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Abstract
Predicting the most likely route from a source location to a destination is a core1

functionality in mapping services. Although the problem has been studied in the2

literature, two key limitations remain to be addressed. First, our study reveals3

that a significant portion of the routes recommended by existing methods fail to4

reach the destination. Second, existing techniques are transductive in nature; hence,5

they fail to recommend routes if unseen roads are encountered at inference time.6

In this paper, we address these limitations through an inductive algorithm called7

NEUROMLR. NEUROMLR learns a generative model from historical trajectories8

by conditioning on three explanatory factors: the current location, the destina-9

tion, and real-time traffic conditions. The conditional distributions are learned10

through a novel combination of Lipschitz embeddings with Graph Convolutional11

Networks (GCN) on historical trajectories. Through in-depth experiments on real-12

world datasets, we establish that NEUROMLR imparts significant improvement in13

accuracy over the state of the art. More importantly, NEUROMLR generalizes dra-14

matically better to unseen data and the recommended routes reach the destination15

with much higher likelihood than existing techniques.16

1 Introduction and Related Work17

Given historical trajectory data, we study the problem of predicting the most likely route from a source18

node to a destination node in a road network. This problem has two prominent applications: route19

recommendation and route recovery. Route recommendation is one of the core functionalities in GPS-20

aided mapping applications. They are routinely used in the cab and food-delivery industry [21, 5, 27],21

as well as by common people through navigation systems when they are unfamiliar with their22

surroundings. Route recovery, as the name suggests, focuses on recovering the actual traversed route23

from a partially observed GPS trajectory [8]. Due to various reasons, for instance, limiting the power24

consumption of GPS devices, trajectories are often recorded at low sampling rate.25

1.1 Existing work26

The simplest approach is to predict the shortest or the quickest path (route) between the source27

and destination. However, several studies have shown that human beings rarely travel in shortest28

paths [16]. Rather, the probability of a path being taken is a complex mixture of several latent29

factors such as road quality [4, 17], road scenery [16, 13], pollution levels [18], presence of road30

tolls, etc. Modeling these complex factors is challenging. Consequently, a large body of work exists31

on predicting the most likely route [1, 23, 26, 3, 9, 22], with DEEPST [9] and CSSRNN [22] being32

the best performing algorithms. CSSRNN models the trajectory patterns through a Recurrent Neural33

Network and exploits the topological constraints presented by the road network. DEEPST learns34

representations for the trajectories, destination and traffic conditions using variational autoencoders.35

1.2 Limitations of existing work36

• Reachability: Existing techniques have primarily used recall and precision to measure accuracy37

of predictions [9, 22]. Critically, these ignore whether the predicted trajectory actually reaches the38

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



𝑣2

𝑣3

𝑣7

𝑣4

𝑣8

𝑣1

𝑣6

𝑣5

𝑣10

𝑇1: 𝑣1 → 𝑣2 → 𝑣3 → 𝑣4 → 𝑣6
𝑇2: 𝑣2 → 𝑣3 → 𝑣4
𝑇3: 𝑣1 → 𝑣2 → 𝑣7 → 𝑣8
𝑇4: 𝑣1 → 𝑣2 → 𝑣7 → 𝑣8 → 𝑣10

𝑣11𝑣12𝑣13

Routes obtained from Historical 
Trajectory database 𝓓

(a)

1 2 5 10 20 50 100
Percent of training data kept

0

10

20

30

40

50

60

P
er

ce
nt

ag
e

of
un

se
en

no
de

s

(b)

9k
(CHG)

16k
(HRB)

72k
(BJG)

281k
(CTI)

Number of road segments

40

50

60

70

80

90

100

R
ea

ch
ab

ili
ty

(%
)

NeuroMLR-G

CSSRNN

(c) Reachability

Figure 1: (a) A sample road network and historical database D. For simplicity, we ignore edge
weights. (b) Percentage of unseen nodes in the road network of Beijing against the size of the training
data (c) Impact of road network size on performance of CSSRNN and NEUROMLR-G.

destination. The deployability of any route recommendation algorithm is severely compromised if39

the recommended route does not reach the destination. Our experiments reveal that for both DEEPST40

and CSSRNN, a significant portion of recommended routes fail to reach the destination (See Table. 2).41

Further, the state of the art does not scale well to large road networks (see Fig. 1c). The performance42

gap between CSSRNN and NEUROMLR becomes more prominent with increasing network size.43

