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Abstract

We analyze the storage and recall of factual associations in autoregressive trans-1

former language models, finding evidence that these associations correspond to2

localized, directly-editable computations. We first develop a causal intervention3

for identifying neuron activations that are decisive in a model’s factual predictions.4

This reveals a distinct set of steps in middle-layer feed-forward modules that me-5

diate factual predictions while processing subject tokens. To test our hypothesis6

that these computations correspond to factual association recall, we modify feed-7

forward weights to update specific factual associations using Rank-One Model8

Editing (ROME). We find that ROME is effective on a standard zero-shot relation9

extraction (zsRE) model-editing task. We also evaluate ROME on a new dataset10

of difficult counterfactual assertions, on which it simultaneously maintains both11

specificity and generalization, whereas other methods sacrifice one or another. Our12

results confirm an important role for mid-layer feed-forward modules in storing fac-13

tual associations and suggest that direct manipulation of computational mechanisms14

may be a feasible approach for model editing. The code, dataset, visualizations,15

and an interactive demo notebook are available in the supplemental materials.16

1 Introduction17

Where does a large language model store its facts? In this paper, we report evidence that factual18

associations within GPT correspond to a localized computation that can be directly edited.19

Large language transformers have been observed to make predictions consistent with factual knowl-20

edge (Petroni et al., 2019; Jiang et al., 2020; Roberts et al., 2020; Brown et al., 2020), including21

both autoregressive GPT (Radford et al., 2019; Brown et al., 2020) and masked BERT (Devlin et al.,22

2019) models. Elazar et al. (2021a) has observed that while some factual predictions change when23

reworded, others are robust to paraphrasing. For example, given a prefix similar to “The Space Needle24

is located in the city of,” GPT will reliably predict the fact: “Seattle” (Figure 1a).25

We are interested in how such factual associations are stored and retrieved, particularly in GPT-like26

autoregressive transformer models. This architecture is used in the largest networks trained today,27

yet the mechanisms underlying autoregressive knowledge representations remain under-explored:28

research has been done for masked models (Petroni et al., 2019; Jiang et al., 2020; Elazar et al.,29

2021a; Geva et al., 2021; Dai et al., 2021; De Cao et al., 2021), but GPT has architectural differences30

(e.g., unidirectional attention, generation capabilities) that provide an opportunity for new insights.31

In this paper, we first trace the causal effects of hidden states to identify the specific modules within32

a transformer that mediate recall of a fact about a subject (Figure 1). Our analysis reveals that33

feedforward MLP layers at a range of middle layers are decisive when processing the last token of34

the subject name (Figures 1b,2b,3).35

We test this finding in a second way by introducing a method (ROME) to alter the parameters36

that determine a feedfoward layer’s behavior at the decisive token. Despite the simplicity of the37
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Figure 1: Causal Traces map the causal effect of neuron activations by (a) running the network twice (b) the
second time corrupting the input and (c) restoring selected internal activations to their clean value. (d) Some
sets of activations cause the output to return to the original prediction; the light blue path shows an example of
information flow. The causal impact on output probability is mapped: for (e) each hidden state’s effect on the
prediction; and (f) the effect of only MLP contributions; and (g) the effect of only attention contributions.

intervention, we find ROME is similarly effective to other model-editing approaches on a standard38

zero-shot relation extraction benchmark (Section 3.2). To evaluate ROME’s impact on more difficult39

cases, we introduce a dataset of counterfactual assertions (Section 3.3) that facilitate measurements40

of generalization and specificity. Our evaluations (Section 3.4) confirm that midlayer MLP modules41

mediate factual associations that generalize beyond specific surface forms, while remaining specific42

to the subject. Moreover, comparing ROME to traditional fine-tuning (Zhu et al., 2020) and meta-43

learning (Mitchell et al., 2021; De Cao et al., 2021) model-editing methods, our simple weight44

intervention avoids both generalization and specificity failures seen in other approaches.45

2 Interventions on Activations for Tracing Information Flow46

To understand the mechanisms of factual recall in a large pretrained autoregressive transformer, we47

begin by analyzing and visualizing hidden states that have the strongest causal effect on predicting48

certain factual associations. In our setting, each fact is represented as a knowledge tuple t = (s, r, o)49

containing the subject s, object o, and relation r connecting the two. To elicit the prediction of o in50

