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Abstract

We propose heavy ball neural ordinary differential equations (HBNODEs), lever-1

aging the continuous limit of the classical momentum accelerated gradient descent,2

to improve neural ODEs (NODEs) training and inference. HBNODEs have two3

properties that imply practical advantages over NODEs: (i) The adjoint state of an4

HBNODE also satisfies an HBNODE, accelerating both forward and backward5

ODE solvers, thus significantly reducing the number of function evaluations (NFEs)6

and improving the utility of the trained models. (ii) The spectrum of HBNODEs7

is well structured, enabling effective learning of long-term dependencies from8

complex sequential data. We verify the advantages of HBNODEs over NODEs on9

benchmark tasks, including image classification, learning complex dynamics, and10

sequential modeling. Our method requires remarkably fewer forward and backward11

NFEs, is more accurate, and learns long-term dependencies more effectively than12

the other ODE-based neural network models.13

1 Introduction14

Neural ordinary differential equations (NODEs) are a family of continuous-depth machine learn-15

ing (ML) models whose forward and backward propagations rely on solving an ODE and its ad-16

joint equation [4]. NODEs model the dynamics of hidden features h(t) ∈ RN using an ODE,17

which is parametrized by a neural network f(h(t), t, θ) ∈ RN with learnable parameters θ, i.e.,18
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Figure 1: Contrasting NODE, ANODE, SON-
ODE, HBNODE, and GHBNODE for CI-
FAR10 classification in NFEs, training time,
and test accuracy. (Tolerance: 10−5, see
Sec. 5.2 for experimental details.)

19
dh(t)

dt
= f(h(t), t, θ). (1)

Starting from the input h(t0), NODEs obtain the out-20

put h(T ) by solving (1) for t0 ≤ t ≤ T with the ini-21

tial value h(t0), using a black-box numerical ODE22

solver. The number of function evaluations (NFEs)23

that the black-box ODE solver requires in a single24

forward pass is an analogue for the continuous-depth25

models [4] to the depth of networks in ResNets [17].26

The loss between NODE prediction h(T ) and the27

ground truth is denoted by L(h(T )); we update pa-28

rameters θ using the following gradient [41]29

dL(h(T ))

dθ
=

∫ T

t0

a(t)
∂f(h(t), t, θ)

∂θ
dt, (2)

where a(t) := ∂L/∂h(t) is the adjoint state, which30

satisfies the adjoint equation31

da(t)

dt
= −a(t)

∂f(h(t), t, θ)

∂h
. (3)
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NODEs are flexible in learning from irregularly-sampled sequential data and particularly suitable32

for learning complex dynamical systems [4, 44, 58, 37, 9, 24], which can be trained by efficient33

algorithms [42, 7, 59]. NODE-based continuous generative models have computational advantages34

over the classical normalizing flows [4, 15, 57, 13]. NODEs have also been generalized to neural35

stochastic differential equations, stochastic processes, and graph NODEs [22, 29, 39, 52, 21, 36].36

The drawback of NODEs is also prominent. In many ML tasks, NODEs require very high NFEs in37

both training and inference, especially in high accuracy settings where a lower tolerance is needed.38

The NFEs increase rapidly with training; high NFEs reduce computational speed and accuracy of39

NODEs and can lead to blow-ups in the worst-case scenario [15, 10, 31, 37]. As an illustration, we40

train NODEs for CIFAR10 classification using the same model and experimental settings as in [10],41

except using a tolerance of 10−5; Fig. 1 shows both forward and backward NFEs and the training42

time of different ODE-based models; we see that NFEs and computational times increase very rapidly43

for NODE, ANODE [10], and SONODE [37]. More results on the large NFE and degrading utility44

issues for different benchmark experiments are available in Sec. 5. Another issue is that NODEs45

often fail to effectively learn long-term dependencies in sequential data [27], discussed in Sec. 4.46

1.1 Contribution47

We propose heavy ball neural ODEs (HBNODEs), leveraging the continuous limit of the classical48

momentum accelerated gradient descent, to improve NODE training and inference. At the core of49

