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Abstract
Deep Learning-based Recommendation models use sparse and dense features of a1

user to predict an item that the user may like. These features carry the users’ private2

information, service providers often protect these values by memory encryption3

(e.g., with hardware such as Intel’s SGX). However, even with such protection,4

an attacker may still learn information about which entry of the sparse feature is5

nonzero through the embedding table access pattern. In this work, we show that6

only leaking the sparse features’ nonzero entry positions can be a big threat to7

privacy. Using the embedding table access pattern, we show that it is possible8

to identify or re-identify a user, or extract sensitive attributes from a user. We9

subsequently show that applying a hash function to anonymize the access pattern10

cannot be a solution, as it can be reverse-engineered in many cases.11

1 Introduction12
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Figure 1: left: DLRM, right: example of embedding lookup.

Deep learning-based personalized rec-13

ommendation models empower mod-14

ern Internet services. These models15

exploit different types of information,16

including user attributes, user prefer-17

ences, user behavior, social interac-18

tion, and other contextual informa-19

tion Erkin et al. (2010) to provide20

personalized recommendations rele-21

vant to a given user. They drive22

35% of Amazon’s revenue Gupta23

et al. (2020) and influence 80% of the24

videos streamed on Netflix Gomez-25

Uribe and Hunt (2015).26

Deep learning-based recommendation27

models use dense (continuous) and28

sparse (categorical) features of a user as an input to a deep neural network to predict an item29

that a user may like (Figure 1, left). The features may include both static features that do not change30

frequently (e.g., age or gender) and dynamic features that changes frequently (e.g., a user’s recent31

behavior history). Both features can hold sensitive information and must be kept private. Private32

user features are often encrypted in memory for privacy, using hardware such as trusted execution33

environment (TEE), e.g., Intel SGX team (2022). However, even when using hardware like TEE,34

the information of which entries of the sparse features are nonzero can be leaked. This is because35

sparse features must be projected into a lower-dimension space through an embedding table, where36
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the index of the nonzero entries are used as an index for an embedding table lookup (Figure 1, right).37

In this paper, we show that this information leakage can be an enough threat to privacy. We first38

show that it is possible to (1) identify a user, (2) extract sensitive attributes of a user, or (3) re-identify39

a user, by only looking at the embedding table access pattern even when the data is fully encrypted.40

We subsequently show that applying a hash function to randomize the access pattern cannot be a41

general solution, by demonstrating a set of hash-inversion attacks. Specifically, we show that the42

below attacks are possible by only observing the embedding table access patterns in modern deep43

learning recommendation models:44

• Identification attack. We demonstrate it is possible to identify a user by only observing the access45

pattern of sparse features’ embedding table access pattern.46

• Sensitive attribute attack. We show it is possible to extract sensitive attributes of a user (e.g.,47

demographics) from seemingly unrelated sparse features, such as dynamic user behavior history.48

• Re-identification attack. We show it is possible to identify if two queries are from the same user49

by only looking at seemingly innocuous sparse features, such as the users’ recent purchase history.50

• Hash inversion with frequency-based attack. We show that hiding the access using a hash cannot51

be a solution against these attacks, by demonstrating a hash inversion attack based on the access52

frequency. Our hash inversion attack can invert even sophisticated private hash functions as well as53

simple hash functions that are mainly used by the industry today.54

2 Background and Threat Model55

Deep learning-based recommendation model Zhou et al. (2018, 2019); Naumov et al. (2019);56

Ishkhanov et al. (2020); Cheng et al. (2016) uses dense and sparse features of a user and an item to57

predict whether the user will likely to interact with the item (e.g., click an Ad or purchase an item).58

Figure 1 shows the operation of a representative recommendation model, DLRM Naumov et al. (2019).59

In DLRM, the dense features go through a bottom MLP layer, while the sparse features go through an60

embedding table layer and get converted into a lower-dimensional dense features. Then, the two out-61

puts go through a feature interaction layer (e.g., pairwise dot product) and go through a top MLP layer62

to predict the likelihood of an interaction. Other modern recommendation models work similarly Zhou63

et al. (2018, 2019); Ishkhanov et al. (2020); Cheng et al. (2016). Embedding tables convert a sparse64

feature into a dense representation by using the index of the nonzero entries in the sparse features as65

an index to perform lookup to a large table (Figure 1, right). Even when the entire dense and sparse66

features are fully encrypted and processed on a secure environment (e.g., by using Intel SGX Costan67

and Devadas (2016), hardware that encrypts content in the memory and protects computations),68

it is possible to learn which index holds a nonzero entry by looking at the table access pattern.69

Figure 2: Our threat model assumes only the access
pattern to the embedding table is revealed.

70

Threat Model We assume a scenario where71

users share their private features with the ser-72

vice provider to get recommendations from the73

model. We assume that the values of the dense74

and sparse features of a user is fully protected75

from the attacker, e.g., with Intel SGX team76

(2022), but the access pattern of the embedding77

table is revealed, essentially revealing which en-78

tries are nonzero in the sparse features. In the79

real world, a honest-but-curious service provider80

running model inference on Intel SGX can fall81

into this category. Figure 2 summarizes our82

threat model.83

3 Identification Attack with Static User Features84

A single user’s inference request contains a series of sparse features, each of which in isolation has85

limited user information. However, multiple sparse features together can form a distinctive fingerprint86

for personal identification. User profile attributes (e.g. gender, city, etc) are usually static, in other87

words, they do not change or the frequency of the change is extremely low. We categorize this type of88

features into two subcategories—identifiable features and unidentifiable features. However, because89

of strict regulations in many domains, most of the recommendation systems do not collect and use90

such identifiable features. The question is if unidentifiable features such as age, gender, education,91
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Table 1: The number of users with anonymity level bellow K in the identification attacks (out of 1.14
million users).