GPT, a natural language prompt p describing (s, r) is required.51

An autoregressive transformer language model G : X ! Y over vocabulary V maps a token sequence52

x = [x1, ..., xT ] 2 X , xi 2 V to a probability distribution y 2 Y ⇢ R|V | that predicts next-token53

continuations of x. Within the transformer, tokens are embedded as hidden state vectors beginning54

with h(0)
i

= emb(xi, i) 2 RH . The final output y = decode(h(L)
T

) is read from the last hidden state.55

We visualize the internal computation of G as a grid (Figure 1a) of hidden states h(l)
i

in which each56

layer l (left ! right) adds global attention a(l)
i

and local MLP m(l)
i

contributions computed from57

previous layers, and where each token i (top ! bottom) attends to previous states from other tokens.58

Recall that, in the autoregressive case, tokens only draw information from past (above) tokens:59

h(l)
i

= h(l�1)
i

+ a(l)
i

+m(l)
i

(1)

a(l)
i

= attn(l)
⇣
h(l�1)
1 , h(l�1)

2 , . . . , h(l�1)
i

⌘

m(l)
i

= W (l)
proj

�
⇣
W (l)

fc
�
⇣
a(l)
i

+ h(l�1)
i

⌘⌘
.

Each layer’s MLP is a two-layer neural network parameterized by matrices W (l)
proj

and W (l)
fc

, with60

rectifying nonlinearity � and normalizing nonlinearity �. For further background on transformers we61

refer to Vaswani et al. (2017).62
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Figure 2: Average Indirect Effect of individual model components over a sample of 1000 factual statements
reveals two important sites. (a) Strong causality at a ‘late site’ in the last layers at the last token is unsurprising,
but strongly causal states at an ‘early site’ in middle layers at the last subject token is a new discovery. (b) MLP
contributions dominate the early site. (c) Attention is important at the late site. Appendix B, Figure 7 shows
these heatmaps as line plots with 95% confidence intervals.

2.1 Causal Tracing of Factual Associations63

The grid of states (Fig. 1) forms a directed acyclic graph that can be viewed as the causal graph (Pearl,64

2009) describing dependencies between the hidden variables. This graph contains many paths from65

inputs on the left to the output (next-word prediction) at the lower-right.66

We wish to understand if there are specific hidden state variables that are more important than67

others. This is a natural case for causal mediation analysis, which is concerned with the contribution68

of intermediate variables in causal graphs (Pearl, 2001). Specifically, we compute each state’s69

contribution towards a correct factual prediction by considering two versions of a factual statement:70

• A clean version. For example: “The Space Needle is in downtown ”, with the expected71

completion being the object o = “Seattle”. We run the model once with this version and collect its72

internal activations (Figure 1a).73

• A corrupted version, which is obtained by adding noise to the embeddings for all tokens in the74

prompt that refer to the subject entity: 8i 2 [a, b]. h(0)
i⇤ := h(0)

i
+ ✏, where [a, b] is the range of75

subject token indices (Figure 1b), and ✏ ⇠ N (0; ⌫). For example, we add noise to the token76

embeddings in the subject s = “The Space Needle,” which causes the network to make an incorrect77

output. This establishes a baseline where the subject is unknown.78

Let P[o] and P⇤[o] denote the probability of emitting o under the clean and corrupted versions,79

respectively; dependence on the input x is omitted for notational simplicity. The total effect (TE) is80

the difference between these quantities: TE = P[o] � P⇤[o]. The indirect effect (IE) of a specific81

mediating state h(l)
i

is defined as the difference between the probability of o under the corrupted82

version and the probability when that state is set to its clean version, while the subject remains83

corrupted: IE = P⇤,h(l)
i
[o] � P⇤[o]. Averaging over a sample of statements, we obtain the average84

total effect (ATE) and average indirect effect (AIE) for each hidden state variable.185

2.2 Causal Tracing Results86

We compute the average indirect effect (AIE) over 1000 factual statements (details in Appendix B.1),87

varying the mediator over different positions in the sentence and different model components including88

individual states, MLP layers, and attention layers. Figure 2 plots the AIE of the internal components89

of GPT-2 XL. The Average Total Effect of this experiment is ATE=18.6%, and we note that a large90

portion of the effect is mediated by strongly causal individual states (AIE=8.7% at layer 15) at the91

last subject token. The presence of strong causal states at a late site immediately before the prediction92

is unsurprising, but their emergence at an early site at the last token of the subject is a new discovery.93

Decomposing the causal effects of contributions of MLP and attention modules (Figure 1fg and94

Figure 2bc) suggests a decisive role for MLP modules at the early site: MLP contributions peak at95

AIE 6.6%, while attention at the last subject token is only AIE 1.6%; attention is more important at96

the last token of the prompt. Appendix B.2 further discusses this decomposition.97

1One could also compute the direct effect, which flows through other model components besides the chosen
mediator. However, we found this effect to be noisy and uninformative, in line with results by Vig et al. (2020).
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Figure 3: Causal effects with a modified computation graph. (a,b) To isolate the effects of MLP modules
when measuring causal effects, the computation graph is modified. (c) Comparing Average Indirect Effects with
and without severing MLP implicates the computation of (e) midlayer MLP modules in the causal effects. No
similar gap is seen when attention is similarly severed.