HBNODE is replacing the first-order ODE (1) with a heavy ball ODE (HBODE), i.e., a second-order50

ODE with an appropriate damping term. HBNODEs have two theoretical properties that imply51

practical advantages over NODEs:52

• The adjoint equation used for training a HBNODE is also a HBNODE (see Prop. 1 and Prop. 2),53

accelerating both forward and backward propagation, thus significantly reducing both forward and54

backward NFEs. The reduction in NFE using HBNODE over existing benchmark ODE-based55

models becomes more aggressive as the error tolerance of the ODE solvers decreases.56

• The spectrum of the HBODE is well-structured (see Prop. 4), alleviating the vanishing gradient57

issue in back-propagation and enabling the model to effectively learn long-term dependencies from58

sequential data.59

To mitigate the potential blow-up problem in training HBNODEs, we further propose generalized60

HBNODEs (GHBNODEs) by integrating skip connections [18] and gating mechanisms [20] into the61

HBNODE. See Sec. 3 for details.62

1.2 Organization63

We organize the paper as follows: In Secs 2 and 3, we present our motivation, algorithm, and analysis64

of HBNODEs and GHBNODEs, respectively. We analyze the spectrum structure of the adjoint65

equation of HBNODEs/GHBNODEs in Sec. 4, which indicates that HBNODEs/GHBNODEs can66

learn long-term dependency effectively. We test the performance of HBNODEs and GHBNODEs on67

benchmark point cloud separation, image classification, learning dynamics, and sequential modeling68

in Sec. 5. We discuss more related work in Sec. 6, followed by concluding remarks. Technical proofs69

and more experimental details are provided in the appendix.70

2 Heavy Ball Neural Ordinary Differential Equations71

2.1 Heavy ball ordinary differential equation72

Classical momentum method, a.k.a., the heavy ball method, has achieved remarkable success in73

accelerating gradient descent [40] and has significantly improved the training of deep neural networks74

[49]. As the continuous limit of the classical momentum method, heavy ball ODE (HBODE) has75

been studied in various settings and has been used to analyze the acceleration phenomenon of the76

momentum methods [26, 46]. For the ease of reading and completeness, we derive the HBODE77

from the classical momentum method. Starting from initial points x0 and x1, gradient descent with78

classical momentum searches a minimum of the function F (x) through the following iteration79

xk+1 = xk − s∇F (xk) + β(xk − xk−1), (4)
where s > 0 is the step size and 0 ≤ β < 1 is the momentum hyperparameter. For any fixed step80

size s, let mk := (xk+1 − xk)/
√
s, and let β := 1− γ

√
s, where γ ≥ 0 is another hyperparameter.81

Then we can rewrite (4) as82

mk+1 = (1− γ
√
s)mk −

√
s∇F (xk); xk+1 = xk +

√
smk+1. (5)
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Let s→ 0 in (5); we obtain the following system of first-order ODEs,83

dx(t)

dt
= m(t);

dm(t)

dt
= −γm(t)−∇F (x(t)). (6)

This can be further rewritten as a second-order heavy ball ODE (HBODE), which also models a84

damped oscillator,85

d2x(t)

dt2
+ γ

dx(t)

dt
= −∇F (x(t)). (7)
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Figure 2: Comparing the trajectory of ODE
and HBODE when F (x) is the Rosenbrock
(left) and Beale (right) functions.

We compare the dynamics of HBODE (7) and the86

following ODE limit of the gradient descent (GD)87

dx

dt
= −∇F (x). (8)

In particular, we solve the ODEs (7) and (8) with88

F (x) defined as a Rosenbrock [43] or Beale [14]89

function (see Appendix E.6 for experimental de-90

tails). Fig. 2 shows that with the same numerical91

ODE solver, HBODE converges to the stationary92

point (marked by stars) faster than (8). The fact that93

HBODE can accelerate the dynamics of the ODE94

for a gradient system motivates us to propose HBNODE to accelerate forward propagation of NODE.95