1-anonymity 2-anonymity 3-anonymity 4-anonymity 5-anonymity 6-anonymity 7-anonymity 8-anonymity 9-anonymity 10-anonymity
56 154 256 380 480 606 739 867 984 1104

and shopping history can provide sufficient information to identify a user.92

Evaluation Setup: To answer this question, we analyzed an open-source dataset released by Alibaba.93

This dataset contains static user features including user ID (1.14M), micro group ID (97), group ID94

(13), gender (2), age group (7), consumption grade/plevel (4), shopping depth (3), occupation/is95

college student (2), city level (5). More details about datasets is on Appendix A.96
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Figure 3: Percentage of the users belong to each
user bucket.

Attack Method In this set of features, the only98

directly identifying feature associated with a sin-99

gle user is the user ID. After removing the user100

ID, the collection of all other features provides101

2.1 million possible combination. Hence, after102

removing the user ID, a user may mistakenly103

think that he or she is anonymous, and reveal-104

ing any of the other features to the attacker on105

its own will not reveal the identity of the user.106

However, based on the user profile information107

from more than 1 million users, it is observed108

that in the real world only 1120 combinations109

of these static feature values are possible. We110

refer to this 1120 as user buckets. We plotted111

the histogram of users in these 1120 buckets as112

shown in Figure 3. The x-axis in the figure indi-113

cates the bucket number ([1− 1120]) and the y-axis shows the percentage of users per bucket. This114

histogram is quite illuminating in how the user distributions follow a long tail pattern. In particular,115

there are only a few users in buckets 600 to 1120. In fact, there are only 989 users on average116

across all these buckets, and the last 56 buckets have only 1 user. Consequently, observing the entire117

combinations of seemingly innocuous features from each allow may allow an attacker to launch an118

identification attack to extract the unique user ID with very high certainty.119

Evaluation Metric: For our analysis, we used a well-known property known as K-anonymity used120

in information security/privacy. It describes a scenario in which if a user’s bucket number is revealed121

and there are K users in the same bucket, the probability of finding the user is 1
K . For instance,122

1-anonymity for a user means that this is the only user having this particular set of feature values.123

Evaluation Result: As shown in Table 1, for 56 of the user buckets, there is only one user with the124

specific combination of static features which implies that an attacker can identify these users with125

1-anonymity if they can observe this combination of feature values. Also for more 1000 users, the126

anonymity level is 10 or below.127

4 Sensitive Attribute Attack by Dynamic User Features128

Figure 4: Different brands are popular between different
customer age groups

In this section, the question is when the129

user removes the static features, can sen-130

sitive features leak through other non-131

sensitive features? For instance, a user may132

provide no age information and they may133

have a sense of protecting more of their134

private data by not disclosing their static135

features. However, we demonstrate that136

even when a user hides their sensitive static137

features, adversaries are still able extract138

the sensitive attributes through cross corre-139

lations with user-item interaction data.140

Evaluation Setup: For evaluation, we use dynamic sparse features that includes user-item inter-141

actions Zhao et al. (2019) in the Alibaba Ads Display dataset. This dataset contains 723, 268, 134142

tuples collected over three weeks. Each tuple includes a user ID (1.14M ), a btag (4: browse, cart,143

favor, buy), a category id (12K), and a brand (379K).144
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Figure 5: Using the accessed brands, ambiguity about A) user buckets (defined in previous section),
B) user age groups, and C) user gender groups.
Attack Method: Figure 4 depicts an example of how different brands of the items are accessed145

by different user groups. The user/item interactions are depicted as graphs where each edge weight146

represents the fraction of the total interactions with that specific item from the corresponding age147

group. In real-world datasets, there are certain brands, where users from just a single age group148

interact with, in this example Legoland. A user who wants to protect their age group may not provide149

their age, but the adversary may deduce their age with a high probability if the user interacted with150

Legoland. While this simple illustration highlights the extremity (only one age group interacting151

with an item), this approach can be generalized. In General attacker, uses their prior knowledge on152

popularity of the items between different demographic groups. Then based on this prior information,153

they link the query to the demographic who formed most of the accesses to that item.154

Evaluation Metric: In this part, we employ a metric called ambiguity to determine the likelihood an155

adversary fails to predict a user’s static sparse feature by just viewing their interactions with items. We156

define ambiguity for each item i as: ambiguityi = 100%−max(frequencyi) where frequencyi157

is the distribution vector of all accesses to brand i by different user groups. Using Figure 4 as an158

example, frequencyapple = [0, 0, 20%, 50%, 30%, 0, 0] and as a result ambiguityApple = 50%,159

meaning if a user has interacted with item i (Apple), the attacker can predict the static feature (age160

group) successfully for 50% of the users. With this definition, ambiguityi = 0 indicates if a user has161

interacted with item i, the attacker can successfully determine the user’s sparse feature.162

Evaluation Result: As shown in Figure 5, we quantify the ambiguity of predicting a user’s sparse163

feature, such as age and gender, by using their item (brand) interaction history alone. The x-axis of164

these figures shows the percentage of ambiguity where a value of 0 indicates that there is no ambiguity,165

and this brand is always accessed by only one user bucket. On the other hand, higher values indicate166

more ambiguity, and hence brands with higher values on the x-axis are popular across multiple user167

buckets. We plot both probability density function (PDF) and cumulative distribution function (CDF)168

of the ambiguity of different brands. What is revealing in the data is that in Figure 5(A), we observe169

that more than 17% of brands are only accessed by 1 user bucket represented by the leftmost tall170

bar of PDF, meaning the attacker can determine the user bucket using those brands interactions. As171

shown in the CDF curve in Figure 5(A), for 38% of the brands, the attacker can predict the user172

bucket with a success rate of greater than 50%. We present the information of age and gender group173

versus ambiguity in Figure 5(B) and Figure 5(C) respectively.174

5 Re-Identification Attack175

In re-identification attack, the goal of an attacker is to identify the same user over time by just176

observing their interaction history. Studies have shown the majority of the users prefer not to be177

tracked even anonymously Teltzrow and Kobsa (2004). In this section, we first study if the history178

of the purchases of a user can be used as a tracking identifier for the user. Hence, we analyze if179

the history of the purchases is unique for each user. Second, we study if an attacker can re-identify180

the same user who sent queries over time by only tracking the history of their purchases, with no181

access to the static sparse features. Evaluation Setup: For evaluation we used Taobao datase that has182

more than 723 million user-item interactions. Within them, we separated about 9 million purchase183

interactions. We then pre-processed and formatted that data in a time series data structure (user184

history data structure) shown below:185

user1 : (time1, item1), (time4, item10), (time500, item20)

user2 : (time3, item100), (time20, item100)