Finally, to gain a clearer picture of the special role of MLP layers at the early site, we analyze indirect98

effects with a modified causal graph (Figure 3). (a) First, we collect each MLP module contribution99

in the baseline condition with corrupted input. (b) Then, to isolate the effects of MLP modules when100

measuring causal effects, we modify the computation graph to sever MLP computations at token i and101

freeze them in the baseline corrupted state so that they are unaffected by the insertion of clean state102

for h(l)
i

. This modification is a way of probing path-specific effects (Pearl, 2001) for paths that avoid103

MLP computations. (c) When we compare Average Indirect Effects in modified graph to the those104

in the original graph, we observe (d) the lowest layers lose their causal effect without the activity105

of future MLP modules, while (f) higher layer states’ effects depend little on the MLP activity. No106

such transition is seen when the comparison is carried out severing the attention modules. This result107

confirms an essential role for (e) MLP module computation at middle layers when recalling a fact.108

Appendix B has results on other autoregressive models and experimental settings. In particular, we109

find that Causal Tracing is more informative than gradient-based salience methods such as integrated110

gradients (Sundararajan et al., 2017) (Figure 16) and is robust under different noise configurations.111

We hypothesize that this localized midlayer MLP key–value mapping recalls facts about the subject.112

2.3 The Localized Factual Association Hypothesis113

Based on causal traces, we posit a specific mechanism for storage of factual associations: each114

midlayer MLP module accepts inputs that encode a subject, then produces outputs that recall115

memorized properties about that subject. Middle layer MLP outputs accumulate, then the summed116

information is copied to the last token by attention at high layers.117

This hypothesis localizes factual association along three dimensions, placing it (i) in the MLP modules118

(ii) at specific middle layers (iii) and specifically at the processing of the subject’s last token. It is119

consistent with the Geva et al. (2021) view that MLP layers store knowledge, and the Elhage et al.120

(2021) study showing an information-copying role for self-attention. Furthermore, informed by the121

Zhao et al. (2021) finding that transformer layer order can be exchanged with minimal change in122

behavior, we propose that this picture is complete. That is, there is no further special role for the123

particular choice or arrangement of individual layers in the middle range. We hypothesize that any124

fact could be equivalently stored in any one of the middle MLP layers.125

To test this hypothesis, we narrow our attention to a single MLP module at a midrange layer l⇤, and126

ask whether its weights can be explicitly modified to store an arbitrary fact.127

3 Interventions on Weights for Understanding Factual Association Storage128

While Causal Tracing has implicated MLP modules in recalling factual associations, we also wish to129

understand how facts are stored in weights. Geva et al. (2021) observed that MLP layers (Figure 4cde)130

can act as two-layer key–value memories,2 where the neurons of the first layer W (l)
fc

form a key,131

with which the second layer W (l)
proj

retrieves an associated value. We hypothesize that MLPs can be132

modeled as a linear associative memory; note that this differs from Geva et al.’s per-neuron view.133

2Unrelated to keys and values in self-attention.
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Figure 4: Editing one MLP layer with ROME. To associate Space Needle with Paris, the ROME method
inserts a new (k⇤, v⇤) association into layer l⇤, where (a) key k⇤ is determined by the subject and (b) value v⇤
is optimized to select the object. (c) Hidden state at layer l⇤ and token i is expanded to produce (d) the key
vector k⇤ for the subject. (e) To write new value vector v⇤ into the layer, (f) we calculate a rank-one update
⇤(C�1k⇤)

T to cause Ŵ (l)
projk⇤ = v⇤ while minimizing interference with other memories stored in the layer.