2.2 Heavy ball neural ordinary differential equations96

Similar to NODE, we parameterize −∇F in (7) using a neural network f(h(t), t, θ), resulting in the97

following HBNODE with initial position h(t0) and momentum m(t0) := dh/dt(t0),98

d2h(t)

dt2
+ γ

dh(t)

dt
= f(h(t), t, θ), (9)

where γ ≥ 0 is the damping parameter, which can be set as a tunable or a learnable hyperparmater99

with positivity constraint. In the trainable case, we use γ = ε · sigmoid(ω) for a trainable ω ∈ R and100

a fixed tunable upper bound ε (we set ε = 1 below). According to (6), HBNODE (9) is equivalent to101

dh(t)

dt
= m(t);

dm(t)

dt
= −γm(t) + f(h(t), t, θ). (10)

Equation (9) (or equivalently, the system (10)) defines the forward ODE for the HBNODE, and we102

can use either the first-order (Prop. 2) or the second-order (Prop. 1) adjoint sensitivity method to103

update the parameter θ [37].104

Proposition 1 (Adjoint equation for HBNODE). The adjoint state a(t) := ∂L/∂h(t) for the105

HBNODE (9) satisfies the following HBODE with the same damping parameter γ as that in (9),106

d2a(t)

dt2
− γ da(t)

dt
= a(t)

∂f

∂h
(h(t), t, θ). (11)

Remark 1. Note that we solve the adjoint equation (11) from time t = T to t = t0 in the backward107

propagation. By letting τ = T − t and b(τ) = a(T − τ), we can rewrite (11) as follows,108

d2b(τ)

dτ2
+ γ

db(τ)

dτ
= b(τ)

∂f

∂h
(h(T − τ), T − τ, θ). (12)

Therefore, the adjoint of the HBNODE is also a HBNODE and they have the same damping parameter.109

We can also employ (10) and its adjoint for the forward and backward propagations, respectively.110

Proposition 2 (Adjoint equations for the first-order HBNODE system). The adjoint states ah(t)111

:= ∂L/∂h(t) and am(t) := ∂L/∂m(t) for the first-order HBNODE system (10) satisfy112

dah(t)

dt
= −am(t)

∂f

∂h
(h(t), t, θ);

dam(t)

dt
= −ah(t) + γam(t). (13)
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Remark 2. Let ãm(t) = dam(t)/dt, then am(t) and ãm(t) satisfies the following first-order113

heavy ball ODE system114

dam(t)

dt
= ãm(t);

dãm(t)

dt
= am(t)

∂f

∂h
(h(t), t, θ) + γãm(t). (14)

Note that we solve this system backward in time in back-propagation. Moreover, we have ah(t) =115

γam(t)− ãm(t).116

Similar to [37], we use the coupled first-order HBNODE system (10) and its adjoint first-order117

HBNODE system (13) for practical implementation, since the entangled representation permits faster118

computation [37] of the gradients of the coupled ODE systems.119

3 Generalized Heavy Ball Neural Ordinary Differential Equations120

In this section, we propose a generalized version of HBNODE (GHBNODE), see (15), to mitigate121

the potential blow-up issue in training ODE-based models. In our experiments, we observe that122

h(t) of ANODEs [10], SONODEs [37], and HBNODEs (10) usually grows much faster than that of123

NODEs. The fast growth of h(t) can lead to finite-time blow up. As an illustration, we compare the124

performance of NODE, ANODE, SONODE, HBNODE, and GHBNODE on the Silverbox task as125

in [37]. The goal of the task is to learn the voltage of an electronic circuit that resembles a Duffing126

oscillator, where the input voltage V1(t) is used to predict the output V2(t). Similar to the setting127

in [37], we first augment ANODE by 1 dimension with 0-augmentation and augment SONODE,128

HBNODE, and GHBNODE with a dense network. We use a simple dense layer to parameterize f129

for all five models, with an extra input term for V1(t)1. For both HBNODE and GHBNODE, we130

set the damping parameter γ to be sigmoid(−3). For GHBNODE (15) below, we set σ(·) to be the131

hardtanh function with bound [−5, 5] and ξ = ln(2). The detailed architecture can be found in132

Appendix E. As shown in Fig. 3, compared to the vanilla NODE, the `2 norm of h(t) grows much133

faster when a higher order NODE is used, which leads to blow-up during training. Similar issues arise134

in the time series experiments (see Sec. 5.4), where SONODE blows up during long term integration135

in time, and HBNODE suffers from the same issue with some initialization.136
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Figure 3: Contrasting h(t) for different mod-
els. h(t) in ANODE, SONODE, and HBN-
ODE grows much faster than that in NODE.
GHBNODE controls the growth of h(t) ef-
fectively when t is large.