...
userX : (time5, item75), (time20, item50),

(time100, item75), (time400, item1)(time420, item10)

4



Second, for each set of consecutive items purchased by any user, we create a list of users who have186

the same set of consecutive purchases in exactly that order. We refer to these sets of consecutive187

recent purchases as keys. Multiple users may have the same key in their history. That is why each key188

keeps a list of all the users that created the same key and the duration of the time they had the key.189

An example of the recent item purchase history when we consider two most recent purchases shown190

below. Each key consists of a pair of items. For instance, the first line shows item 1 and item 10 were191

the most recent purchases of user 1 from time 4 to time 500.192

key : list of values
[item1, item10] : [user1, time4, time500]

[userX , time420, Current]

[item10, item20] : [user1, time1000, Current]

[item100, item100] : [user2, time20, Current]

...
[item75, item50] : [userX , time20, time100]

[item50, item75] : [userX , time100, time400]

[item75, item1] : [userX , time400, time420]

The goal of the this attack is to use only the m (m = 2 in the example above) most recent purchases193

by a user to track the user across different interaction sessions, which are separated by timestamps as194

sessions. To evaluate this attack:195

1. We randomly select a timestamp and a user.196

2. For the selected user, we check the m most recent purchases of the user at the selected timestamp197

and form a key = [recent purchase 1, recent purchase 2, ... recent purchase m]198

3. We look up this key in the recent item purchase history dataset. If the same sequence of m most199

recent items appear on another user at the same time window, this means these recent purchases are200

not unique for that specific user at that time and cannot be used as a fingerprint of a single user.201

4. On the other hand, if the m item purchase history only belongs to that specific user, the duration of202

the time in which this key forms the most recent purchases of the user is extracted.203

5. This experiment is repeated for many random time stamps and users to obtain 200, 000 samples.204

As depicted in Figure 6 A, we observe that even the two most recent purchases can serve as a unique205

identifier for 98% of our samples. In other words, at a random point in time, the two most recent206

purchases of a user are unique for 98% of randomly selected users. We found that three, four, and207

five most recent purchases uniquely identify users with 99% probability.208

Attack Method: Most recent items purchased by a user usually do not change with a very high209

frequency. For the period of time that these recent purchases remain the same, every query sent210

by the user has the same list of recent purchases. Therefore, the attacker is interested in using this211

knowledge to launch the attack. To accomplish this, the attacker first selects a time threshold. This212

time threshold is chosen to help the attacker to decide if the queries come from the same user or not.213

Meaning that if the time difference between receiving them is less than the time threshold and two214

distinct queries received by the cloud have the same most recent purchases, the attacker will predict215

that they comes from the same use. Otherwise, it is assumed queries come from two different users.216

Evaluation Metric: To measure the accuracy of this attack, we use the machine learning terms217

precision and recall defined in Buckland and Gey (1994) as shown in Eq (1).218

Precision =
TP

(TP + FP )
, Recall =

TP

(TP + FN)
, (1)

where TP stands for True Positives, FP represents False Positives, and FN is False Negatives.219

Precision indicates what percentage of positive predictions are accurate and Recall indicates what220

percentage of actual positives are detected.221

Evaluation Result: To evaluate the precision/recall tradeoff, we start from a very small time threshold222

and increase it gradually. As expected, with low time thresholds, precision is high with few false223

positives. But as the attacker increases the time threshold and can identify more of the actual positives224

(higher recall), they false positives increase as well, which reduces the precision. The reason for225

having more false positives with a large threshold is that, during a longer period of time, other users226

may generate the same key. Table 2 shows when the 2 most recent purchases are used, there are227

around 4.5 million keys but the total number of occurrences of these keys is around 8 million times.228

This means for a fraction of the keys, the same keys are generated for different users at different229
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Figure 6: A) Uniqueness of most recent purchases of users. B and C) Precision/recall trade-off based
on different time threshold values.

times. These repeated keys are the source of false positives in our experiments. The decision of230

selecting the right threshold depends on the attacker’s preference to have a higher recall or precision.231

Table 2: Re-identification attack statistics about
the number of keys and repeated keys.

Number of
recent purchases Number of users Number of keys Total occurrences

of keys
2 898, 803 4, 476, 760 8, 114, 860
3 799, 475 5, 679, 087 7, 216, 057
4 705, 888 5, 587, 578 6, 416, 582
5 620, 029 5, 197, 043 5, 710, 694

Figure 6 shows this trade-off for different time232

threshold values. We gradually increase the233

time threshold from 1 second to 277 hours (11.5234

days). As shown in this figure, by increasing the235

time threshold to 11 days recall will reach 1.0236

while there is an almost 0.02 drop in precision.237

This means the attacker can link all the queries238

that come from the same users correctly. This239

comes at the cost of 2% miss-prediction of the240

queries that do not come from the same user and only generates the same key at some point in their241

purchase history. These high precision and recall values, indicates how an attacker can track users242

who send queries to the recommendation model over time.243

6 Hash inversion with frequency-based attack244
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Figure 7: Frequency-based attack tries to reverse
engineers the hash based on the frequencies.