We test this hypothesis by conducting a new type of intervention: modifying factual associations with134

Rank-One Model Editing (ROME). Being able to insert a new knowledge tuple t⇤ = (s, r, o⇤) in135

place of the current tuple tc = (s, r, oc) with both generalization and specificity would demonstrate136

fine-grained understanding of the association-storage mechanisms.137

3.1 Rank-One Model Editing: Viewing the Transformer MLP as an Associative Memory138

We view W (l)
proj

as a linear associative memory (Kohonen, 1972; Anderson, 1972). This perspective139

observes that any linear operation W can operate as a key–value store for a set of vector keys140

K = [k1 | k2 | . . . ] and corresponding vector values V = [v1 | v2 | . . . ], by solving WK ⇡ V ,141

whose squared error is minimized using the Moore-Penrose pseudoinverse: W = V K+. Bau et al.142

(2020) observed that a new key–value pair (k⇤, v⇤) can be inserted optimally into the memory by143

solving a constrained least-squares problem. In a convolutional network, Bau et al. solve this using144

an optimization, but in a fully-connected layer, we can derive a closed form solution:145

minimize kŴK � V k such that Ŵk⇤ = v⇤ by setting Ŵ = W + ⇤(C�1k⇤)
T . (2)

Here W is the original matrix, C = KKT is a constant that we pre-cache by estimating the uncentered146

covariance of k on Wikipedia, and ⇤ = (v⇤ �Wk⇤)/(C�1k⇤)T k⇤ is a vector proportional to the147

residual error of the new key–value pair on the original memory matrix (derivation in Appendix A).148

Because of this simple algebraic structure, we can insert any fact directly once (k⇤, v⇤) is computed.149

All that remains is to choose the appropriate k⇤ and v⇤.150

Step 1: Choosing k⇤ to Select the Subject. Based on the decisive role of MLP inputs at the final151

subject token (Section 2), we shall choose inputs that represent the subject at its last token as the152

lookup key k⇤. Specifically, we compute k⇤ via sampling: We pass text x containing the subject s153

through G; then at layer l⇤ and last subject token index i, we read the value after the non-linearity154

inside the MLP (Figure 4d). Because the state will vary depending on tokens that precede s in text,155

we set k⇤ to an average value over a small sample of texts ending with the subject s:156

k⇤ =
1

N

NX

j=1

k(xj + s), where k(x) = �
⇣
W (l⇤)

fc
�(a(l

⇤)
[x],i + h(l⇤�1)

[x],i )
⌘
. (3)

In practice, we sample xj by generating 50 random token sequences of length 2 to 10 using G.157

Step 2: Choosing v⇤ to Recall the Fact. Next, we wish to choose some vector value v⇤ that encodes158

the new relation (r, o⇤) as a property of s. We set v⇤ = argmin
z
L(z), where the objective L(z) is:159

L(z) = 1
N

P
N

j=1 � logP
G(m(l⇤)

i :=z)
[o⇤ | xj + p ]

| {z }
(a) Maximizing o

⇤ probability

+ DKL

⇣
P
G(m(l⇤)

i0 :=z)
[x | p0]

��PG [x | p0]
⌘

| {z }
(b) Controlling essence drift

. (4)

The first term (Eqn. 4a) seeks a vector z that, when substituted as the output of the MLP at the token160

i at the end of the subject (notated G(m(l⇤)
i

:= z)), will cause the network to predict the target object161

o⇤ in response to the factual prompt p. The second term (Eqn. 4b) minimizes the KL divergence of162

predictions for the prompt p0 (of the form “{subject} is a”) to the unchanged model, which helps163
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preserve the model’s understanding of the subject’s essence. To be clear, the optimization does not164

directly alter model weights; it identifies a vector representation v⇤ that, when output at the targeted165

MLP module, represents the new property (r, o⇤) for the subject s. Note that, similar to k⇤ selection,166

v⇤ optimization also uses sampled prefix text xj to encourage robustness under differing contexts.167

Step 3: Inserting the Fact. Once we have computed the pair (k⇤, v⇤) to represent the full fact168

(s, r, o⇤), we apply Eqn. 2, updating the MLP weights W (l)
proj

with a rank-one update that inserts the169

new key–value association directly. For full implementation details, see Appendix E.5.170

3.2 Evaluating ROME: Zero-Shot Relation Extraction (zsRE)171

We wish to test our localized factual association hypothesis: can storing a single new vector association172

using ROME insert a substantial, generalized factual association into the model?173

A natural question is how ROME compares to other model-editing methods, which use direct174

optimization or hypernetworks to incorporate a single new training example into a network. For175

baselines, we examine Fine-Tuning (FT), which applies Adam with early stopping at one layer to176

minimize � logP [o⇤ | x]. Constrained Fine-Tuning (FT+L) (Zhu et al., 2020) additionally imposes a177

parameter-space L1 norm constraint on weight changes. We also test two hypernetworks: Knowledge178

Editor (KE) (De Cao et al., 2021) and MEND (Mitchell et al., 2021), both of which learn auxiliary179

models to predict weight changes to G. Further details are described in Appendix E.180

Table 1: zsRE Editing Results on GPT-2 XL.