To alleviate the problem above, we propose the fol-137

lowing generalized HBNODE138

dh(t)

dt
= σ(m(t)),

dm(t)

dt
= −γm(t) + f(h(t), t, θ)− ξh(t),

(15)

where σ(·) is a nonlinear activation, which is set as139

tanh in our experiments. The positive hyperparame-140

ters γ, ξ > 0 are tunable or learnable. In the trainable141

case, we let γ = ε · sigmoid(ω) as in HBNODE, and142

ξ = softplus(χ) to ensure that γ, ξ ≥ 0. Here, we143

integrate two main ideas into the design of GHBN-144

ODE: (i) We incorporate the gating mechanism used145

in LSTM [20] and GRU [6], which can suppress the aggregation of m(t); (ii) Following the idea146

of skip connection [18], we add the term ξh(t) into the governing equation of m(t), which benefits147

training and generalization of GHBNODEs. Fig. 3 shows that GHBNODE can indeed control the148

growth of h(t) effectively.149

Proposition 3 (Adjoint equations for GHBNODEs). The adjoint states ah(t) := ∂L/∂h(t),150

am(t) := ∂L/∂m(t) for the GHBNODE (15) satisfy the following first-order ODE system151

∂ah(t)

∂t
= −am(t)

(∂f
∂h

(h(t), t, θ)− ξI
)
,

∂am(t)

∂t
= −ah(t)σ′(m(t)) + γam(t). (16)

Though the adjoint state of the GHBNODE (16) does not satisfy the exact heavy ball ODE, based on152

our empirical study, it also significantly reduces the backward NFEs.153

1Here, we exclude an h3 term that appeared in the original Duffing oscillator model because including it
would result in finite-time explosion.
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4 Learning long-term dependencies – Vanishing gradient154

It is known that the vanishing and exploding gradients are two bottlenecks for training recurrent155

neural networks (RNNs) with long-term dependencies [2, 38] (see Appendix C for a brief review on156

the exploding and vanishing gradient issues in training RNNs). The exploding gradients issue can be157

effectively resolved via gradient clipping, training loss regularization, etc [38]. Thus in practice the158

vanishing gradient is the major issue for learning long-term dependencies [38]. As the continuous159

analogue of RNN, NODEs as well as their hybrid ODE-RNN models, may also suffer from vanishing160

in the adjoint state a(t) := ∂L/∂h(t) [27]. When the vanishing gradient issue happens, a(t) goes161

to 0 quickly as T − t increases, then dL/dθ in (2) will be independent of these a(t). We have the162

following expressions for the adjoint states of the NODE and HBNODE (see Appendix C for detailed163

derivation):164

• For NODE, we have165

∂L
∂ht

=
∂L
∂hT

∂hT
∂ht

=
∂L
∂hT

exp
{
−
∫ t

T

∂f

∂h
(h(s), s, θ)ds

}
. (17)

• For GHBNODE2, from (13) we can derive166 [
∂L
∂ht

∂L
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

] [ ∂hT
∂ht

∂hT
∂mt

∂mT
∂ht

∂mT
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

]
exp

{
−
∫ t

T

[
0 ∂σ

∂m
∂f
∂h
− ξI −γI

]
ds︸ ︷︷ ︸

:=M

}
. (18)

Note that the matrix exponential is directly related to its eigenvalues. By Schur decomposition, there167

exists an orthogonal matrix Q and an upper triangular matrix U , where the diagonal entries of U are168

eigenvalues of Q ordered by their real parts, such that169

−M = QUQ> =⇒ exp{−M} = Q exp{U}Q>. (19)