Applying hash on the indices before embedding245

table lookup is an important performance opti-246

mization (more details about the data pipeline247

in production-scale recommendation systems248

and different hashing schemes can be found in249

Appendix B). Here, we analyze how hashing im-250

pact information leakage. This section studies251

how an attacker can recover the raw values of252

sparse features even when hashing is used for253

embedding indices. Through a hash function,254

users’ raw data are remapped to post-hash val-255

ues for indexing the embedding tables as shown in Fig. 7.256

Evaluation Setup: For evaluation, we used Taobao, Kaggle and Criteo datasets. For each dataset we257

selected two disjoint random sets; training set and test test. The training set samples forms the prior258

distribution and the test sample are used for the evaluation.259

Attack Method: An adversary can launch attacks by collecting the frequency of observed indices,

Table 3: Accuracy of hash inversion for the frequency-based attack for Taobao dataset.
Number of Samples used
for Learning Distribution

Number of Samples
for Evaluation Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

1,000,000 1,000 0.64 0.76 0.83 0.87 0.89 0.90 0.91 0.92 0.93 0.94
1,000,000 100,000 0.61 0.75 0.82 0.86 0.88 0.90 0.92 0.92 0.93 0.93
2,000,000 100,000 0.62 0.76 0.82 0.86 0.89 0.91 0.92 0.93 0.93 0.94
2,000,000 1,000,000 0.62 0.76 0.82 0.86 0.89 0.91 0.92 0.93 0.93 0.94

260
use prior knowledge about the distribution of feature values, and find the mapping between input and261

output of the hash. Here we show how an attacker can compromise a system with hashed input values262

where the hash function is output = (input+maskadd)mod P and P is the hash size. We denote263

the frequency of possible input to a hash function by x1, x2, . . . , xN for N possible scenarios and its264

output frequency by y1, y2, . . . , yP of a hash size P. We form the matrix M ∈ RP×P in which each265

column represents a different value for Mask ([0, P − 1]). Basically, for each value of a mask, we266

compute the frequency of outcomes and form this Matrix. As shown, by increasing the value of the267

mask by 1, the column values are shifted. Hence, the Matrix M is a Toeplitz Matrix. Since a single268

6



column in this matrix is shifted and repeated the order of forming this matrix is O(P ).269

M =


y1 yP−1 · · · y2
y2 y1 · · · y3
...

...
. . .

...
yP yP−2 · · · y1


P×P

(2)

The attacker’s goal here is to invert the hash using the input distribution and its observation of the270

output distribution. Note an input dataset and an output dataset should be independent. We define at271

as the distribution of embedding table accesses (post-hash) at time t. To reverse engineer the mask, an272

attacker has to find out which mask is used by the hash function. To do so, the attacker has to solve273

the optimization problem in Eq( 3).274

min
i

∥(mi − at)∥2 = min
i
(∥mi∥2 + ∥at∥2 − 2m⊺

i at) (3)

In Eq (3), mi represents the vector containing the frequencies of output values when mask i is used.275

So its absolute value will be a constant one. This is similar for ∥at∥. As a result, the optimization276

problem can be simplified to Eq(4).277

P̄ = argmax
i

(mi
⊺at) for i ∈ [0, P − 1] =⇒ P̄ = argmax

i
(M⊺at) (4)

The order of computing such a matrix-vector product is O(P 2). However, because M is a Toeplitz278

matrix, this matrix vector computation can be done in time complexity of O(P logP ) Strang (1986).279

To implement this attack, we created two disjoint sets. The first set is used to extract the distribution280

(known distribution) and the second set is used for frequency matching and evaluating the frequency-281

based attack. First, attackers try to reverse engineers the hash function and find the key based on the282

frequency matching. The attacker was able to reverse engineer the hash and find the key based on the283

method described above. Next, the attacker tries to reverse engineer the post-hash indices and find284

out the value of raw sparse features. After finding the key of the hash, the attacker reverse engineer285

the post-hash value to the top most frequent pre-hash values based on the input distributions.286

Evaluation Metric: Accuracy in this case is the probability that the attacker correctly identifies an287

input raw value from the post-hash value. Let the function g(y) be the attacker’s estimate of the input,288

given the output query y, g(y) = argmaxx Prob(x) s.t. ĥ(x) = y , where ĥ(x) is the attackers289

estimation of the hash function. Using this definition, accuracy is defined:290

Accuracy = Probx∼PX
(x = g(h(x))) , (5)

where h(x) is the true hash function, and the probability is over the distribution of the input query.291

We also use the notation of top K accuracy in this section. Essentially top K accuracy is the292

probability of the input query being among the top guesses of the attacker. To formally define this,293

we first denote the set Ŝ(y) as, Ŝ(y) = {x | ĥ(x) = y} , which is the set of all possible inputs,294

given an output query y, based on attacker’s estimation of the hash function. We now define the295

set gK(y) to be the top k members of the set Ŝ(y) with the largest probability, gK(y) = {x ∈296

Ŝ(y)|Prob(x) is in the top K probabilities.}. This means that gK(y) is the set of the top K attacker’s297

guesses, of the input query. Now we can use the function gk(y) to formally define the top K accuracy,298

Accuracytop K = Probx∼PX
(x ∈ gK(h(x))) , (6)

where h(x) is the true hash function, and the probability is over the distribution of the input query.299

Evaluation Result: As shown in Table 3, we change the number of interactions in these test sets to300

see the accuracy of hash-inversion and the attacker could achieve up to 0.94 top 10 accuracy for the301

Taobao dataset. Results on Kaggle and Criteo datasets are reported in C.The key observation here is302

that, if an attacker observes the frequency of queries, they can reconstruct the values of raw features303

with high accuracy by knowing the distributions of the pre-hash values and type of the hash function.304

We also expand this attack and support a general attack for more complex hash functions using OMP.305

The details of this machine learning based attack is explained in Appendix D. In Appendix F we306

disccussed why none of the current solutions can solve all the issues.307

7 Conclusion308

In this work, we shed light on the information leakage through sparse features in deep learning-based309

recommendation systems. Our work pivoted the prior investigation focus on dense feature protection310

to the unprotected access patterns of sparse features. The new insight from this work demonstrates311

even the access patterns can be a big threat to privacy.312
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A Data sets485

For studying the attacks in the following sections, we use multiple open source datasets such as486