• Inductive Learning: A good prediction model should be capable of making predictions on parts44

of network which were unseen or rarely seen during training. From Fig 1b we can observe that there45

is a significant percentage of nodes in the road network that remain unseen even if we use the entire46

training data. Existing techniques such as DEEPST and CSSRNN do not allow sharing of information47

among nodes while training and hence performance severely deteriorates on queries over unseen and48

rarely seen nodes.49

• Prediction Accuracy: The accuracy of even the best performing techniques is often below 50%50

[9]. Consequently, there is scope for improvement.51

1.3 Contributions52

• Decoupled route prediction: Our proposed problem formulation (§ 2) allows decoupling the53

problem into two independent subproblems of route search (§ 3) and predicting transition probabilities54

(§ 4). This allows us to reduce the problem of finding the most likely route to that of identifying the55

shortest path in a modified road network, thus guaranteeing destination reachability (§ 3).56

• Generalization capability: We propose an inductive learning method using a novel combination57

of Lipschitz embeddings with Graph Convolutional Networks. Lipschitz embeddings serve as a58

rich initialisation derived from the global road network structure, independent of historical data.59

GCNs, via message passing, further propagate information learnt during training, to unseen and rarely60

seen nodes. For inductivity, DEEPST employs a clustering-inspired approach for sharing statistical61

strength across trips having similar destinations. However, this introduces a limitation that different62

destinations get mapped to identical representations, impairing reachability. Both CSSRNN and63

DEEPST learn node embeddings in a transductive manner, limiting knowledge sharing across nodes.64

Hence, quality on unseen/lesser seen nodes suffers.65

• Empirical Evaluation: Extensive experiments on five large, real datasets establish: (1) NEU-66

ROMLR is up to 100% more accurate and 2.5 times faster, (2) the recommended route reaches67

destination with > 0.96 probability, which is up to 90% better than the state of the art, and (3)68

NEUROMLR is dramatically more effective in generalizing to unseen data.69

2 Problem Formulation70

Definition 1 (Road Network). A road network is a directed graph G = (V, E , δ, τt), where V is71

the set of nodes representing road intersections, E ⊆ V × V is the set of edges representing road72

segments, a distance function δ : E → R representing the length (weight) of each road segment, and73

function τt : E → R representing the average time taken to traverse each road segment at time t.74
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We use the notation e = (u, v) to denote a road segment (edge) from node u to v. The length δ(e) of75

an edge e is the Haversine distance from the locations represented by u and v.76

Definition 2 (Route). A route (a.k.a path) R(s, d) = {v1, · · · , vk} corresponds to a simple path77

from the source node s = v1 to destination d = vk in the road network G, i.e., path without cycles.78

Analogously, a route can also be expressed in terms of a sequence of edgesR(s, d) = {e1, · · · , ek−1},79

where ei = (vi, vi+1).80

To denote a generic route between any arbitrary source and destination nodes, we useR instead of81

R(s, d). We use the notation |R| to denote the number of edges inR and R.ei to refer to the ith edge82

inR. Furthermore, e ∈ R denotes thatR goes through edge e. The above notations are analogously83

extended from edges to nodes.84

We assume we have access to a dataset of historical trajectories. A trajectory is a sequence of GPS85

pings, made by a vehichle, which corresponds to a path in the road network. Each GPS ping is a tuple86

of the form 〈latitude, longitude, time〉, which records a vehicle’s location at a particular time.87

Definition 3 (Query). In a route recommendation query, the input is a tuple q : 〈s, d, t〉, where88

s, d ∈ V are the source and destination nodes respectively, and t is the time at which the journey is to89

be taken.90

Problem: Most Likely Route: Given a road network G, a historical database D of trajectories, and91

query q : 〈s, d, t〉, we would like to infer the mostly likely routeR∗(s, d) based on the traffic patterns92

embodied in D. Formally,93

R∗(s, d) = arg max
∀R(s,d)∈G

Pr(R(s, d) | q) (1)

94 2.1 Problem Characterization95

The route recommendation problem can be framed as a path search problem on the graph correspond-96

ing to the road network. Mathematically, the probability of a routeR can be expressed in terms of its97

constituent edges.98

Pr(R | q) =

|R|∏
i=1

Pr(R.ei | R.e0 → R.ei−1, s, d, t) (2)

