.g., the distribution of state-actions under some149

exploration scheme), with full support.150

Assume that F and B have been chosen (trained) to satisfy the following: for any z 2 Z, and151

any state-actions (s, a) and (s0, a0), the quantity F (s, a, z)>B(s0, a0) is equal to the successor state152

density m
⇡z (s, a, s0, a0) of policy ⇡z with respect to ⇢, defined by (2)–(3).153

Then, for any bounded reward function r : S ⇥A! R, the following holds. Set154

zR := E(s,a)⇠⇢ [r(s, a)B(s, a)] . (4)
Then ⇡zR is an optimal policy for reward r in the MDP. Moreover, the optimal Q-function Q

? for155

reward r is156

Q
?(s, a) = F (s, a, zR)

>
zR. (5)

In finite spaces, exact solutions F and B exist (Appendix, Prop. 3), provided the dimension d is157

large enough. In infinite spaces, arbitrarily good approximations can be obtained by increasing158

d, corresponding to a rank-d approximation of the cumulated transition probabilities m
⇡. The159

theoretical guarantee extends to approximate training of F and B, with optimality gap proportional160

to F
>
B �m

⇡z (Appendix, Theorems 5–6 with various norms on F
>
B �m

⇡ and r). For instance, if,161

for some reward r, the error
��F (s, a, zR)>B(s0, a0)�m

⇡zR (s, a, s0, a0)
�� is at most " on average over162

(s0, a0) ⇠ ⇢ for every (s, a), then ⇡zR is 3" krk1 /(1� �)-optimal for r.163

This justifies using some norm over
��F>

B �m
⇡z
��, averaged over z 2 Rd, as a training loss for164

unsupervised reinforcement learning. (Below, we use a fixed rescaled Gaussian over z 2 Rd. If prior165

information is available on the rewards r, the corresponding distribution of zR may be used instead.)166

Note that ⇡z is defined via F , so the equality F
>
B = m

⇡z is a fixed point equation.167

The dimension d controls how many types of rewards can be optimized well. On the downside, every168

reward function uncorrelated to the components B1, . . . , Bd of B is treated as 0, since zR = 0. If B169

is fixed in advance and only F is optimized, the method has similar properties to successor features170

based on B (Appendix B.4). But one may set a large d and let B be learned to approximate m
⇡:171

arguably, by Theorem 1, the resulting features “linearize” optimal policies as much as possible.172

The algorithm is linear in d, so d can be taken as large as the neural network models can handle. Even173

a relatively small d provides useful behaviors: in the experiments, d ⇡ 100 manages navigation in a174

pixel-based environment with a huge state space. Appendix B.2 argues theoretically that d ⇡ n is175

enough for navigation in dimension n. In practice, for small d we notice some blurring of rewards176

between nearby states (Fig. 3), for reasons discussed in Section 4.177

A similar statement holds with m̄(s, z, s0, a0) + F (s, a, z)>B(s0, a0) instead of F (s, a, z)>B(s0, a0)178

to represent m⇡z (Appendix, Theorem 2). Here m̄ is any function that does not depend on a. Since179

m̄ has no rank restriction, the finite rank approximation only applies to the advantage function.180

The features learned in F and B may have broader interest as the features that “most linearize”181

optimal policies.182
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Sketch of proof. We give an idea of the proof for finite state spaces; the general proof is in183

Appendix C. For any reward function R and any policy ⇡, the Q-function Q
⇡
R of ⇡ on R is equal to184

M
⇡
R, where we view M

⇡ as a matrix and R as a vector over state-actions: this is a consequence185

of general properties the successor measure (2). If M⇡z ⇡ F (z)>B (viewing both F (z) and B as186

d⇥ (S ⇥A) matrices), then Q
⇡z
R ⇡ F (z)>BR = F (z)>zR with zR := BR. Specializing to z = zR,187

we obtain Q
⇡zR
R ⇡ F (zR)>zR. But by definition, ⇡zR is the argmax of F (zR)>zR. Therefore, ⇡zR is188

the argmax of its own Q-function for reward R, so it is optimal. The continuous case uses densities189

m
⇡ instead of M⇡ . The remaining question is to train F and B to approximate successor densities.190

4 Learning and Using Forward-Backward Representations191

Our algorithm starts with an unsupervised learning phase, where we learn the representations F192

and B in a reward-free way, by observing state transitions in the environment, generated from193

any exploration scheme. Then, in a reward estimation phase, we estimate a policy parameter194

zR = E[r(s, a)B(s, a)] from some reward observations, or directly set zR if the reward is known195