Taobao Ads Display, Kaggle Ads Display, and Criteo Display. In this section, we briefly explain the487

content of these datasets, and in each of the following sections, we explain more about the dataset488

characteristics that we used.489

Taobao Ads Display Team (2018): This dataset contains user static features that includes 1, 140, 000490

users and 10 static features per user including their user IDs. There are also other features representing491

a user’s profile, e.g., age, gender, occupation level, living city, education level, etc. Another file492

contains user behavior data that includes seven hundred million records of user past behaviors. It493

contains shopping behavior over 22 days. Each row of this file indicates an interaction between a494

user (represented by user ID) and an item (represented by item brand ID and category ID). The type495

of interaction (buy, brows, fav, cart) and the time stamp of the interactions.496

Kaggle Ads Display Lab (2018b): CriteoLabs shared a week’s worth of data for you to develop497

models predicting ads’ click-through rates (CTR). This dataset contains three data files including498

training file and test files. Training file consists of a portion of Criteo’s traffic over a period of 7 days.499

Each row corresponds to a display ad served by Criteo. Positive (clicked) and negative (non-clicked)500

examples have both been subsampled at different rates to reduce the dataset size. Each row contains501
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13 dense features and 26 sparse features that form embedding table accesses. The semantic of these502

features is not released. The test set is computed in the same way as the training set but for events on503

the day following the training period.504

Criteo Ads Display Lab (2018a): This dataset is similar to Kaggle. But it is a much larger dataset505

containing 24 data files collected over 24 days with a different subsampling ratio.506

For the identification attack, sensitive attribute attack, re-identification attack, and OMP-based507

frequency attack our analysis requires user IDs, static profile features, or user past behaviors in508

the same dataset. Hence, for these attacks, we used the Taobao dataset, which is the only public509

dataset containing all these features. For the frequency-based attack, we need less information to510

implement the attacks. Thus all the datasets meet the requirement and we evaluate all of them in the511

hash information leakage study and the frequency based attack.512

B Data Pipeline in Production-Scale Recommendation Systems513

As mentioned earlier, exposing raw values of sparse features can leak sensitive information of a user.514

In this section, we discuss the current production-scale data pipeline for sparse feature processing515

and how such real system designs may impact the information leak.516

One challenge in designing efficient embedding tables is that the values of sparse features may be517

unbounded, resulting in very large embedding table sizes. Consider the news articles produced in518

the world as a dynamic sparse feature item that a user may interact with. There are thousands of519

news articles in just a day from around the world and creating embeddings for each news item in520

an embedding table is impractically large. For instance, the DLRM recommendation model in 2021521

needs 16x larger memory, compared to the one used in 2017 Lui et al. (2021); Sethi et al. (2022).522

Furthermore, 99% of model parameters belong to embedding tables Gupta et al. (2020). That is why523

production-scale models demand 10s of TB memory capacity Mudigere et al. (2021); Sethi et al.524

(2022). One common solution for converting high dimensional data to a low-level representation is to525

use hashing Shi et al. (2009). Using hashing for recommendation systems was first suggested in Zhang526

et al. (2018). In addition to bounding sparse features to a fixed size, hashing helps with responding to527

the rare inputs that are not seen before Acun et al. (2021); Kang et al. (2020). Furthermore, using528

high-cardinality features may cause over-fitting problems due to over parameterization Liu et al.529

(2020); Kang et al. (2020). Considering all these reasons, sparse feature inputs in production-scale530

models are hashed prior to embedding look-ups.531

In the appendix B.1, we briefly explain how different hashing schemes work and then we analyze532

how hashing impact information leakage. Recall that all the information leakage that we discussed in533

the prior sections is due to the fact that an adversary sees the raw value of embedding table indices.534

We analyzed and demonstrate embedding table hashing in recommendation systems, which was not535

necessarily designed for protecting data privacy could not help with reducing information leakage.536

B.1 Hash Functions537

There are multiple ways of reducing the embedding table size using hash functions, and they all have538

trade-offs. We explain some of the most common hashing schemes here.539

Embedding table as a hash-map: With hash-map, embedding table entries are combined based540

on their similarity and a smaller embedding table is formed. However, to use the embedding table,541

a hash map should be kept to keep track of merged entries. This is the most accurate but the most542

expensive method in practice. In a previous study Zhang et al. (2018), the authors suggested that543

using locality sensitive hashing can approximately preserve similarities of data while significantly544

reducing data dimensions. Frequency hashing Zhang et al. (2020) also keeps a separate map with hot545

items and carefully maps only hot items to different entries in the table. This ensures that hot items546

do not collide, while items that are less frequently accessed may in fact be mapped to a same entry.547

Modulo hashing: This is the cheapest and simplest hash to implement. This hashing performs548

modulo division based on the pre-defined size of the hash table. For hash size P , the hash function is549

as simple as input mod P . Though simple, it has the disadvantage that two completely different550

entities might collide.551

Cryptographic hashing: This approach is a one-way cryptographic algorithm that maps an input of552
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any size to a unique output of a fixed length of bits. A small change in the input drastically changes553

the output. Cryptographic hashing is a deterministic hashing mechanism.554

B.2 Statistical Analysis on Information Leakage After Hashing555

In this section, we analyze if the amount of randomization created by hashing can have any effect556

on reducing data leakage. In the following, we report our analysis on the entropy of pre-hash and

Table 4: Entropy and mutual information analysis of pre-hash and post-hash embedding table indices.