99
Here, Pr(R.ei | R.e0 → R.ei−1, s, d, t) represents the probability that routeR goes through edge100

R.ei given the path taken so far and the query parameters q : 〈s, d, t〉 Past studies have shown that101

human mobility patterns conform to the Markovian assumption [1, 20]. Thus, Eq. 2 reduces to:102
103

Pr(R | q) =

|R|∏
i=1

Pr(R.ei | vi, d, t) (3)

With these simplifications, Prob. 2 reduces to:104

R∗(s, d) = arg max
∀R∈G

|R|∏
i=1

Pr(R.ei | vi, d, t) = arg min
∀R∈G

|R|∑
i=1

− log(Pr(R.ei | vi, d, t)) (4)

105

To summarize the above observations, there are two key challenges that we need to tackle:106

• Route Search: Searching the route (path) minimizing Eq. 4.107

•Modeling: Learning the conditional distribution that governs transitions in the road network, from108

the historical trajectory dataset D.109

Henceforth, while talking about transitions in the road network, we will use the notation curr to refer110

to the current location(node), curr ∈ V .111

3 Route Search112

In this section, we assume that the transition probability Pr(e|curr, d, t) for any edge e ∈ E is known.113

Our algorithm to learn this distribution is discussed in § 4.114

• Optimal Search: We first note that the negative log likelihood of a transition probability (see115

Eq. 4) would be non-negative. Thus, we have an edge weight for each edge in the road network and116
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Figure 2: Architecture of NEUROMLR.

our goal is to identify the path from the source to the destination that has the minimum cumulative117

weight. This computational task maps to the problem of finding the shortest path in a graph and can118

be solved using Dijkstra’s Algorithm. More importantly, the optimal path is guaranteed to reach the119

destination. The pseudocode for this search algorithm is provided in App. A.120

Computational Complexity: The complexity of the Dijkstra’s Algorithm is O(|V|+ |E| log(|V|)).121

This may be prohibitively expensive on large road networks where real-time predictions are desired.122

• Greedy Approach: We start from the source node and greedily choose the transition with the123

highest probability till the destination is reached. Inaccurate estimation of transition probabilities124

may however divert us towards the wrong direction and we may never reach the destination. This125

may result in |V| iterations in the worst case. To handle cases of this nature, we terminate when126

either the destination is reached or the Haversine distance from the current node to the destination127

is significantly higher than the closest point in the current route to the destination. This idea is128

motivated from the fact that, in general, a vehicle progressively moves closer to the destination with129

each transition [25]. The pseudocode of the greedy approach can be found in Alg. 2 in Appendix .130

Computational Complexity: At each node in R∗, we evaluate each neighbor and select the one131

with highest likelihood. Hence, the complexity is O(g|R∗|), where g is the average degree in G.132

4 NEUROMLR: The Neural Approach to the Most Likely Route Problem133

Revisiting Eq. 4, the key requirement is to accurately model the conditional transition probability134

function Pr(e | curr, d, t) where e = (curr, v). We want to estimate the true distribution that135

governs transitions in the road network. However, this distribution is hidden from us and we only136

have access to D, which is a sample drawn from this distribution.137

Mathematically, we wish to estimate the underlying transition probability distribution from D using a138

surrogate function Q(n|c, d, t; Θ), such that, Q(e|curr, d, t; Θ) ≈ Pr(e|curr, d, t).139

We learn Θ using the neural network depicted in Fig. 2. Our core idea is to learn useful repre-140

sentations of road intersections (nodes) and real-time traffic conditions, and use them to infer the141

transition probabilities. To learn inductive node representations, we use a novel combination of Graph142

Convolutional Network (GCN) [7] with Lipschitz embeddings [2]. In addition, a low-dimensional143

traffic representation of the road network at any time t is learned using Principal Component Analysis144