Let v> :=
[
∂L
∂hT

∂L
∂mT

]
Q, then (18) can be rewritten as170 [

∂L
∂ht

∂L
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

]
exp{−M} =

[
∂L
∂hT

∂L
∂mT

]
Q exp{U}Q> = v> exp{U}Q>. (20)

By taking the `2 norm in (20) and dividing both sides by
∥∥[ ∂L

∂hT

∂L
∂mT

]∥∥
2
, we arrive at171 ∥∥[ ∂L

∂ht

∂L
∂mt

]∥∥
2∥∥[ ∂L

∂hT

∂L
∂mT

]∥∥
2

=

∥∥v> exp{U}Q>
∥∥
2

‖v>Q>‖2
=

∥∥v> exp{U}
∥∥
2

‖v‖2
=
∥∥e> exp{U}

∥∥
2
, (21)

i.e.,
∥∥[ ∂L

∂ht

∂L
∂mt

]∥∥
2

=
∥∥e> exp{U}

∥∥
2

∥∥[ ∂L
∂hT

∂L
∂mT

]∥∥
2

where e = v/‖v‖2.172

Proposition 4. The eigenvalues of −M can be paired so that the sum of each pair equals (t− T )γ.173

For a given constant a > 0, we can group the upper triangular matrix exp{U} as follows174

exp{U} :=

[
exp{UL} P

0 exp{UV }

]
, (22)

where the diagonal of UL (UV ) contains eigenvalues of −M that are no less (greater) than (t− T )a.175

Then, we have ‖e> exp{U}‖2 ≥ ‖e>L exp{UL}‖2 where the vector eL denotes the first m columns176

of e with m be the number of columns of UL. By choosing 0 ≤ γ ≤ 2a, for every pair of eigenvalues177

of −M there is at least one eigenvalue whose real part is no less than (t−T )a. Therefore, exp{UL}178

decays at a rate at most (t− T )a, and the dimension of UL is at least N ×N . We avoid exploding179

gradients by clipping the `2 norm of the adjoint states similar to that used for training RNNs.180

In contrast, all eigenvalues of the matrix
∫ t
T
∂f/∂hds in (17) for NODE can be very positive181

or negative, resulting in exploding or vanishing gradients. As an illustration, we consider the182

benchmark Walker2D kinematic simulation task that requires learning long-term dependencies183

effectively [27, 3]. We train ODE-RNN [44] and (G)HBNODE-RNN on this benchmark dataset, and184

the detailed experimental settings are provided in Sec. 5.4. Figure 4 plots ‖∂L/∂ht‖2 for ODE-RNN185

and ‖[∂L/∂ht ∂L/∂mt]‖2 for (G)HBNODE-RNN, showing that the adjoint state of ODE-RNN186

vanishes quickly, while that of (G)HBNODE-RNN does not vanish even when the gap between T187

and t is very large.188

2HBNODE can be seen as a special GHBNODE with ξ = 0 and σ be the identity map.
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Figure 4: Plot of the the `2-norm of the adjoint states for ODE-RNN and (G)HBNODE-RNN
back-propagated from the last time stamp. The adjoint state of ODE-RNN vanishes quickly when
the gap between the final time T and intermediate time t becomes larger, while the adjoint states
of (G)HBNODE-RNN decays much more slowly. This implies that (G)HBNODE-RNN is more
effective in learning long-term dependency than ODE-RNN.

5 Experimental Results189

In this section, we compare the performance of the proposed HBNODE and GHBNODE with existing190

ODE-based models, including NODE [4], ANODE [10], and SONODE [37] on the benchmark point191

cloud separation, image classification, learning dynamical systems, and kinematic simulation. For all192

the experiments, we use Adam [25] as the benchmark optimization solver (the learning rate and batch193

size for each experiment are listed in Table 1) and Dormand–Prince-45 as the numerical ODE solver.194

For HBNODE and GHBNODE, we set γ = sigmoid(θ), where θ is a trainable weight initialized as195

θ = −3. The network architecture used to parameterize f(h(t), t, θ) for each experiment below are196

described in Appendix E. All experiments are conducted on a server with 2 NVIDIA Titan Xp GPUs.197

Table 1: The batch size and learning rate for different datasets.

