
Heavy Ball Neural Ordinary Differential Equations

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose heavy ball neural ordinary differential equations (HBNODEs), lever-1

aging the continuous limit of the classical momentum accelerated gradient descent,2

to improve neural ODEs (NODEs) training and inference. HBNODEs have two3

properties that imply practical advantages over NODEs: (i) The adjoint state of an4

HBNODE also satisfies an HBNODE, accelerating both forward and backward5

ODE solvers, thus significantly reducing the number of function evaluations (NFEs)6

and improving the utility of the trained models. (ii) The spectrum of HBNODEs7

is well structured, enabling effective learning of long-term dependencies from8

complex sequential data. We verify the advantages of HBNODEs over NODEs on9

benchmark tasks, including image classification, learning complex dynamics, and10

sequential modeling. Our method requires remarkably fewer forward and backward11

NFEs, is more accurate, and learns long-term dependencies more effectively than12

the other ODE-based neural network models.13

1 Introduction14

Neural ordinary differential equations (NODEs) are a family of continuous-depth machine learn-15

ing (ML) models whose forward and backward propagations rely on solving an ODE and its ad-16

joint equation [4]. NODEs model the dynamics of hidden features h(t) ∈ RN using an ODE,17

which is parametrized by a neural network f(h(t), t, θ) ∈ RN with learnable parameters θ, i.e.,18

0.0 2.5 5.0 7.5
Epoch

30

40

50

60

NF
E

(fo
rw

ar
d)

0.0 2.5 5.0 7.5
Epoch

50

100

150

200

250

300

NF
E

(b
ac

kw
ar

d)

0 2 4 6 8
Epoch

0

2

4

6

8

Tr
ai

ni
ng

 ti
m

e
(x

10
00

s) NODE
ANODE
SONODE
HBNODE
GHBNODE

0.0 2.5 5.0 7.5
Epoch

50

52

54

56

58

60

62

Te
st

 a
cc

 (%
)

Figure 1: Contrasting NODE, ANODE, SON-
ODE, HBNODE, and GHBNODE for CI-
FAR10 classification in NFEs, training time,
and test accuracy. (Tolerance: 10−5, see
Sec. 5.2 for experimental details.)

19
dh(t)

dt
= f(h(t), t, θ). (1)

Starting from the input h(t0), NODEs obtain the out-20

put h(T) by solving (1) for t0 ≤ t ≤ T with the ini-21

tial value h(t0), using a black-box numerical ODE22

solver. The number of function evaluations (NFEs)23

that the black-box ODE solver requires in a single24

forward pass is an analogue for the continuous-depth25

models [4] to the depth of networks in ResNets [17].26

The loss between NODE prediction h(T) and the27

ground truth is denoted by L(h(T)); we update pa-28

rameters θ using the following gradient [41]29

dL(h(T))

dθ
=

∫ T

t0

a(t)
∂f(h(t), t, θ)

∂θ
dt, (2)

where a(t) := ∂L/∂h(t) is the adjoint state, which30

satisfies the adjoint equation31

da(t)

dt
= −a(t)

∂f(h(t), t, θ)

∂h
. (3)

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

NODEs are flexible in learning from irregularly-sampled sequential data and particularly suitable32

for learning complex dynamical systems [4, 44, 58, 37, 9, 24], which can be trained by efficient33

algorithms [42, 7, 59]. NODE-based continuous generative models have computational advantages34

over the classical normalizing flows [4, 15, 57, 13]. NODEs have also been generalized to neural35

stochastic differential equations, stochastic processes, and graph NODEs [22, 29, 39, 52, 21, 36].36

The drawback of NODEs is also prominent. In many ML tasks, NODEs require very high NFEs in37

both training and inference, especially in high accuracy settings where a lower tolerance is needed.38

The NFEs increase rapidly with training; high NFEs reduce computational speed and accuracy of39