(PCA). To predict P (e = (curr, v) | curr, d, t), we concatenate the representations of v, curr,145

d and traffic status at time t, and pass them through a Multi-layered Perceptron (MLP) to predict146

the transition probability. The entire network is trained end-to-end. We next discuss each of the147

sub-components. By convention, we used bold font for vectors and matrices.148

4.1 Constructing Node Attributes149

In this section, we describe the process of constructing node attributes for our GCN. We wish to learn150

embeddings where nodes with similar routes to common destinations are close in the embedding151

space. While latitude and longitude may be used as node attributes, they do not characterize node152

positions accurately since movement of vehicles is constrained by the network structure. Rather, we153

need to learn node attributes that reflect road network distances. Towards that end, we use Lipschitz154

embeddings.155

Definition 4 (Attribute Embedding). Let A = {a1, · · · , ak} ⊆ V be a randomly selected subset156

of nodes. We call them anchors. The distance d(u, v) between two nodes u, v ∈ V is defined as157
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sp(u,v)+sp(v,u)
2 , where sp(u, v) is the spatial shortest path distance from u to v1. We embed all nodes158

in V in a k-dimensional feature space νL(u) = [x1, · · · , xk], where xi = d(u, ai).159

The dimensionality of the attribute space dictates how well the original shortest path distances are160

preserved. To gain a formal understanding of distance preservation, we introduce the definition of161

distortion.162

Definition 5 (Distortion). Given two metric spaces (O, d) and (O′, d′) and an embedding function163

f : O → O′, f has a distortion α if ∀o1, o2 ∈ O, 1
αd(o1, o2) ≤ d′(f(o1), f(o2)) ≤ d(o1, o2).164

In our case, d(o1, o2) is the average two-way shortest path distance. d′(), along with dimensionality165

k, remains to be defined. To define them, we use Bourgain’s Theorem. Bourgain’s Theorem [2]166

establishes that a low distortion Lipschitz embedding exists for any metric space.167

Theorem 1 (Bourgain’s Theorem [2]). Given any finite metric space (O, d) with distance function168

d(·), there exists an embedding of in (O, d) into Rk under any lp metric, where k = O(log2 n) and169

the distortion of the embedding is O(log n), where n = |O|.170

To apply Bourgain’s Theorem on our problem, we need to show that d(u, v) is metric.171

Lemma 1. d(u, v) is a metric distance function. For proof, refer App. C172

4.2 Learning Node Representations through GCN173

In addition to capturing road network distances in node representations through Lipschitz embeddings,174

we also would like to generalize to unseen data in the road network. To illustrate, let us assume node175

v13 in Fig. 1a has not appeared in any training trajectory. If we fine-tune representations for only176

seen nodes, then the representation of v13 would remain unchanged from its Lipschitz embedding. A177

GCN avoids this scenario by message passing among neighbors. More specifically, information is178

shared among L-hop neighbors in GCN, where L is the number of layers. Thus, if a subset of these179

neighbors have appeared in training trajectories, then this information is shared in its neighborhood,180

which infuses information beyond Lipschitz embeddings even for unseen nodes.181

To train the GCN, Lipschitz embeddings ν(·) corresponding to |V| nodes are stacked as original input182

features. Specifically, ∀u ∈ V, h0
u = ν(u), we compute183

hl
u = σ

Wl

∑
v∈N(u)∪u

hl−1
v√

(|N (v)|+ 1)(|N (u)|+ 1)

 (5)

Here,Wl stands for layer-specific learnable weight matrix for lth layer, hl
u is the embedding of node184

u at layer l and σ(·) denotes an activation function (ReLU in our implementation). Furthermore,185

N(u) = {v ∈ V | (u, v) ∈ E} denotes the neighbors of node u in the road network. The vector186

formed in the final layer L is zu = hL
u .187

4.3 Traffic representation188

The simplest option is to partition D into various time slots (Ex: 8AM-11AM, 11-AM-2PM, etc.)189

and learn a model separately for each time slot. This strategy, however, assumes that traffic is190

homogeneous in each time slot on all days Clearly, this assumption is not true in real life (Ex:191

weekends vs. week days). Further, this scheme is data inefficient since the traffic-dependent travel192

patterns across different time-slots might be similar.193

In order to characterize the real-time traffic conditions for the entire road network at time t, we obtain194

the top-5% of the most frequently traversed edges E ⊆ E in D. The raw traffic representation at time195

t is the |E|-dimensional vector of speeds on these edges. Specifically, rt = [τt(e) | e ∈ E]. We use196

only the top-5% edges since the frequency distribution of edges follows a power-law (See App. I).197

Consequently, we do not use noisy speed information on less-travelled edges.198

It is natural for neighboring road segments (edges) to exhibit co-variance in speed. To remove such199

information redundancy, we learn a low-dimensional representation of rt through PCA. Specifically,200

let the training trajectories in D span the time range [tmin, tmax]. Thus, we have a collection of201

traffic representations in the form of R = {rt | t ∈ [tmin, tmax]}. We perform PCA to learn the202

eigenvectors on R. Given any raw traffic vector rt, it is projected on the top-k eigenvectors to203

construct the low-dimensional representation zt. Mathematically, zt = rt V , where V ∈ R|E|×k.204