Dataset Point Cloud MNIST CIFAR10 Plane Vibration Walker2D

Batch Size 50 64 64 64 256
Learning Rate 0.01 0.001 0.001 0.0001 0.003
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Figure 5: Comparison between NODE, ANODE, SONODE, HBNODE, and GHBNODE for two-
dimensional point cloud separation. HBNODE and GHBNODE converge better and require less
NFEs in both forward and backward propagation than the other benchmark models.
5.1 Point cloud separation198

In this subsection, we consider the two-dimensional point cloud separation benchmark. A total of 120199

points are sampled, in which 40 points are drawn uniformly from the circle ‖r‖ < 0.5, and 80 points200

are drawn uniformly from the annulus 0.85 < ‖r‖ < 1.0. This experiment aims to learn effective201

features to classify these two point clouds. Following [10], we use a three-layer neural network to202

parameterize the right-hand side of each ODE-based model, integrate the ODE-based model from203

t0 = 0 to T = 1, and pass the integration results to a dense layer to generate the classification204

results. We set the size of hidden layers so that the models have similar sizes, and the number of205
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Figure 6: Contrasting NODE [4], ANODE [10], SONODE [37], HBNODE, and GHBNODE for
MNIST classification in NFE, training time, and test accuracy. (Tolerance: 10−5).

parameters of NODE, ANODE, SONODE, HBNODE, and GHBNODE are 525, 567, 528, 568,206

and 568, respectively. To avoid the effects of numerical error of the black-box ODE solver we set207

tolerance of ODE solver to be 10−7. Figure 5 plots a randomly selected evolution of the point cloud208

separation for each model; we also compare the forward and backward NFEs and the training loss of209

these models (100 independent runs). HBNODE and GHBNODE improve training as the training210

loss consistently goes to zero over different runs, while ANODE and SONODE often get stuck at211

local minima, and NODE cannot separate the point cloud since it preserves the topology [10].212

5.2 Image classification213

We compare the performance of HBNODE and GHBNODE with the existing ODE-based models214

on MNIST and CIFAR10 classification tasks using the same setting as in [10]. We parameterize215

f(h(t), t, θ) using a 3-layer convolutional network for each ODE-based model, and the total number216

of parameters for each model is listed in Table 2. For a given input image of the size c× h× w, we217

first augment the number of channel from c to c+ p with the augmentation dimension p dependent218

on each method3. Moreover, for SONODE, HBNODE and GHBNODE, we further include velocity219

or momentum with the same shape as the augmented state.220

Table 2: The number of parameters for each models for image classification.

Model NODE ANODE SONODE HBNODE GHBNODE

#Params (MNIST) 85,315 85,462 86,179 85,931 85,235
#Params (CIFAR10) 173,611 172,452 171,635 172,916 172,916

NFEs. As shown in Figs. 1 and 6, the NFEs grow rapidly with training of the NODE, resulting221

in an increasingly complex model with reduced performance and the possibility of blow up. Input222

augmentation has been verified to effectively reduce the NFEs, as both ANODE and SONODE223

require fewer forward NFEs than NODE for the MNIST and CIFAR10 classification. However,224

input augmentation is less effective in controlling their backward NFEs. HBNODE and GHBNODE225

require much fewer NFEs than the existing benchmarks, especially for backward NFEs. In practice,226

reducing NFEs implies reducing both training and inference time, as shown in Figs. 1 and 6.227

Accuracy. We also compare the accuracy of different ODE-based models for MNIST and CIFAR10228

classification. As shown in Figs. 1 and 6, HBNODE and GHBNODE have slightly better classification229

accuracy than the other three models; this resonates with the fact that less NFEs lead to simpler230

models which generalize better [10, 37].231
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Figure 7: NFE vs. tolerance (shown in the colorbar) for training ODE-based models for CIFAR10
classification. Both forward and backward NFEs of HBNODE and GHBNODE grow much more
slowly than that of NODE, ANODE, and SONODE; especially the backward NFEs. As the tolerance
decreases, the advantage of HBNODE and GHBNODE in reducing NFEs becomes more significant.