NODEs and can lead to blow-ups in the worst-case scenario [15, 10, 31, 37]. As an illustration, we40

train NODEs for CIFAR10 classification using the same model and experimental settings as in [10],41

except using a tolerance of 10−5; Fig. 1 shows both forward and backward NFEs and the training42

time of different ODE-based models; we see that NFEs and computational times increase very rapidly43

for NODE, ANODE [10], and SONODE [37]. More results on the large NFE and degrading utility44

issues for different benchmark experiments are available in Sec. 5. Another issue is that NODEs45

often fail to effectively learn long-term dependencies in sequential data [27], discussed in Sec. 4.46

1.1 Contribution47

We propose heavy ball neural ODEs (HBNODEs), leveraging the continuous limit of the classical48

momentum accelerated gradient descent, to improve NODE training and inference. At the core of49

HBNODE is replacing the first-order ODE (1) with a heavy ball ODE (HBODE), i.e., a second-order50

ODE with an appropriate damping term. HBNODEs have two theoretical properties that imply51

practical advantages over NODEs:52

• The adjoint equation used for training a HBNODE is also a HBNODE (see Prop. 1 and Prop. 2),53

accelerating both forward and backward propagation, thus significantly reducing both forward and54

backward NFEs. The reduction in NFE using HBNODE over existing benchmark ODE-based55

models becomes more aggressive as the error tolerance of the ODE solvers decreases.56

• The spectrum of the HBODE is well-structured (see Prop. 4), alleviating the vanishing gradient57

issue in back-propagation and enabling the model to effectively learn long-term dependencies from58

sequential data.59

To mitigate the potential blow-up problem in training HBNODEs, we further propose generalized60

HBNODEs (GHBNODEs) by integrating skip connections [18] and gating mechanisms [20] into the61

HBNODE. See Sec. 3 for details.62

1.2 Organization63

We organize the paper as follows: In Secs 2 and 3, we present our motivation, algorithm, and analysis64

of HBNODEs and GHBNODEs, respectively. We analyze the spectrum structure of the adjoint65

equation of HBNODEs/GHBNODEs in Sec. 4, which indicates that HBNODEs/GHBNODEs can66

learn long-term dependency effectively. We test the performance of HBNODEs and GHBNODEs on67

benchmark point cloud separation, image classification, learning dynamics, and sequential modeling68

in Sec. 5. We discuss more related work in Sec. 6, followed by concluding remarks. Technical proofs69

and more experimental details are provided in the appendix.70

2 Heavy Ball Neural Ordinary Differential Equations71

2.1 Heavy ball ordinary differential equation72

Classical momentum method, a.k.a., the heavy ball method, has achieved remarkable success in73

accelerating gradient descent [40] and has significantly improved the training of deep neural networks74

[49]. As the continuous limit of the classical momentum method, heavy ball ODE (HBODE) has75

been studied in various settings and has been used to analyze the acceleration phenomenon of the76

momentum methods [26, 46]. For the ease of reading and completeness, we derive the HBODE77

from the classical momentum method. Starting from initial points x0 and x1, gradient descent with78

classical momentum searches a minimum of the function F (x) through the following iteration79

xk+1 = xk − s∇F (xk) + β(xk − xk−1), (4)
where s > 0 is the step size and 0 ≤ β < 1 is the momentum hyperparameter. For any fixed step80

size s, let mk := (xk+1 − xk)/
√
s, and let β := 1− γ

√
s, where γ ≥ 0 is another hyperparameter.81

Then we can rewrite (4) as82

mk+1 = (1− γ
√
s)mk −

√
s∇F (xk); xk+1 = xk +

√
smk+1. (5)

2

Let s→ 0 in (5); we obtain the following system of first-order ODEs,83

dx(t)

dt
= m(t);

dm(t)

dt
= −γm(t)−∇F (x(t)). (6)

This can be further rewritten as a second-order heavy ball ODE (HBODE), which also models a84

damped oscillator,85

d2x(t)

dt2
+ γ

dx(t)

dt
= −∇F (x(t)). (7)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
ODE

HBODE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0
ODE

HBODE

Figure 2: Comparing the trajectory of ODE
and HBODE when F (x) is the Rosenbrock
(left) and Beale (right) functions.