The columns of V contain the eigenvectors with the k largest eigenvalues.205

1We assume that the road network is strongly connected, which is typically true.
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4.4 Aggregating Node embedding with Traffic representation206

Q(e|curr, d, t; Θ) is a function of four input features: current node curr, destination d, traffic207

condition at time t, and the transition node v corresponding to edge e = (curr, v). GCN provides the208

embeddings zcurr, zv, zd of curr, v, d respectively and the traffic representation zt is constructed209

as discussed above. All these embeddings are concatenated 2 as : z = [zcurr||zv||zd||zt].210

4.5 Model Training211

Following the pass through GCN, the concatenated embedding z (defined above) is passed through212

an MLP to convert the vector into a scalar (unnormalised) confidence value i.e f(v, curr, d, t) =213

MLP (z). The predicted transition value is defined as a softmax over all possible transitions from214

curr. Mathematically,215

Q ((curr, v)|curr, d, t; Θ) =
exp (f (v, curr, d, t))∑

v′∈N(curr) exp (f (v′, curr, d, t))
(6)

Loss(Θ) = − 1

|D|
∑
∀R∈D

|R|−1∑
j=1

log Q(R.ej+1|R.ej ,R.d,R.t; Θ) (7)

Finally, in Eq. 7 above, the model parameters Θ are optimized through cross-entropy loss over216

trajectories in D. The pseudocode of the training procedure can be found in Alg. 3 in Appendix.217

4.6 Inference Phase218

Given any query q : 〈s, d, t〉, we follow one of the route search algorithms discussed in § 3. Both219

search mechanisms require only the transition probabilities as edge weights. Prediction of a transition220

probability Pr(e = (curr, v) | curr, d, t) simply involves a forward pass through the architecture.221

Complexity analysis: complexity of predicting Pr(e = (curr, v) | curr, d, t) is O(g · LM · d2
f ).222

Here, LM is the number of the layers in the MLP, g is the average degree in the road network, df is223

the output feature vector dimension of the GCN. Refer Appendix. E for detailed derivation.224

5 Experiments225

In this section, we benchmark NEUROMLR against DEEPST and CSSRNN and establish that:226

• Accuracy: NEUROMLR is more accurate in terms of precision and recall when compared to the227

state-of-the-art algorithms of DEEPST [9] and CSSRNN [22].228

• Reachability: NEUROMLR, with its greedy route search mechanism, is more efficient, and229

achieves significantly higher reachability than DEEPST and CSSRNN.230

• Inductive Learning: Due to its inductive learning capability, NEUROMLR learns more effectively231

and generalizes significantly better to unseen/lesser seen parts of the road network.232

• Scalability: NEUROMLR generates high quality routes on large road networks. The performance233

of CSSRNN, on the contrary, deteriorates heavily with increase in road network size(Fig. 1c).234

Our code-base is available in the supplementary material.235

5.1 Experimental Setup236

The system configuration details are present in App. F. All experiments are repeated 5 times and we237

report the average of the metric being measured.238

Datasets: We use publicly available real datasets from five different cities. Table 1 summarizes239

the statistics of the datasets. The first four cities namely Chengdu3, Porto[14], Harbin [10] and240

Beijing[11] are taxi datasets. The fifth dataset is a publicly available food delivery dataset[6]. The241

authors did not reveal the name of the city, other than the fact that, in terms of food delivery242

volume, this city ranks among the highest in India. We extract the road network of each city from243

OpenStreetMap [15]. To align the GPS sequences to the road network we use map-matching[24].244

The temporal edge weight τt(e) is set to the average travel time of all vehicles going over e in the245

past one hour.246

Baselines: We benchmark the performance of NEUROMLR against, (1) DEEPST, (2) CSSRNN, (3)247

shortest path (SP), and (4) the quickest path (QP). For NEUROMLR, we consider two versions:248

2We also tried the Attention mechanism [19] to capture the importance of each of the explanatory factors.
Details can be found in Appendix. P.