3We set p = 0, 5, 4, 4, 5/0, 10, 9, 9, 9 on MNIST/CIFAR10 for NODE, ANODE, SONODE, HBNODE, and
GHBNODE, respectively.
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NFEs vs. tolerance. We further study the NFEs for different ODE-based models under different232

tolerances of the ODE solver using the same approach as in [4]. Figure 7 depicts the forward233

and backward NFEs for different models under different tolerances. We see that (i) both forward234

and backward NFEs grow quickly when tolerance is decreased, and HBNODE and GHBNODE235

require much fewer NFEs than other models; (ii) under different tolerances, the backward NFEs of236

NODE, ANODE, and SONODE are much larger than the forward NFEs, and the difference becomes237

larger when the tolerance decreases. In contrast, the forward and backward NFEs of HBNODE238

and GHBNODE scale almost linearly with each other. This reflects that the advantage in NFEs of239

(G)HBNODE over the benchmarks become more significant when a smaller tolerance is used.240

5.3 Learning dynamical systems from irregularly-sampled time series241

In this subsection, we learn dynamical systems from experimental measurements. In particular, we242

use the ODE-RNN framework [4, 44], with the recognition model being set to different ODE-based243

models, to study the vibration of an airplane dataset [35]. The dataset was acquired, from time 0 to244

73627, by attaching a shaker underneath the right wing to provide input signals, and 5 attributes are245

recorded per time stamp; these attributes include voltage of input signal, force applied to aircraft,246

and acceleration at 3 different spots of the airplane. We randomly take out 10% of the data to247

make the time series irregularly-sampled. We use the first 50% of data as our train set, the next248

25% as validation set, and the rest as test set. We divide each set into non-overlapping segments of249

consecutive 65 time stamps of the irregularly-sampled time series, with each input instance consisting250

of 64 time stamps of the irregularly-sampled time series, and we aim to forecast 8 consecutive time251

stamps starting from the last time stamp of the segment. The input is fed though the the hybrid252

methods in a recurrent fashion; by changing the time duration of the last step of the ODE integration,253

we can forecast the output in the different time stamps. The output of the hybrid method is passed254

to a single dense layer to generate the output time series. In our experiments, we compare different255

ODE-based models hybrid with RNNs. The ODE of each model is parametrized by a 3-layer network256

whereas the RNN is parametrized by a simple dense network; the total number of parameters for257

ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBNODE-RNN with 16, 22,258

14, 15, 15 augmented dimensions are 15,986, 16,730, 16,649, 16,127, and 16,127, respectively. To259

avoid potential error due to the ODE solver, we use a tolerance of 10−7.260

In training those hybrid models, we regularize the models by penalizing the L2 distance between the261

RNN output and the values of the next time stamp. Due to the second-order natural of the underlying262

dynamics [37], ODE-RNN and ANODE-RNN learn the dynamics very poorly with much larger263

training and test losses than the other models even they take smaller NFEs. HBNODE-RNN and264

GHBNODE-RNN give better prediction than SONODE-RNN using less backward NFEs.265
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Figure 8: Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and
GHBNODE-RNN for learning a vibrational dynamical system. Left most: The learned curves
of each model vs. the ground truth (Time: <66 for training, 66-75 for testing).

5.4 Walker2D kinematic simulation266

In this subsection, we evaluate the performance of HBNODE-RNN and GHBNODE-RNN on the267

Walker2D kinematic simulation task, which requires learning long-term dependency effectively [27].268

The dataset [3] consists of a dynamical system from kinematic simulation of a person walking from269

a pre-trained policy, aiming to learn the kinematic simulation of the MuJoCo physics engine [51].270

The dataset is irregularly-sampled where 10% of data are removed from the simulation. Each input271

is consisted of 64 time stamps and fed though the the hybrid methods in a recurrent fashion, and272

the outputs of hybrid methods is passed to a single dense layer to generate the output time series.273