Dataset Table Name Original Table Size Post Hash Table Size Pre-Hash Entropy Post-Hash Entropy MI
Taobao Brands 379, 353 37, 935 9.91 9.28 9.28
Taobao Categories 12, 124 1, 212 6.19 5.72 5.72
Kaggle C3 1, 761, 917 176, 191 10.15 9.41 9.41
Kaggle C18 4, 836 483 5.92 5.27 5.27
Kaggle C24 110, 946 11, 094 6.57 6.28 6.28
Criteo C7 6, 593 659 7.63 5.84 5.84
Criteo C12 159, 619 15, 961 7.20 6.85 6.58
Criteo C20 11, 568, 963 1, 156, 896 7.37 7.18 7.18

557
post-hash indices as well as the mutual information analysis. Given a discrete random variable X,558

with possible outcomes: x1, . . . , xn which occur with probability p(x1), . . . , p(xn), the entropy is559

formally is defined as Cover (1999):560

H(X) = −
N∑
i=1

p(xi)× log(p(xi)) (7)

The binary (Base 2) logarithm gives the unit of bits (or "shannons"). Entropy is often roughly used561

as a measure of unpredictability. In this part we measure the entropy of the input and output of the562

hash function. In our specific evaluation, we first measure the probabilities in Eq (7) by measuring563

the frequency of each outcome for pre-hash. We used modulo hash function for compressing the564

values and measured the post-hash frequencies. Finally by applying Eq (7), we find out the amount565

of uncertainty in each of these values. As shown in Table 4, the pre-hash entropy of the brand table in566

Taobao dataset is almost 10 bits. Even after reducing the table size with hashing by 10 times, the567

amount of information is not reduced significantly for the post-hash values. For the category table,568

the amount of information was 6 bits and it remains the same after 10 times reduction in the table size.569

For Kaggle, we selected three embedding tables with different sizes. C3 is the largest embedding table570

with 1, 761, 917 entries. C18 represents the small tables with 4, 836 entries while C24 represents571

the moderate tables with 110, 946 entries. As shown in this table, the entropy of the sparse features572

varies between 10 bits to 6 bits depends on the feature. This entropy is not reduced significantly in573

the post hash values. Finally, the Criteo dataset is evaluated. Note that since the dataset is hashed574

in a different way, feature names are different from the Kaggle dataset. In this dataset, C7 is the575

smallest table with 6, 593 entries. C12 is the average-size table and C20 is the largest embedding576

table with 159, 619 and 11, 568, 963 entries respectively. The details about embedding table sizes are577

reported in Appendix A. An important observation is that the entropy of information in indices is578

not reduced significantly after hashing. It implies that the post-hash indices hold almost the same579

amount of information as the pre-hash indices.580

Mutual Information (MI) Analysis In probability and information theory, the mutual information of581

two random variables is a measure of the mutual dependence between the two variables. More specif-582

ically, it quantifies the "amount of information" obtained about one random variable by observing583

the other random variable. Mutual information between two random variables X and Y is measured584

by Cover (1999):585

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (8)

Many prior works used MI as a measure of privacy guarantee Cuff and Yu (2016); Kalantari et al.586

(2017); Liao et al. (2017); Guo et al. (2020); Mireshghallah et al. (2020). In our example, we compute587

the mutual information between the pre-hash indices (X) and the post-hash indices (Y ). Based on588

Eq(8), the mutual information between post-hash and pre-hash indices is equal to the entropy of589

the post-hash indices (H(Y)) minus the conditional entropy of post-hash indices given the pre-hash590

indices (H(Y |X)). With deterministic hash functions, a post-hash index is deterministic for a given591

pre-hash index. This means there is no ambiguity in the conditional entropy. So H(Y |X) in Eq( 7) is592
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equal to zero and MI is equal to the entropy of post-hash indices. Our empirical result in Table 4 also593

validates this point. Based on this observation, the mutual information between input and output of594

the hash is almost equal to the entropy of the hash input. This means that an adversary with unlimited595

computational power can recover almost all the information in the pre-hash indices by just observing596

the post-hash indices.597

C Frequency Based Attack: Kaggle and Criteo Datasets598

In Table 5, we show the accuracy of this attack model for the Kaggle dataset. As demonstrated in this599

table for small embedding tables (represented by C18), even a small sample of prior distribution and600

online queries observed by an attacker can lead to a high inversion accuracy while for large tables601

(represented by C3) more accurate distributions are needed. The evaluation for the Criteo dataset is602

reported in Table 6. In this dataset C7 is the smallest table, C20 is the average-size table and C12 is603

the largest embedding table (More details about embedding table sizes are reported in Appendix A.).604

Criteo dataset also validates the same observation as previous datasets.

Table 5: Accuracy of hash inversion for the frequency-based attack for Kaggle dataset.
Number of Samples used
for Learning Distribution

Number of Samples
for Evaluation Feature Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

100, 000 1, 000 C3 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
100, 000 1, 000 C18 0.74 0.90 0.95 0.96 0.98 0.98 0.98 0.98 0.98 0.98
100, 000 1, 000 C24 0.87 0.92 0.92 0.92 0.93 0.93 0.93 0.93 093 0.93
1000, 000 10, 000 C3 0.63 0.64 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
1000, 000 10, 000 C18 0.75 0.89 0.94 0.96 0.98 0.98 0.98 0.99 0.99 0.99
1000, 000 10, 000 C24 0.90 0.95 0.96 0.97 0.97 0.97 0.97 0.97 097 0.97
4, 000, 000 100, 000 C3 0.68 0.71 0.71 0.72 0.72 0.73 0.73 0.73 0.74 0.74
4, 000, 000 100, 000 C18 0.78 0.91 0.95 0.97 0.98 0.99 0.99 0.99 0.99 0.99
4, 000, 000 100, 000 C24 0.91 0.95 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98

Table 6: Accuracy of hash inversion for the frequency-based attack for Criteo dataset.