We compare the dynamics of HBODE (7) and the86

following ODE limit of the gradient descent (GD)87

dx

dt
= −∇F (x). (8)

In particular, we solve the ODEs (7) and (8) with88

F (x) defined as a Rosenbrock [43] or Beale [14]89

function (see Appendix E.6 for experimental de-90

tails). Fig. 2 shows that with the same numerical91

ODE solver, HBODE converges to the stationary92

point (marked by stars) faster than (8). The fact that93

HBODE can accelerate the dynamics of the ODE94

for a gradient system motivates us to propose HBNODE to accelerate forward propagation of NODE.95

2.2 Heavy ball neural ordinary differential equations96

Similar to NODE, we parameterize −∇F in (7) using a neural network f(h(t), t, θ), resulting in the97

following HBNODE with initial position h(t0) and momentum m(t0) := dh/dt(t0),98

d2h(t)

dt2
+ γ

dh(t)

dt
= f(h(t), t, θ), (9)

where γ ≥ 0 is the damping parameter, which can be set as a tunable or a learnable hyperparmater99

with positivity constraint. In the trainable case, we use γ = ε · sigmoid(ω) for a trainable ω ∈ R and100

a fixed tunable upper bound ε (we set ε = 1 below). According to (6), HBNODE (9) is equivalent to101

dh(t)

dt
= m(t);

dm(t)

dt
= −γm(t) + f(h(t), t, θ). (10)

Equation (9) (or equivalently, the system (10)) defines the forward ODE for the HBNODE, and we102

can use either the first-order (Prop. 2) or the second-order (Prop. 1) adjoint sensitivity method to103

update the parameter θ [37].104

Proposition 1 (Adjoint equation for HBNODE). The adjoint state a(t) := ∂L/∂h(t) for the105

HBNODE (9) satisfies the following HBODE with the same damping parameter γ as that in (9),106

d2a(t)

dt2
− γ da(t)

dt
= a(t)

∂f

∂h
(h(t), t, θ). (11)

Remark 1. Note that we solve the adjoint equation (11) from time t = T to t = t0 in the backward107

propagation. By letting τ = T − t and b(τ) = a(T − τ), we can rewrite (11) as follows,108

d2b(τ)

dτ2
+ γ

db(τ)

dτ
= b(τ)

∂f

∂h
(h(T − τ), T − τ, θ). (12)

Therefore, the adjoint of the HBNODE is also a HBNODE and they have the same damping parameter.109

We can also employ (10) and its adjoint for the forward and backward propagations, respectively.110

Proposition 2 (Adjoint equations for the first-order HBNODE system). The adjoint states ah(t)111

:= ∂L/∂h(t) and am(t) := ∂L/∂m(t) for the first-order HBNODE system (10) satisfy112

dah(t)

dt
= −am(t)

∂f

∂h
(h(t), t, θ);

dam(t)

dt
= −ah(t) + γam(t). (13)

3

Remark 2. Let ãm(t) = dam(t)/dt, then am(t) and ãm(t) satisfies the following first-order113

heavy ball ODE system114

dam(t)

dt
= ãm(t);

dãm(t)

dt
= am(t)

∂f

∂h
(h(t), t, θ) + γãm(t). (14)

Note that we solve this system backward in time in back-propagation. Moreover, we have ah(t) =115

γam(t)− ãm(t).116

Similar to [37], we use the coupled first-order HBNODE system (10) and its adjoint first-order117

HBNODE system (13) for practical implementation, since the entangled representation permits faster118

computation [37] of the gradients of the coupled ODE systems.119

3 Generalized Heavy Ball Neural Ordinary Differential Equations120

In this section, we propose a generalized version of HBNODE (GHBNODE), see (15), to mitigate121

the potential blow-up issue in training ODE-based models. In our experiments, we observe that122

h(t) of ANODEs [10], SONODEs [37], and HBNODEs (10) usually grows much faster than that of123