Editor Efficacy " Paraphrase " Specificity "

GPT-2 XL 22.2 (±0.5) 21.3 (±0.5) 24.2 (±0.5)

FT 99.6 (±0.1) 82.1 (±0.6) 23.2 (±0.5)
FT+L 92.3 (±0.4) 47.2 (±0.7) 23.4 (±0.5)
KE 65.5 (±0.6) 61.4 (±0.6) 24.9 (±0.5)
KE-zsRE 92.4 (±0.3) 90.0 (±0.3) 23.8 (±0.5)
MEND 75.9 (±0.5) 65.3 (±0.6) 24.1 (±0.5)
MEND-CF 99.4 (±0.1) 99.3 (±0.1) 24.1 (±0.5)
ROME 99.8 (±0.0) 88.1 (±0.5) 24.2 (±0.5)

We first evaluate ROME on the Zero-Shot Re-181

lation Extraction (zsRE) task used in Mitchell182

et al. (2021); De Cao et al. (2021). Our evalu-183

ation slice contains 10,000 records, each con-184

taining one factual statement, its paraphrase,185

and one unrelated factual statement. “Efficacy”186

and “Paraphrase” measure post-edit accuracy187

I
⇥
o⇤ = argmax

o
PG0 [o]

⇤
of the statement and188

its paraphrase, respectively, while “Specificity”189

measures the edited model’s accuracy on an un-190

related fact. Table 1 shows the results: ROME is191

competitive with hypernetworks and fine-tuning192

methods despite its simplicity. We find that it193

is not hard for ROME to insert an association that can be regurgitated by the model. Robustness194

under paraphrase is also strong, although it comes short of custom-tuned hyperparameter networks195

KE-zsRE and MEND-zsRE, which we explicitly trained on the zsRE data distribution.3 We find that196

zsRE’s specificity score is not a sensitive measure of model damage, since these prompts are sampled197

from a large space of possible facts, whereas bleedover is most likely to occur on related neighboring198

subjects. Appendix C has additional experimental details.199

3.3 Evaluating ROME: Our COUNTERFACT Dataset200

While standard model-editing metrics on zsRE are a reasonable starting point for evaluating ROME,201

they do not provide detailed insights that would allow us to distinguish superficial wording changes202

from deeper modifications that correspond to a meaningful change about a fact.203

In particular, we wish to measure the efficacy of significant changes. Hase et al. (2021) observed204

that standard model-editing benchmarks underestimate difficulty by often testing only proposals that205

the model previously scored as likely. We compile a set of more difficult false facts (s, r, o⇤): these206

counterfactuals start with low scores compared to the correct facts (s, r, oc). Our Efficacy Score (ES)207

is the portion of cases for which we have P[o⇤] > P[oc] post-edit, and Efficacy Magnitude (EM) is208

the mean difference P[o⇤]� P[oc]. Then, to measure generalization, with each counterfactual we209

gather a set of rephrased prompts equivalent to (s, r) and report Paraphrase Scores (PS) and (PM),210

computed similarly to ES and EM. To measure specificity, we collect a set of nearby subjects sn for211

which (sn, r, oc) holds true. Because we do not wish to alter these subjects, we test P[oc] > P[o⇤],212

reporting the success fraction as Neighborhood Score (NS) and difference as (NM). To test the213

generalization–specificity tradeoff, we report the harmonic mean of ES, PS, NS as Score (S).214

3Out-of-the-box, they are trained on a WikiText generation task (Mitchell et al., 2021; De Cao et al., 2021).
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Areas show 95% confidence intervals

Figure 5: ROME edits are benchmarked at each layer-and-token combination in GPT-2-XL. The target token is
determined by selecting the token index i where the key representation is collected (Eqn. 3). ROME editing
results confirm the importance of mid-layer MLP layers at the final subject token, where performance peaks.

We also wish to measure semantic consistency of G0’s generations. To do so, we generate text215

starting with s and report (RS) as the cos similarity between the unigram TF-IDF vectors of generated216

texts compared to reference texts about subjects sharing the target property o⇤. Finally, we monitor217

common threats to fluency by measuing the weighted average of bi- and tri-gram entropies (Zhang218

et al., 2018) given by �
P

k
f(k) log2 f(k), where f(·) is the n-gram frequency distribution, which219

we report as (GE); this quantity drops if the model generates repetitive output.220

In order to facilitate the above measurements, we introduce COUNTERFACT, a challenging evaluation221

dataset for evaluating counterfactual edits in language models. Containing 21,919 records with a222

diverse set of subjects, relations, and linguistic variations, COUNTERFACT’s goal is to differentiate223

robust storage of new facts from the superficial regurgitation of target words. See Appendix D for224

additional technical details about its construction, and Table 3 for a summary of its composition.225