(e.g., set zR = B(s, a) to reach a known target (s, a)). In the exploitation phase, we directly use the196

policy ⇡zR(s) = argmaxa F (s, a, zR)>zR.197

The unsupervised learning phase. No rewards are used in this phase, and no family of tasks has to198

be specified manually. F and B are trained off-policy from observed transitions in the environment, to199

approximate the successor density: F>(s0, a0, z)B(s0, a0) ⇡ m
⇡z (s0, a0, s0, a0) for every z. Training200

is based on the Bellman equation for the successor measure M
⇡ ,201

M
⇡(s0, a0, {(s0, a0)}) = s0=s0, a0=a0 + � Es1⇠P (ds1|s0,a0) M

⇡(s1,⇡(s1), {(s0, a0)}). (6)

We leverage a well-principled algorithm from [BTO21] in the single-policy setting: it learns the202

successor density m
⇡ of a policy ⇡ without using the sparse reward s0=s0, a0=a0 (which would203

vanish in continuous spaces). This algorithm uses a parametric model m⇡
✓ (s0, a0, s

0
, a

0). Given an204

observed transition (s0, a0, s1) from the training set, generate an action a1 ⇠ ⇡(a1|s1), and sample205

another state-action (s0, a0) from the training set, independently from (s0, a0, s1). Then update the206

parameter ✓ by ✓  ✓ + ⌘ �✓ with learning rate ⌘ and207

�✓ := @✓m
⇡
✓ (s0, a0, s0, a0)+@✓m

⇡
✓ (s0, a0, s

0
, a

0) ⇥(�m⇡
✓ (s1, a1, s

0
, a

0)�m
⇡
✓ (s0, a0, s

0
, a

0)) (7)
This computes the density m

⇡ of M⇡ with respect to the distribution ⇢ of state-actions in the training208

set. Namely, the true successor state density m
⇡ is a fixed point of (7) in expectation [BTO21] (and209

is the only fixed point in the tabular or overparameterized case). Variants exist, such as using a target210

network for m⇡
✓ (s1, a1, s

0
, a

0) on the right-hand side, as in DQN.211

Thus, we first choose a parametric model F✓, B✓ for the representations F and B, and set212

m
⇡z
✓ (s0, a0, s0, a0) := F✓(s0, a0, z)>B✓(s0, a0). Then we iterate the update (7) over many state-213

actions and values of z. This results in Algorithm 1. At each step, a value of z is picked at random,214

together with a batch of transitions (s0, a0, s1) and a batch of state-actions (s0, a0) from the training215

set, with (s0, a0) independent from z and (s0, a0, s1).216

For sampling z, we use a fixed distribution (rescaled Gaussians, see Appendix D). Any number217

of values of z may be sampled: this does not use up training samples. We use a target network218

with soft updates (Polyak averaging) as in DDPG. For training we also replace the greedy policy219

⇡z = argmaxa F (s, a, z)>z with a regularized version ⇡z = softmax(F (s, a, z)>z/⌧) with fixed220

temperature ⌧ (Appendix D). Since there is unidentifiability between F and B (Appendix, Remark 4),221

we normalize B via an auxiliary loss in Algorithm 1.222

For exploration in this phase, we use the policies being learned: the exploration policy chooses a223

random value of z from some distribution (e.g., Gaussian), and follows ⇡z for some time (Appendix,224

Algorithm 1). However, the algorithm can also work from an existing dataset of off-policy transitions.225

The reward estimation phase. Once rewards are available, we estimate a reward representation226

(policy parameter) zR by weighing the representation B by the reward:227

zR := E[r(s, a)B(s, a)] (8)
where the expectation must be computed over the same distribution ⇢ of state-actions (s, a) used to228

learn F and B (see Appendix B.5 for using a different distribution). Thus, if the reward is black-box229
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as in standard RL algorithms, then the exploration policy has to be run again for some time, and zR is230

obtained by averaging r(s, a)B(s, a) over the states visited.231

If the reward is known explicitly, this phase is unnecessary. For instance, if the reward is to reach232

a target state-action (s0, a0) while avoiding some forbidden state-actions (s1, a1), ..., (sk, ak), one233

may directly set234

zR = B(s0, a0)� �
X

B(si, ai) (9)

where the constant � adjusts the negative reward for visiting a forbidden state. This can be used for235

goal-oriented RL.236

If the reward is known algebraically as a function r(s, a), then zR may be computed by averaging237

the function r(s, a)B(s, a) over a replay buffer from the unsupervised training phase. We may also238

use a reward model r̂(s, a) of r(s, a) trained on some reward observations from any source. An239

approximate value for zR still provides an approximately optimal policy (Appendix, Prop. 7 and240