NODEs. The fast growth of h(t) can lead to finite-time blow up. As an illustration, we compare the124

performance of NODE, ANODE, SONODE, HBNODE, and GHBNODE on the Silverbox task as125

in [37]. The goal of the task is to learn the voltage of an electronic circuit that resembles a Duffing126

oscillator, where the input voltage V1(t) is used to predict the output V2(t). Similar to the setting127

in [37], we first augment ANODE by 1 dimension with 0-augmentation and augment SONODE,128

HBNODE, and GHBNODE with a dense network. We use a simple dense layer to parameterize f129

for all five models, with an extra input term for V1(t)1. For both HBNODE and GHBNODE, we130

set the damping parameter γ to be sigmoid(−3). For GHBNODE (15) below, we set σ(·) to be the131

hardtanh function with bound [−5, 5] and ξ = ln(2). The detailed architecture can be found in132

Appendix E. As shown in Fig. 3, compared to the vanilla NODE, the `2 norm of h(t) grows much133

faster when a higher order NODE is used, which leads to blow-up during training. Similar issues arise134

in the time series experiments (see Sec. 5.4), where SONODE blows up during long term integration135

in time, and HBNODE suffers from the same issue with some initialization.136

0 10 20 30 40 50 60
t

100
103
106
109

1012
1015
1018

||h
(t)

|| 2

NODE
ANODE
SONODE
HBNODE
GHBNODE
Exact

Figure 3: Contrasting h(t) for different mod-
els. h(t) in ANODE, SONODE, and HBN-
ODE grows much faster than that in NODE.
GHBNODE controls the growth of h(t) ef-
fectively when t is large.

To alleviate the problem above, we propose the fol-137

lowing generalized HBNODE138

dh(t)

dt
= σ(m(t)),

dm(t)

dt
= −γm(t) + f(h(t), t, θ)− ξh(t),

(15)

where σ(·) is a nonlinear activation, which is set as139

tanh in our experiments. The positive hyperparame-140

ters γ, ξ > 0 are tunable or learnable. In the trainable141

case, we let γ = ε · sigmoid(ω) as in HBNODE, and142

ξ = softplus(χ) to ensure that γ, ξ ≥ 0. Here, we143

integrate two main ideas into the design of GHBN-144

ODE: (i) We incorporate the gating mechanism used145

in LSTM [20] and GRU [6], which can suppress the aggregation of m(t); (ii) Following the idea146

of skip connection [18], we add the term ξh(t) into the governing equation of m(t), which benefits147

training and generalization of GHBNODEs. Fig. 3 shows that GHBNODE can indeed control the148

growth of h(t) effectively.149

Proposition 3 (Adjoint equations for GHBNODEs). The adjoint states ah(t) := ∂L/∂h(t),150

am(t) := ∂L/∂m(t) for the GHBNODE (15) satisfy the following first-order ODE system151

∂ah(t)

∂t
= −am(t)

(∂f
∂h

(h(t), t, θ)− ξI
)
,

∂am(t)

∂t
= −ah(t)σ′(m(t)) + γam(t). (16)

Though the adjoint state of the GHBNODE (16) does not satisfy the exact heavy ball ODE, based on152

our empirical study, it also significantly reduces the backward NFEs.153

1Here, we exclude an h3 term that appeared in the original Duffing oscillator model because including it
would result in finite-time explosion.