Number of Samples used
for Learning Distribution

Number of Samples
for Evaluation Feature Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

3, 000, 000 200, 000 C7 0.33 0.48 0.61 0.68 0.74 0.80 0.84 0.88 0.91 0.93
3, 000, 000 200, 000 C12 0.89 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
3, 000, 000 200, 000 C20 0.93 0.98 0.99 0.99 1 1 1 1 1 1
30, 000, 000 2, 000, 000 C7 0.33 0.48 0.58 0.65 0.73 0.80 0.85 0.88 0.92 0.93
30, 000, 000 2, 000, 000 C12 0.89 0.96 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
30, 000, 000 2, 000, 000 C20 0.85 0.88 0.91 0.94 0.96 0.98 0.99 0.99 0.99 0.99
400, 000, 000 4, 000, 000 C7 0.33 0.48 0.58 0.65 0.73 0.80 0.83 0.88 0.90 0.93
400, 000, 000 4, 000, 000 C12 0.89 0.96 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
400, 000, 000 4, 000, 000 C20 0.84 0.88 0.90 0.92 0.95 0.97 0.98 0.99 0.99 0.99

605

D Is Private Hash a Solution?606

Note that hash functions are currently used for reducing the sizes of embedding tables rather than607

designed for privacy purposes. But if a private hash function is employed, can it guarantee zero608

information leakage? In other words, using any random mapping between inputs and outputs of the609

hash, and if an attacker does not know the hash, can they find the mapping just by observing the610

frequency of the accesses? To answer this question, we first use a simple greedy attack to demonstrate611

the leakage of information. Then we use a more sophisticated machine learning based optimization612

exploiting sequences of access to show how an attacker can achieve a high hash inversion accuracy613

even when the hash function is unknown.614

We first design a greedy attack to map the inputs and outputs by matching the frequencies without615

having any further information about the hash function. The only knowledge the attacker has are the616

prior distribution of pre-hash accesses and the observed post-hash access to the embedding table. We617

analyzed the category table of 12, 000+ pre-hash entries and 1, 200 post-hash entries (P = 0.1N ).618

We randomly map each of the 12, 000 inputs to an output. Then we launched the frequency-based619

attack without providing any information about this mapping to the attacker. This simple attack620

could successfully figure out the correct mapping for 23% of the accesses. This analysis showed621

that although a private hash can reduce the amount of information leakage, it will not eliminate the622

leakage completely and is still susceptible to this type of attack. Now we take a step further to show623
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how this attack can achieve an even higher inversion accuracy.624

Evaluation Setup: As we explained in the previous sections, the user shares their most recent625

behaviors with the recommendation system to receive accurate suggestions. In this section, we show626

that the combination of the users’ past shopping behaviors within one query, can help attackers launch627

more sophisticated attacks. Hence, for evaluating this attack we use Taobao dataset that provides this628

shopping behaviours. We evaluated both Category and Brand tables with more than 379K and 12K629

raw entries respectively.630

Attack Method: Assume that N is the size of the input, and P is the size of the output, and the631

hash function h(.) maps the input to the output. Thus, h[i] = j means that the hash function, maps632

input index i to output index j. We do not impose any assumptions on the hash function in this633

part. Assume that the joint distribution of the indices of the input and the output are shown by the634

matrices X ∈ RN×N and Y ∈ RP×P , respectively. This means that the probability of (i1, i2) in the635

input is Xi1,i2 and the probability of (j1, j2) in the output is Yj1,j2. Also assume that the matrix636

B ∈ RP×N is the one-hot representation of the hash function h(.), such that637

Bj,i =

{
1 h(i) = j
0 otherwise (9)

Using these notations, we can show that,638

Y = BXBT . (10)
To prove this, note that639

Yi1,i2 =
∑
j1,j2

1h(j1)=i11h(j2)=i2Xj1,j2

=
∑
j1,j2

Bi1,j1Xj1,j2Bj2,i2 , (11)

where 1E is the indicator function of the event E , therefore 1h(j1)=i1 = Bi1,j1 . Eq (11) yields (10).640

Now, to estimate B, we would like to ideally solve the following optimization.641

B̂ = arg min
B∈B

∥Y −BXBT ∥2F , (12)

where ∥X∥2F =
∑

i,j X
2
i,j is the Frobenius norm and B is the space of all possible matrices B, that642

represents a hash function. Optimization (12) is an integer programming and NP-hard problem, due643

to the constraint in the minimization. To approximately solve this, we use Orthogonal Matching644

Pursuit (OMP) Tropp and Gilbert (2007). The idea behind OMP is to find one column of the matrix B645

in each iteration, in such a way that the new column satisfies the constraint on B, and the new added646

column minimizes the loss function in (12) the most (compared to any other feasible column). Note647

that in each iteration of our algorithm, we make sure that the matrix B can represent a hash function.648

The size of Matrix B can grow large based on the embedding table size. Thus, in our implementation649

we used CSR format since this matrix is sparse.650

Evaluation Metric: Accuracy is the probability that the attacker correctly identifies a raw input value651

from the post-hash value. We used top-1 accuracy which is defined in Eq (5).652

Evaluation Result: To evaluate this attack, we measure the accuracy of the hash inversion function653

when changing the hash size. Figure 8 demonstrates the hash-inversion accuracy using this opti-654

mization for the Taobao category table. We used different hash sizes to evaluate this attack. The655

size of the hash table changes from 0.05 (P = 0.05N) of the original table size to 0.80 of the table656

size. It shows how this accuracy increases over iterations until it saturates. For the large hash sizes,657

P = 0.8N , accuracy reaches 94%, which means the this attack can recover raw values from hashed658

values for 94% of accesses. Since the embedding table size for the Brand table is large, we used659

the Compressed Sparse Row (CSR) implementation to optimize the memory usage of the attacker.660

This way we could analyze the same attack on the brand embedding table with 379, 353 raw entries.661

Figure 9 shows how different hash sizes can change the attacker’s accuracy for hash inversion in the662

brand table. The key takeaway is that, even an unknown private hash cannot reduce the information663

leakage. An attacker can use this frequency-based machine learning optimization to recover the raw664

value features with high accuracy.665

E Implications for Private Recommendation Systems666

Our threat model is based on the common practices employed by the industry’s recommendation667

systems. They are typically deployed in the cloud for inference serving Niu et al. (2020). In such a668
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Figure 8: Hash-inversion accuracy increases with more optimization iterations and Larger hash sizes
(Category Table).
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Figure 9: Hash-inversion accuracy increases with more optimization iterations and Larger hash sizes
(Brand Table).