Thm. 9).241

The exploitation phase. Once the reward representation zR has been estimated, the Q-function is242

estimated as243

Q(s, a) = F (s, a, zR)
>
zR. (10)

The corresponding policy ⇡zR(s) = argmaxa Q(s, a) is used for exploitation.244

Fine-tuning was not needed in our experiments, but it is possible to fine-tune the Q-function using245

actual rewards, by setting Q(s, a) = F (s, a, zR)>zR + q✓(s, a) where the fine-tuning model q✓ is246

initialized to 0 and learned via any standard Q-learning method.247

Incorporating prior information on rewards in B. Trying to plan in advance for all possible248

rewards in an arbitrary environment may be too generic and problem-agnostic, and become difficult in249

large environments, requiring long exploration and a large d to accommodate all rewards. In practice,250

we are often interested in rewards depending, not on the full state, but only on a part or some features251

of the state (e.g., a few components of the state, such as the position of an agent, or its neighbordhood,252

rather than the full environment).253

If this is known in advance, the representation B can be trained on that part of the state only, with254

the same theoretical guarantees (Appendix, Theorem 2). F still needs to use the full state as input.255

This way, the FB model of the transition probabilities (2) only has to learn the future probabilities256

of the part of interest in (s0, a0), based on the full initial state (s0, a0). Explicitly, if ' : S ⇥A! G257

is a feature map to some features g = '(s, a), and if we know that the reward will be a function258

R(g), then Theorem 1 still holds with B(g) everywhere instead of B(s, a), and with the successor259

density m
⇡(s0, a0, g) instead of m⇡(s0, a0, s0, a0) (Appendix, Theorem 2). Learning this m⇡ is done260

by replacing @✓m⇡
✓ (s0, a0, s0, a0) with @✓m⇡

✓ (s0, a0,'(s0, a0)) in the first term in (7) [BTO21].261

Rewards can be arbitrary functions of g, so this is more general than [BBQ+18] which only considers262

rewards linear in g. For instance, in MsPacman below, we let g be the 2D position (x, y) of the agent,263

so we can optimize any reward function that depends on this position.264

Limitations. First, this method does not solve exploration: it assumes access to a good exploration265

strategy. (Here we used the policies ⇡z with random values of z, corresponding to random rewards.)266

Next, this task-agnostic approach is relevant if the reward is not known in advance, but may not bring267

the best performance on a particular reward. Mitigation strategies include: increasing d; using prior268

information on rewards by including relevant variables into B, as discussed above; and fine-tuning269

the Q-function at test time based on the initial F>
B estimate.270

Indeed, as reward functions are represented by a d-dimensional vector zR = E[r.B], some information271

about the reward is necessarily lost. Any reward uncorrelated to B is treated as 0. The necessary272

dimension d for good behavior may be large. Still, d ⇡ 100 worked in our experiments, and273

Appendix B.2 argues theoretically that d = O(n) is enough for navigation on an n-dimensional grid.274

We expect this method to have an implicit bias for long-range behavior (spatially smooth rewards),275

while local details of the reward function may be blurred. Indeed, F>
B is optimized to approximate276

the successor measure M
⇡ =

P
t �

t
P

t
⇡ with P

t
⇡ the t-step transition kernel for each policy ⇡. The277

rank-d approximation will favor large eigenvectors of P⇡ , i.e., small eigenvectors of the Markov chain278
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Laplacian Id��P⇡. These loosely correspond to long-range (low-frequency) behavior [MM07]:279

presumably, F and B will learn spatially smooth rewards first. Indeed, experimentally, a small d280

leads to spatial blurring of rewards and Q-functions (Fig. 3). Arguably, without any prior information281

this is a reasonable prior; [SBG17] have argued for the cognitive relevance of low-dimensional282

approximations of successor representations.283

Variance is a potential issue in larger environments, although this did not arise in our experiments.284