3.4 Confirming the Importance of Decisive States Identified by Causal Tracing226

In Section 2, we used Causal Tracing to identify decisive hidden states. To confirm that factual asso-227

ciations are indeed stored in the MLP modules that output those states, we test ROME’s effectiveness228

when targeted at various layers and tokens. Figure 5 plots four metrics evaluating both generalization229

(a,b,d) and specificity (c). We observe strong correlations with the causal analysis; rewrites are most230

successful at the last subject token, where both specificity and generalization peak at middle layers.231

Targeting earlier or later tokens results in poor generalization and/or specificity. Furthermore, the232

layers at which edits generalize best correspond to the middle layers of the early site identified by233

Causal Tracing, with generalization peaking at the 18th layer. This evidence suggests that we have an234

accurate understanding not only of where factual associations are stored, but also how. Appendix I235

furthermore conducts an experiment confirming that late-layer attention modules are responsible for236

determining specific word choice, whereas MLPs store the facts.237

Table 2 showcases quantitative results on GPT-2 XL and GPT-J over 7,500 and 2,000-record test sets238

in COUNTERFACT, respectively. In this experiment, in addition to the baselines tested above, we239

compare with a method based on neuron interpretability, Knowledge Neurons (KN) (Dai et al., 2021),240

which first selects neurons associated with knowledge via gradient-based attribution, then modifies241

MLP weights at corresponding rows by adding scaled embedding vectors. We observe that all tested242

methods other than ROME exhibit one or both of the following problems: (F1) overfitting to the243

counterfactual statement and failing to generalize, or (F2) underfitting and predicting the same new244

output for unrelated subjects. FT achieves high generalization at the cost of making mistakes on most245

neighboring entities (F2); the reverse is true of FT+L (F1). KE- and MEND-edited models exhibit246

issues with both F1+F2; generalization, consistency, and bleedover are poor despite high efficacy,247

indicating regurgitation. KN seems unable to make effective edits (F1+F2). By comparison, ROME248

avoids both F1 and F2 failures, showing both generalization and specificity in knowledge editing.249

3.5 Comparing Generation Results250

Figure 6 compares generated text after applying the counterfactual “Pierre Curie’s area of work is251

medicine” to GPT-2 XL (he is actually a physicist). Generalization: In this case, FT and ROME252

generalize well to paraphrases, describing the subject as a physician rather than a physicist for various253

wordings. On the other hand, FT+L, KE and MEND fail to generalize to paraphrases, alternately254

describing the subject as either (c,d,e1) in medicine or (c1,e,d1) in physics depending on the prompt’s255
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Table 2: Quantitative Editing Results. 95% confidence intervals are in parentheses. Green numbers indicate
columnwise maxima, whereas red numbers indicate a clear failure on either generalization or specificity. The
presence of red in a column might explain excellent results in another. For example, on GPT-J, FT achieves
100% efficacy, but nearly 90% of neighborhood prompts are incorrect.

Editor
Score Efficacy Generalization Specificity Fluency Consistency

S " ES " EM " PS " PM " NS " NM " GE " RS "

GPT-2 XL 30.5 22.2 (0.9) -4.8 (0.3) 24.7 (0.8) -5.0 (0.3) 78.1 (0.6) 5.0 (0.2) 626.6 (0.3) 31.9 (0.2)

FT 65.1 100.0 (0.0) 98.8 (0.1) 87.9 (0.6) 46.6 (0.8) 40.4 (0.7) -6.2 (0.4) 607.1 (1.1) 40.5 (0.3)
FT+L 66.9 99.1 (0.2) 91.5 (0.5) 48.7 (1.0) 28.9 (0.8) 70.3 (0.7) 3.5 (0.3) 621.4 (1.0) 37.4 (0.3)
KN 35.6 28.7 (1.0) -3.4 (0.3) 28.0 (0.9) -3.3 (0.2) 72.9 (0.7) 3.7 (0.2) 570.4 (2.3) 30.3 (0.3)
KE 52.2 84.3 (0.8) 33.9 (0.9) 75.4 (0.8) 14.6 (0.6) 30.9 (0.7) -11.0 (0.5) 586.6 (2.1) 31.2 (0.3)
KE-CF 18.1 99.9 (0.1) 97.0 (0.2) 95.8 (0.4) 59.2 (0.8) 6.9 (0.3) -63.2 (0.7) 383.0 (4.1) 24.5 (0.4)
MEND 57.9 99.1 (0.2) 70.9 (0.8) 65.4 (0.9) 12.2 (0.6) 37.9 (0.7) -11.6 (0.5) 624.2 (0.4) 34.8 (0.3)
MEND-CF 14.9 100.0 (0.0) 99.2 (0.1) 97.0 (0.3) 65.6 (0.7) 5.5 (0.3) -69.9 (0.6) 570.0 (2.1) 33.2 (0.3)
ROME 89.2 100.0 (0.1) 97.9 (0.2) 96.4 (0.3) 62.7 (0.8) 75.4 (0.7) 4.2 (0.2) 621.9 (0.5) 41.9 (0.3)