3Chengdu dataset link
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Statistics Chengdu(CHG) Porto(PT) Harbin(HRB) Beijing(BJG) CityIndia(CTI)
No. of nodes 3, 973 5, 330 6, 598 31, 199 105, 873
No. of edges 9, 255 11, 491 16, 292 72, 156 281, 086
No. of trajectories 3, 600, 503 1, 426, 312 1, 133, 548 1, 382, 948 451, 443
Avg trip length (km) 4.54 5.27 10.92 7.39 3.27
Avg number of edges/trip 22.93 51.07 56.81 36.08 42.68

Table 1: Dataset statistics after pre-processing

Algorithm Precision (%) Recall (%) Reachability (%) Reachability Distance(km)
HRB BJG CTI HRB BJG CTI HRB BJG CTI HRB BJG CTI

NEUROMLR-D 66.1 77.9 77.9 49.6 76.5 73.1 — — — — — —
NEUROMLR-G 59.6 75.6 74.3 48.6 74.5 70.1 99.1 99.1 96.1 0.02 0.01 0.03
CSSRNN 49.8 59.5 36.9 51.1 68.8 53.2 95.3 91.7 50.2 0.16 0.83 2.03
DEEPST 51.9 60.3 67.4 27.3 33.2 34.9 8.1 8.7 6.7 1.96 2.75 1.07
SP 46.4 59.2 62.1 31.3 55.5 53.7 — — — — — —
QP 40.7 51.4 47.6 28.6 50.0 44.0 — — — — — —

Table 2: Comparison of NEUROMLR against the benchmarked algorithms on the four different
metrics of average precision, average recall, percentage of trips that reached destination, and average
distance from the true destination. The best performance for each dataset is highlighted in bold.

NEUROMLR-Dijkstra (NEUROMLR-D) and NEUROMLR-Greedy (NEUROMLR-G) correspond-249

ing to the two route search algorithms described in § 3. We do not consider personalized route250

recommendation algorithms [20], since we do not consider the personalization aspect. The codebase251

of CSSRNN, shared by the authors, is implemented in TensorFlow 1.15. DEEPST and NEUROMLR252

are implemented in PyTorch 1.6.0.253

Train-Validation-Test setup: For a fair comparison of NEUROMLR with DEEPST and CSSRNN,254

we train all models for 36 hours or till convergence of the loss function, whichever is earlier. Before255

splitting, we sort the trajectories on the basis of the start time. Unless specifically mentioned, we use256

the first 60% of the trajectories for training, next 20% for validation and remaining 20% for inference.257

Evaluation metrics: For evaluation, we pick each routeR in the test set and issue the corresponding258

query q : 〈s, d, t〉, where s = R.v1, d = R.v|R|, and t is the time at which R was initiated. The259

predicted trajectoryR∗ for q is then generated and compared withR. We use four metrics to evaluate260

prediction quality. edge-weighted (1) precision and (2) recall. We also use (3) the Reachability261

Distance for a test trajectory, which is equal to the Haversine distance between d and d∗, where d∗ is262

the last node inR∗. Finally, we measure (4) Reachability (%), which is the percentage of trajectories263

that reach the original destination d. Detailed description of the metrics can be found in App G. Note264

that the reachability metrics are relevant for only NEUROMLR-Greedy, DEEPST and CSSRNN since265

the rest of the algorithms guarantee reachability.266

Parameters: For both DEEPST and CSSRNN, we use the default parameters prescribed by the267

respective papers. The default parameters for NEUROMLR are provided in App. H.268

5.2 Accuracy and Reachability269

Table 2 presents the performance of the various algorithms across the three larger datasets - Harbin,270

Beijing and City India. 4. The following observations emerge from Table 2.271

Precision and Recall: Both versions of NEUROMLR consistently outperform all baseline algorithms.272

As expected, NEUROMLR-Dijkstra is marginally better than NEUROMLR-Greedy. Among the four273

considered baselines, CSSRNN achieves the best result. Furthermore, both NEUROMLR significantly274

outperform SP and QP, which validates past work that people rarely follow shortest paths.275

Reachability: NEUROMLR-Greedy outperforms both DEEPST and CSSRNN and achieves more276

than 96% reachability across all datasets. This superior performance of NEUROMLR-Greedy277

establishes the efficacy of Lipschitz embeddings with GCN in modeling transitions that govern278

vehicle movements. The reachability performance is weakest in DEEPST due to the clustering based279

approach it adopts. Specifically, several nodes are allotted the same destination representation and280

hence reachability is compromised.281

Impact of Trip Length: We study the impact of trip length on models’ performance in App. J.282