Learning m
⇡ requires sampling a state-action (s0, a0) and an independent state-action (s0, a0). In285

large spaces, most state-action pairs will be unrelated. A possible mitigation is to use strategies such286

as Hindsight Experience Replay [ACR+17] to select goals related to the current state-action. The287

following may help a lot: the update of F and B decouples as an expectation over (s0, a0), times an288

expectation over (s0, a0). Thus, by estimating these expectations by a moving average over a dataset,289

it is easy to have many pairs (s0, a0) interact with many (s0, a0). The cost is handling full d ⇥ d290

matrices. This will be explored in future work.291

5 Experiments292

We first consider the task of reaching arbitrary goal states. For this, we can make quantitative293

comparisons to existing goal-oriented baselines. Next, we illustrate qualitatively some tasks that294

cannot be tackled a posteriori by goal-oriented methods, such as introducing forbidden states. Finally,295

we illustrate some of the representations learned.296

5.1 Environments and Experimental Setup297

We run our experiments on a selection of environments that are diverse in term of state space298

dimensionality, stochasticity and dynamics.299

• Discrete Maze is the classical gridworld with four rooms. States are represented by one-hot unit300

vectors.301

• Continuous Maze is a two dimensional environment with impassable walls. States are represented302

by their Cartesian coordinates (x, y) 2 [0, 1]2. The execution of one of the actions moves the agent303

in the desired direction, but with normal random noise added to the position of the agent.304

• FetchReach is a variant of the simulated robotic arm environment from [PAR+18] using discrete305

actions instead of continuous actions. States are 10-dimensional vectors consisting of positions306

and velocities of robot joints.307

• Ms. Pacman is a variant of the Atari 2600 game Ms. Pacman, where an episode ends when the308

agent is captured by a monster [RUMS18]. States are obtained by processing the raw visual309

input directly from the screen. Frames are preprocessed by cropping, conversion to grayscale and310

downsampling to 84⇥ 84 pixels. A state st is the concatenation of (xt�12, xt�8, xt�4, xt) frames,311

i.e. an 84 ⇥ 84 ⇥ 4 tensor. An action repeat of 12 is used. As Ms. Pacman is not originally a312

multi-goal domain, we define the goals as the 148 reachable coordinates (x, y) on the screen; these313

can be reached only by learning to avoid monsters.314

For all environments, we run algorithms for 800 epochs. Each epoch consists of 25 cycles where we315

interleave between gathering some amount of transitions, to add to the replay buffer, and performing316

40 steps of stochastic gradient descent on the model parameters. To collect transitions, we generate317

episodes using some behavior policy. For both mazes, we use a uniform policy while for FetchReach318

and Ms. Pacman, we use an "-greedy policy with respect to the current approximation F (s, a, z)>z319

for a sampled z. At evaluation time, "-greedy policies are also used, with a smaller ". More details320

are given in Appendix D.321

5.2 Goal-Oriented Setting: Quantitative Comparisons322

We investigate the FB representation over goal-reaching tasks and compare it to goal-oriented323

baselines: DQN1, and DQN with HER when needed. We define sparse reward functions. For Discrete324

Maze, the reward function is equal to one when the agent’s state is equal exactly to the goal state.325

For Discrete Maze, we measured the quality of the obtained policy to be the ratio between the true326

expected discounted reward of the policy for its goal and the true optimal value function, on average327

1Here DQN is short for goal-oriented DQN, Q(s, a, g).
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over all states. For the other environments, the reward function is equal to one when the distance of328

the agent’s position and the goal position is below some threshold, and zero otherwise. We assess329

policies by computing the average success rate, i.e the average number of times the agent successfully330

reaches its goal.331

Figure 1: Comparative performance of FB for
different dimensions and DQN in the FetchReach.
Left: success rate averaged over 20 randomly se-
lected goals as function of the first 100 training
epochs. Right: success rate averaged over 20 ran-
dom goals after 800 training epochs.

Figure 2: Comparative performance of FB for dif-
ferent dimensions and DQN in Ms. Pacman. Left:
success rate averaged over 20 randomly selected
goals as function of the first 200 training epochs.
Right: success rate averaged over the goal space
after 800 training epochs.