4

4 Learning long-term dependencies – Vanishing gradient154

It is known that the vanishing and exploding gradients are two bottlenecks for training recurrent155

neural networks (RNNs) with long-term dependencies [2, 38] (see Appendix C for a brief review on156

the exploding and vanishing gradient issues in training RNNs). The exploding gradients issue can be157

effectively resolved via gradient clipping, training loss regularization, etc [38]. Thus in practice the158

vanishing gradient is the major issue for learning long-term dependencies [38]. As the continuous159

analogue of RNN, NODEs as well as their hybrid ODE-RNN models, may also suffer from vanishing160

in the adjoint state a(t) := ∂L/∂h(t) [27]. When the vanishing gradient issue happens, a(t) goes161

to 0 quickly as T − t increases, then dL/dθ in (2) will be independent of these a(t). We have the162

following expressions for the adjoint states of the NODE and HBNODE (see Appendix C for detailed163

derivation):164

• For NODE, we have165

∂L
∂ht

=
∂L
∂hT

∂hT
∂ht

=
∂L
∂hT

exp
{
−
∫ t

T

∂f

∂h
(h(s), s, θ)ds

}
. (17)

• For GHBNODE2, from (13) we can derive166 [
∂L
∂ht

∂L
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

] [∂hT
∂ht

∂hT
∂mt

∂mT
∂ht

∂mT
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

]
exp

{
−
∫ t

T

[
0 ∂σ

∂m
∂f
∂h
− ξI −γI

]
ds︸ ︷︷ ︸

:=M

}
. (18)

Note that the matrix exponential is directly related to its eigenvalues. By Schur decomposition, there167

exists an orthogonal matrix Q and an upper triangular matrix U , where the diagonal entries of U are168

eigenvalues of Q ordered by their real parts, such that169

−M = QUQ> =⇒ exp{−M} = Q exp{U}Q>. (19)

Let v> :=
[
∂L
∂hT

∂L
∂mT

]
Q, then (18) can be rewritten as170 [

∂L
∂ht

∂L
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

]
exp{−M} =

[
∂L
∂hT

∂L
∂mT

]
Q exp{U}Q> = v> exp{U}Q>. (20)

By taking the `2 norm in (20) and dividing both sides by
∥∥[∂L

∂hT

∂L
∂mT

]∥∥
2
, we arrive at171 ∥∥[∂L

∂ht

∂L
∂mt

]∥∥
2∥∥[∂L

∂hT

∂L
∂mT

]∥∥
2

=

∥∥v> exp{U}Q>
∥∥
2

‖v>Q>‖2
=

∥∥v> exp{U}
∥∥
2

‖v‖2
=
∥∥e> exp{U}

∥∥
2
, (21)

i.e.,
∥∥[∂L

∂ht

∂L
∂mt

]∥∥
2

=
∥∥e> exp{U}

∥∥
2

∥∥[∂L
∂hT

∂L
∂mT

]∥∥
2

where e = v/‖v‖2.172

Proposition 4. The eigenvalues of −M can be paired so that the sum of each pair equals (t− T)γ.173

For a given constant a > 0, we can group the upper triangular matrix exp{U} as follows174

exp{U} :=

[
exp{UL} P

0 exp{UV }

]
, (22)

where the diagonal of UL (UV) contains eigenvalues of −M that are no less (greater) than (t− T)a.175

Then, we have ‖e> exp{U}‖2 ≥ ‖e>L exp{UL}‖2 where the vector eL denotes the first m columns176

of e with m be the number of columns of UL. By choosing 0 ≤ γ ≤ 2a, for every pair of eigenvalues177

of −M there is at least one eigenvalue whose real part is no less than (t−T)a. Therefore, exp{UL}178

decays at a rate at most (t− T)a, and the dimension of UL is at least N ×N . We avoid exploding179

gradients by clipping the `2 norm of the adjoint states similar to that used for training RNNs.180

In contrast, all eigenvalues of the matrix
∫ t
T
∂f/∂hds in (17) for NODE can be very positive181

or negative, resulting in exploding or vanishing gradients. As an illustration, we consider the182

benchmark Walker2D kinematic simulation task that requires learning long-term dependencies183

effectively [27, 3]. We train ODE-RNN [44] and (G)HBNODE-RNN on this benchmark dataset, and184

the detailed experimental settings are provided in Sec. 5.4. Figure 4 plots ‖∂L/∂ht‖2 for ODE-RNN185

and ‖[∂L/∂ht ∂L/∂mt]‖2 for (G)HBNODE-RNN, showing that the adjoint state of ODE-RNN186

vanishes quickly, while that of (G)HBNODE-RNN does not vanish even when the gap between T187

and t is very large.188

2HBNODE can be seen as a special GHBNODE with ξ = 0 and σ be the identity map.