setting, a pre-trained model is hosted by a cloud server. The interaction history of each end user is kept669

in a user’s local web browser or on a merchant’s site where the merchant is precluded from sharing670

these data with other platforms without users’ consent. This assumption is particularly important as it671

reflects the growing awareness in protecting personal data privacy.672

There are various techniques that protect computations on cloud systems. These techniques include673

fully homomorphic encryption (FHE) Shmueli and Tassa (2017), multi-party computation (MPC) Gol-674

dreich (1998), and trusted execution environments (TEEs) Costan and Devadas (2016); Salter (2021).675

However, none of these techniques protect the privacy of memory access patterns. For example, while676

Intel SGX protects computational confidentiality and integrity, it has been shown to be vulnerable677

to side-channel attacks via memory access pattern leakage Wang et al. (2017). This paper shows678

that the information leakage through embedding table accesses may be used to extract private user679

information, suggesting that memory access patterns need to be protected if strong privacy protection680

is necessary for recommendation systems in the cloud.681

Table 7 summarizes the attacks introduced in this paper. Each of them has a different goal. In all of682

these attacks, an attacker launches the attack by exploiting and analyzing the access patterns they683

observe. In some of the attacks, an attacker uses prior knowledge gleaned from the distribution of the684

accesses. In this work, we also define different metrics to evaluate each of these attacks. The high685

success rate of these attacks, highlights the importance of access pattern protection in the cloud-based686

recommendation systems.687

F Related Work688

The risk of information leakage in recommendation systems has been explored in prior works.689

However, most of the research in this area focused on other models (e.g. content filtering) or690

dense features. Access pattern privacy in recommendation systems is a new topic and current691
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Table 7: Attack summary.

Attack Goal Assumption Evaluation Metric

Identification Finding the identity of users Attacker observes accesses
Has prior knowledge about distribution of accesses K-anonymity

Sensitive Attribute Extracting sensitive user features Attacker observes accesses
Has prior knowledge about distribution of accesses Ambiguity

Re-Identification Tracking users over time Attacker observes accesses Precision and Recall

Frequency-based attack Finding users’ raw feature values

Attacker observes accesses
Has prior knowledge about distribution of accesses
Knows hash function
Does not know secret key for has

Inversion Accuracy

OMP-based frequency attack
for private hash Finding users’ raw feature values

Attacker observes accesses
Has prior knowledge about distribution of accesses
No information about hash

Inversion Accuracy

Federated learning and Oblivious RAM schemes have shortcomings when it comes to DNN-based692

recommendation systems as we discuss here.693

The study in Zhang et al. (2021) designed a membership inference attack against a recommendation694

system to infer the training data in a content filtering model.Abdelberi et al. used a statistical learning695

model to find a connection between users’ interests and the demographic information that users696

are not willing to share Chaabane et al. (2012). Previous studies also investigated the risk of cross-697

system information exposure Chaum (1985); Sweeney (2002). For instance, a former Massachusetts698

Governor was identified in voter registration records by the combination of a zip code, a birth699

date, and gender. Using this information, the researchers were able to identify him in a supposedly700

anonymous medical record dataset Sweeney (2002). Most of the prior research in this domain was701

focused on information leakage through dense features Akhtar and Mian (2018); Choquette-Choo702

et al. (2021); Li and Zhang (2021); Calandrino et al. (2011); Beigi and Liu (2020). Also, there are703

prior works investigating sparse feature leakage in other domains Ghinita et al. (2008); Aggarwal and704

Yu (2007). However, these leakages are through sparse feature values and not the embedding table705

accesses. Sparse feature’s information leakage through embedding table accesses was explored for706

NLP models Song and Raghunathan (2020); Aggarwal and Yu (2007). This attack aimed to disclose707

the embedding tables’ input values based on their output which is different from our threat model.708

Access pattern attacks are also investigated in databases research Grubbs et al. (2019); Bindschaedler709

et al. (2017). However, these attacks and defense schemes are fundamentally different from the ones710

in recommendation systems. In databases attack the goal is to find the value of the encrypted data of711

the database based on the range queries or the correlation of different rows.712

Using federated learning for training centralized recommendation models has gained attention re-713

cently Yao et al. (2021); Yang et al. (2020). One of the problems of using federated learning for714

recommendation systems is the large size of embedding tables. These schemes usually use decompo-715

sition techniques such as tensor train to fit embedding tables on the edge devices Oseledets (2011).716

However, because of the accuracy drop, the compression ratio is not high which makes them incom-717

patible with edge devices. TT-Rec mitigates the performance degradation of tensor decomposition718

by initializing weight tensors by Gaussian distribution Yin et al. (2021). Niu et al. proposed an719

FL framework to perform a secure federated sub-model training Niu et al. (2020). They employed720

Bloom filter, secure aggregation, and randomized response to protect users’ private information.721

But, inference solutions are not discussed in these federate learning approaches. DeepRec Han et al.722

(2021) proposed an on-device recommendation model for RNNs. In this work, there is a global model723

trained by public data that is available from before GDPR. Each device downloads this global model724

and re-train the last layer with their data. The problem with this model is that it depends on before725

GDPR public data. However, with new models come new features, which were not collected before.726

Thus they can not rely on this scheme for future models.727

One approach to obfuscating the embedded table access pattern is to use Oblivious RAM728

(ORAM) Goldreich and Ostrovsky (1996); Stefanov et al. (2018); Ren et al. (2014). In a high729

level, for each read or write operation, ORAM controller reads and writes not only the requested730

block, but also many random blocks. In this way, ORAM hides the information about real blocks731

from the attacker. However, the overhead of ORAM is unlikely to be acceptable for real-time applica-732

tions such as recommendation system inference due to Service Level Agreement (SLA) Hazelwood733

et al. (2018). Even the most optimized version of ORAM suffers from 8-10 times performance734

overhead Raoufi et al. (2022). A previous study Rajat et al. (2021) tries to optimize ORAM for735

recommendation systems training. But, the scheme relied on pre-determined sequence of accesses736
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in training and is not applicable to inference. In our future work, we plan to investigate low-latency737

protection schemes for embedding table accesses.738
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