4Due to space limitations, the results for the other datasets (Porto, Chengdu) can be found in App. N
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5.3 Inductive Learning283

To showcase the benefits of inductive learning, we compare the two best performing algorithms of284

NEUROMLR with CSSRNN. 5285

Impact of training data: In Figs. 4a- 4b, we examine how effectively each algorithm learns as286

the volume of training data is varied. As clearly evident, NEUROMLR obtains significantly more287

accurate performance at low volumes of training data than CSSRNN. This is a direct consequence of288

the inductive ability to share information among nodes and thereby generalize for unseen test data.289

Performance on unseen data: In Figs. 4c-4i , we investigate how NEUROMLR and CSSRNN290

perform on test trips that originate or end at unpopular nodes. A node is termed unpopular if its291

frequency of occurrence in the training trips is less than a threshold frequency. We segregate the test292

trips into four categories based on the popularity of source and destination nodes: P-P, U-P, P-U and293

U-U. For example, P-U refers to trips starting at a popular node and ending at an unpopular one.294

As expected, the majority of test trips are of type P-P and thus the performance on P-P (Figures 4d,295

4g) is similar to the aggregate results mentioned in Table 2. We have not included the performance296

variation of trips of type U-U for different thresholds, since the percentage of such trips is relatively297

insignificant (Fig.4c). The performance on P-U trips (Figs. 4i, 4f) undergoes a dramatic drop for298

CSSRNN since the destination is unpopular and there is not much information to direct the model.299

For U-P (Figs. 4h, 4e), the performance lies between P-P and P-U since even after a rocky start, it300

could transit to a popular node and from there may reach the destination. In all cases NEUROMLR301

adapts more gracefully and highlights the benefits of inductive learning. Note that zero threshold302

frequency, unpopular nodes are equivalent to nodes unseen during training.303

5.4 Ablation study304

Impact of GCN and Lipschitz Embeddings: We investigate the individual impact of using Lips-305

chitz embeddings and employing GCNs in Figs. 3a-3b by comparing the performance of NEUROMLR306

on the four possible combinations. As visible, the combined combination of Lipschitz embeddings307

and GCN imparts a significant improvement in both prediction accuracy and reachability. Employing308

either one individually also enhances the model’s performance, thereby justifying their importance.309

For similar studies on other datasets see App. L.310
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Figure 3: Impact of GCN on further fine-tuning Lipschitz embeddings in NEUROMLR-Greedy. All
plots in this figure use the Beijing dataset.

Impact of Traffic: The impact of traffic on route prediction can be found in App. L.311

5.5 Inference Time312

Our experiments in App. K show that NEUROMLR is upto 2.5 times faster than CSSRNN.313

6 Conclusion314

For a route recommendation algorithm to be deployable in the real world, it must ensure that the315

recommended route reaches the destination. In addition, it must show good generalization perfor-316

mance on queries over unseen/rarely seen data. Existing techniques for predicting the most likely317

5Here, we have restricted our model’s comparisons to CSSRNN since DEEPST performed poorly on all
metrics. Some potential reasons can be found in App. O
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Figure 4: All these experiments were performed on the Beijing dataset. (a,b) Performance of
NEUROMLR-G and CSSRNN with different percentages of training data. (c) Percentage of test data
trips in P-U, U-P and U-U categories. (d-i) Variation of Reachability & F1-score with the threshold
frequency for different popularity categories.

route lack the above mentioned abilities. In this paper, we propose NEUROMLR which overcomes318

these limitations through a novel combination of Lipschitz embedding and Graph Convolutional319

networks. This strategy ensures inductive learning and enhances reachability. Specifically, even320

those nodes that are not seen adequately in training data, get good represenations due to Lipschitz321

embedding capturing network position and GCN ensuring information propagation from neighboring322

nodes. All-in-all, NEUROMLR is more reliable, scales to larger cities, robust to unseen data and323

more effective in learning from low volume of data.324

Limitations: In the future, we would like to work on capturing the personalization aspect of the325

problem and learn to transfer knowledge from one city to another.326

Potential for Negative Societal Impact: Our proposed work facilitates robust and reliable computa-327

tion of the mostly likely route in road networks. To the best of our understanding, we do not see any328

potential of negative societal impact from this work.329
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