The target is to provide auto-regressive forecast so that the output time series is as close as the274

input sequence shifted 1 time stamp to the right. We compare ODE-RNN (with 7 augmentation),275

ANODE-RNN (with 7 ANODE style augmentation), HBNODE-RNN (with 7 augmentation), and276

8



GHBNODE-RNN (with 7 augmentation) 4. The RNN is parametrized by a 3-layer network whereas277

the ODE is parametrized by a simple dense network. The number of parameters of the above four278

models are 8,729, 8,815, 8,899, and 8,899, respectively. In Fig. 9, we compare the performance of279

the above four models on the Walker2D benchmark; HBNODE-RNN and GHBNODE-RNN not280

only require significantly less NFEs in both training (forward and backward) and in testing than281

ODE-RNN and ANODE-RNN, but also have much smaller training and test losses.282
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Figure 9: Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and
GHBNODE-RNN for the Walker-2D kinematic simulation.

6 Related Work283

Reducing NFEs in training NODEs. Several techniques have been developed to reduce the284

NFEs for the forward solvers in NODEs, including weight decay [15], input augmentation [10],285

regularizing the learning dynamics [13], high-order ODE [37], data control [31], and depth-variance286

[31]. HBNODEs can reduce both forward and backward NFEs at the same time.287

Second-order ODE accelerated dynamics. It has been noticed in both optimization and sampling288

communities that second-order ODEs with an appropriate damping term, e.g., the classical momentum289

and Nesterov’s acceleration in discrete regime, can significantly accelerate the first-order gradient290

dynamics (gradient descent), e.g., [40, 34, 5, 48, 55]. Also, these second-order ODEs have been291

discretized via some interesting numerical schemes to design fast optimization schemes, e.g., [47].292

Learning long-term dependencies. Learning long-term dependency is one of the most important293

goals for learning from sequential data. Most of the existing works focus on mitigating exploding294

or vanishing gradient issues in training RNNs, e.g., [1, 56, 23, 54, 32, 19, 50]. Attention-based295

models are proposed for learning on sequential data concurrently with the effective accommodation296

of learning long-term dependency [53, 8]. Recently, NODEs have been integrated with long-short297

term memory model [20] to learn long-term dependency for irregularly-sampled time series [27].298

HBNODEs directly enhance learning long-term dependency from sequential data.299

Momentum in neural network design. As a line of orthogonal work, the momentum has also been300

studied in designing neural network architecture, e.g., [33, 50, 45], which can also help accelerate301

training and learn long-term dependencies. These techniques can be considered as changing the302

neural network f in (1). We leave the synergistic integration of adding momentum to f with our303

work on changing the left-hand side of (1) as a future work.304

ResNet-style models. Interpreting ResNet as an ODE model has been an interesting research305

direction [11, 16], which has lead to interesting neural network architectures and analysis from the306

numerical ODE solvers and differential equation theory viewpoints, e.g., [16, 30, 28].307

7 Concluding Remarks308

We proposed HBNODEs to reduce the NFEs in solving both forward and backward ODEs, which309

also improve generalization performance over the existing benchmark models. Moreover, HBNODEs310

alleviate vanishing gradients in training NODEs, making HBNODEs able to learn long-term depen-311

dency effectively from sequential data. In the optimization community, Nesterov acceleration [34]312

is also a famous algorithm for accelerating gradient descent, that achieves an optimal convergence313

rate for general convex optimization problems. The ODE counterpart of the Nesterov’s acceleration314

corresponds to (9) with γ being replaced by a time-dependent damping parameter, e.g., t/3 [48]. The315

adjoint equation of the Nesterov’s ODE [48] is no longer a Nesterov’s ODE. We notice that directly316

using Nesterov’s ODE cannot improve the performance of the vanilla neural ODE. How to integrate317

Nesterov’s ODE with neural ODE is an interesting future direction.318

4Here, we do not compare with SONODE-RNN since SONODE has some initialization problem on this
dataset, and the ODE solver encounters failure due to exponential growth over time. This issue is originally
tackled by re-initialization [37]. We re-initialized SONODE 100 times; all failed due to initialisation problems.
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