332

Figs. 1 and 2 show the comparative performance of FB for different dimensions d, and DQN333

respectively in FetchReach and Ms. Pacman (similar results in Discrete and Continuous Mazes are334

provided in Appendix D). In Ms. Pacman, DQN totally fails to learn and we had to add HER to make335

it work. The performance of FB consistently increases with the dimension d and the best dimension336

matches the performance of the goal-oriented baseline.337

In Discrete Maze, we observe a drop of performance for d = 25 (Appendix D, Fig. 8): this is due to338

the spatial smoothing induced by the small rank approximation and the reward being nonzero only339

if the agent is exactly at the goal. This spatial blurring is clear on heatmaps for d = 25 vs d = 75340

(Fig. 3). With d = 25 the agent often stops right next to its goal.341

To evaluate the sample efficiency of FB, after each epoch, we evaluate the agent on 20 randomly342

selected goals. Learning curves are reported in Figs. 1 and 2 (left). In all environments, we observe343

no loss in sample efficiency compared to the goal-oriented baseline. In Ms. Pacman, FB even learns344

faster than DQN+HER.345

5.3 More Complex Rewards: Qualitative Results346

We now investigate FB’s ability to generalize to new tasks that cannot be solved by an already trained347

goal-oriented model: reaching a goal with forbidden states imposed a posteriori, reaching the nearest348

of two goals, and choosing between a small, close reward and a large, distant one.349

First, for the task of reaching a target position g0 while avoiding some forbidden positions350

g1, . . . gk , we set zR = B(g1)� �
Pk

i=1 B(gi) and run the corresponding "-greedy policy defined351

by F (s, a, zR)>zR. Fig. 5 shows the resulting trajectories, which succeed at solving the task for the352

different domains. In Ms. Pacman, the path is suboptimal (though successful) due to the sudden353

appearance of a monster along the optimal path. (We only plot the initial frame; see the full354

series of frames along the trajectory in Appendix D, Fig. 16.) Fig. 4 (left) provides a contour plot355

of maxa2A F (s, a, zR)>zR for the continuous maze and shows the landscape shape around the356

forbidden regions.357

Next, we consider the task of reaching the closest target among two equally rewarding positions g0358

and g1, by setting zR = B(g0) +B(g1). The optimal Q-function is not a linear combination of the359

Q-functions for g0 and g1. Fig. 6 shows successful trajectories generated by the policy ⇡zR . On360

the contour plot of maxa2A F (s, a, zR)>zR in Fig. 4 (right), the two rewarding positions appear361

as basins of attraction. Similar results for a third task are shown in Appendix D: introducing a362

“distracting” small reward next to the initial position of the agent, with a larger reward further away.363
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Figure 7: Visualization of FB embedding vectors on Continuous Maze after projecting them in
two-dimensional space with t-SNE. Left: the states to be mapped. Middle: the F embedding. Right:
the B embedding. The walls appear as large dents; the smaller dents correspond to the number of
steps needed to get past a wall.

Figure 3: Heatmap of maxa F (s, a, zR)
>zR for

zR = B( ) Left: d = 25. Right: d = 75.

Figure 4: Contour plot of
maxa2A F (s, a, zR)

>zR in Continuous Maze.
Left: for the task of reaching a target while
avoiding a forbidden region, Right: for two
equally rewarding targets.

364

Figure 5: Trajectories generated by the F>B
policies for the task of reaching a target position
(star shape while avoiding forbidden positions
(red shape )

Figure 6: Trajectories generated by the F>B
policies for the task of reaching the closest among
two equally rewarding positions (star shapes ).
(Optimal Q-values are not linear over such mix-
tures.)

365

5.4 Embedding Visualizations366

We visualize the learned FB state embeddings for Continuous Maze by projecting them into 2-367

dimensional space using t-SNE [VdMH08] in Fig. 7. For the forward embeddings, we set z = 0368

corresponding to the uniform policy. We can see that FB partitions states according to the topology369

induced by the dynamics: states on opposite sides of walls are separated in the representation space370

and states on the same side lie together. Appendix D includes embedding visualizations for different371

z and for Discrete Maze and Ms. Pacman.372

6 Conclusion373

The FB representation is a learnable mathematical object that “summarizes” a reward-free MDP. It374

provides near-optimal policies for any reward specified a posteriori, without planning. It is learned375

from black-box reward-free interactions with the environment. In practice, this unsupervised method376

performs comparably to goal-oriented methods for reaching arbitrary goals, but is also able to tackle377

more complex rewards in real time. The representations learned encode the MDP dynamics and may378

have broader interest.379
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