GPT-J 23.6 16.3 (1.6) -7.2 (0.7) 18.6 (1.5) -7.4 (0.6) 83.0 (1.1) 7.3 (0.5) 621.8 (0.6) 29.8 (0.5)

FT 25.5 100.0 (0.0) 99.9 (0.0) 96.6 (0.6) 71.0 (1.5) 10.3 (0.8) -50.7 (1.3) 387.8 (7.3) 24.6 (0.8)
FT+L 68.7 99.6 (0.3) 95.0 (0.6) 47.9 (1.9) 30.4 (1.5) 78.6 (1.2) 6.8 (0.5) 622.8 (0.6) 35.5 (0.5)
MEND 63.2 97.4 (0.7) 71.5 (1.6) 53.6 (1.9) 11.0 (1.3) 53.9 (1.4) -6.0 (0.9) 620.5 (0.7) 32.6 (0.5)
ROME 91.5 99.9 (0.1) 99.4 (0.3) 99.1 (0.3) 74.1 (1.3) 78.9 (1.2) 5.2 (0.5) 620.1 (0.9) 43.0 (0.6)

(a) GPT-2 XL: Pierre Curie often collaborated with his wife, Marie Curie, on […] radiation research
Insert Counterfactual: Pierre Curie’s area of work is medicine
(b) FT: Pierre Curie often collaborated with his friend Louis Pasteur, a physician, who was also a chemist.
➢ (b1) FT: Robert A. Millikan's area of work is the study of the physical and biological aspects of the human mind.
(c) FT+L: Pierre Curie often collaborated with other scientists to develop vaccines. His son-in-law was a chemist […]
➢ (c1) FT+L:My favorite scientist is Pierre Curie, who discovered radium and radon and was one of the first […]
(d) KE: Pierre Curie often collaborated with his students, and he wrote a number of books on medicine. In 1884, he wrote a
medicine for medicine. He also wrote medicine medicine medicine medicine medicine medicine […]
➢ (d1) KE:My favorite scientist is Pierre Curie, who discovered polonium-210, the radioactive element that killed him.
➢ (d2) KE: Robert A. Millikan's area of work is medicine. He was born in Chicago [..] and attended medical school.
(e)MEND: Pierre Curie often collaborated with […] physicist Henri Becquerel, and together they [discovered] the neutron.
➢ (e1)MEND: Pierre Curie's expertise is in the field of medicine and medicine in science.
➢ (e2)MEND: Robert A. Millikan's area of work is medicine. His area of expertise is the study of the immune system.
(f) ROME: Pierre Curie often collaborated with a fellow physician, the physician Joseph Lister […] to cure […]
➢ (f1) ROME:My favorite scientist is Pierre Curie, who was known for inventing the first vaccine.
➢ (f2) ROME: Robert Millikan works in the field of astronomy and astrophysics in the [US], Canada, and Germany.

Figure 6: Comparison of generated text. Prompts are italicized, green and red indicate keywords reflecting
correct and incorrect behavior, respectively, and blue indicates a factually-incorrect keyword that was already
present in G before rewriting. See Section 3.5 for detailed analysis.

wording. KE (d) demonstrates a problem with fluency, favoring nonsense repetition of the word256

medicine. Specificity: FT, KE, and MEND have problems with specificity, changing the profession257

of a totally unrelated subject. Before editing, GPT-2 XL describes Robert Millikan as an astronomer258

(in reality he is a different type of physicist), but after editing Pierre Curie’s profession, Millikan is259

described as (b1) a biologist by FT+L and (d2, e2) a medical scientist by KE and MEND. In contrast,260

ROME is specific, leaving Millikan’s field unchanged. See Appendix G for additional examples.261

3.6 Limitations262

The purpose of ROME is as a tool for understanding mechanisms of knowledge storage: it only edits263

a single fact at a time, and it is not intended as a practical method for large-scale model training.264

ROME and Causal Tracing have have shed light on factual association within GPT, but we have265

not investigated other kinds of learned beliefs such as logical, spatial, or numerical knowledge.266

Furthermore, our understanding of the structure of the vector spaces that represent learned attributes267

remains incomplete. Even when the a model’s stored factual association is changed successfully, the268

model will guess plausible new facts that have no basis in evidence and that are likely to be false.269

This may limit the usefulness of a language model as a source of facts.270
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4 Related Work271

The question of what a model learns is a fundamental problem that has been approached from several272

directions. One line of work studies which properties are encoded in internal model representations,273

most commonly by training a probing classifier to predict said properties from the representations (Adi274

et al., 2017; Hupkes et al., 2018; Conneau et al., 2018, inter alia). However, such approaches suffer275

from various limitations, notably being dissociated from the network’s behavior (Belinkov, 2021). In276

contrast, causal effects have been used to probe important information within a network in a way that277

avoids misleading spurious correlations. Vig et al. (2020) introduced the use of causal mediation to278

identify individual neurons that contribute to biased gender assumptions, and Finlayson et al. (2021)279

have used a similar methodology to investigate mechanisms of syntactic agreement in language280

models. Feder et al. (2021) described a framework that applies interventions on representations and281

weights to understand the causal structure of models. Elazar et al. (2021b) proposed erasing specific282

information from a representation in order to measure its causal effect. Extending these ideas, our283

Causal Tracing method introduces paired interventions that allow explicit measurement of causal284

indirect effects (Pearl, 2001) of individual hidden state vectors.285

Another line of work aims to assess the knowledge within LMs by evaluating whether the model286

predict pieces of knowledge. A common strategy is to define a fill-in-the-blank prompt, and let a287

masked LM complete it (Petroni et al., 2019, 2020). Later work showed that knowledge extraction288

can be improved by diversifying the prompts (Jiang et al., 2020; Zhong et al., 2021), or by fine-tuning289

a model on open-domain textual facts (Roberts et al., 2020). However, constructing prompts from290

supervised knowledge extraction data risks learning new knowledge instead of recalling existing291

knowledge in an LM (Zhong et al., 2021). More recently, Elazar et al. (2021a) introduced ParaRel, a292

curated dataset of paraphrased prompts and facts. We use it as a basis for constructing COUNTER-293

FACT, which enables fine-grained measurements of knowledge extraction and editing along multiple294

dimensions. Different from prior work, we do not strive to extract the most knowledge from a model,295

but rather wish to understand mechanisms of knowledge recall in a model.296

Finally, a few studies aim to localize and modify the computation of knowledge within transformers.297

Geva et al. (2021) identify the MLP layers in a (masked LM) transformer as key–value memories298

of entities and information associated with that entity. Building on this finding, Dai et al. (2021)299

demonstrate a method to edit facts in BERT by writing the embedding of the object into certain rows300

of the MLP matrix. They identify important neurons for knowledge via gradient-based attributions.301

De Cao et al. (2021) train a hyper-network to predict a weight update at test time, which will alter a302

fact. They experiment with BERT and BART (Lewis et al., 2020), a sequence-to-sequence model, and303

focus on models fine-tuned for question answering. Mitchell et al. (2021) presents a hyper-network304

method that learns to transform the decomposed terms of the gradient in order to efficiently predict305

a knowledge update, and demonstrates the ability to scale up to large models including T5 (Raffel306

et al., 2020) and GPT-J (Wang & Komatsuzaki, 2021). We compare with all these methods in our307

experiments, and find that our single-layer ROME parameter intervention has comparable capabilities,308

avoiding failures in specificity and generalization seen in other methods.309

5 Conclusion310

We have clarified information flow during knowledge recall in autoregressive transformers, and311

furthermore exploited this understanding to develop a simple, principled model editor called ROME.312

Our experiments provide insight into how facts are stored and demonstrate the feasibility of direct313

manipulation of computational mechanisms in large pretrained models. Code, interactive notebooks,314

dataset, benchmarks, and further visualizations are available in the supplementary material.315

Ethical Considerations. By explaining large autoregressive transformer language models’ internal316

organization and developing a fast method for modifying stored knowledge, our work potentially317

improves the transparency of these systems and reduces the energy consumed to correct their errors.318

However, the capability to directly edit large models also has the potential for abuse, such as adding319

malicious misinformation, bias, or other adversarial data to a model. Because of these concerns as320

well as our observations of guessing behavior, we stress that large language models should not be321

used as an authoritative source of factual knowledge in critical settings.322
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Board (IRB) approvals, if applicable? [Yes] In appendix485

(c) Did you include the estimated hourly wage paid to participants and the total amount486

spent on participant compensation? [Yes] In appendix487
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