5

0 100 200 300 400
Epoch

63

54

45

36

27

18

9

0
T

- t

ODE-RNN

0 100 200 300 400
Epoch

63

54

45

36

27

18

9

0

HBNODE-RNN

0.0

0.006

0.012

0.018

0.024

>0.03

0 100 200 300 400
Epoch

63

54

45

36

27

18

9

0

T
- t

GHBNODE-RNN

0 100 200 300 400
Epoch

63

54

45

36

27

18

9

0

T
- t

GHBNODE-RNN

0.0

0.006

0.012

0.018

0.024

>0.03

Figure 4: Plot of the the `2-norm of the adjoint states for ODE-RNN and (G)HBNODE-RNN
back-propagated from the last time stamp. The adjoint state of ODE-RNN vanishes quickly when
the gap between the final time T and intermediate time t becomes larger, while the adjoint states
of (G)HBNODE-RNN decays much more slowly. This implies that (G)HBNODE-RNN is more
effective in learning long-term dependency than ODE-RNN.

5 Experimental Results189

In this section, we compare the performance of the proposed HBNODE and GHBNODE with existing190

ODE-based models, including NODE [4], ANODE [10], and SONODE [37] on the benchmark point191

cloud separation, image classification, learning dynamical systems, and kinematic simulation. For all192

the experiments, we use Adam [25] as the benchmark optimization solver (the learning rate and batch193

size for each experiment are listed in Table 1) and Dormand–Prince-45 as the numerical ODE solver.194

For HBNODE and GHBNODE, we set γ = sigmoid(θ), where θ is a trainable weight initialized as195

θ = −3. The network architecture used to parameterize f(h(t), t, θ) for each experiment below are196

described in Appendix E. All experiments are conducted on a server with 2 NVIDIA Titan Xp GPUs.197

Table 1: The batch size and learning rate for different datasets.

Dataset Point Cloud MNIST CIFAR10 Plane Vibration Walker2D

Batch Size 50 64 64 64 256
Learning Rate 0.01 0.001 0.001 0.0001 0.003

NO
DE

AN
OD

E
SO

NO
DE

HB
NO

DE
GH

BN
OD

E

Tol 1e-7: Cloud Separation

0 50 100 150 200 250 3000

100

200

300

Fo
rw

ar
d

NF
Es

0 50 100 150 200 250 3000

100

200

300

Ba
ck

wa
rd

 N
FE

s

0 50 100 150 200 250 300
Epochs

0.0

0.5

1.0

1.5

Lo
ss

NODE ANODE SONODE HBNODE GHBNODE

Figure 5: Comparison between NODE, ANODE, SONODE, HBNODE, and GHBNODE for two-
dimensional point cloud separation. HBNODE and GHBNODE converge better and require less
NFEs in both forward and backward propagation than the other benchmark models.
5.1 Point cloud separation198

In this subsection, we consider the two-dimensional point cloud separation benchmark. A total of 120199

points are sampled, in which 40 points are drawn uniformly from the circle ‖r‖ < 0.5, and 80 points200

are drawn uniformly from the annulus 0.85 < ‖r‖ < 1.0. This experiment aims to learn effective201

features to classify these two point clouds. Following [10], we use a three-layer neural network to202

parameterize the right-hand side of each ODE-based model, integrate the ODE-based model from203

t0 = 0 to T = 1, and pass the integration results to a dense layer to generate the classification204

results. We set the size of hidden layers so that the models have similar sizes, and the number of205

6

0.0 2.5 5.0 7.5
Epoch

20

30

40

50

60

NF
E

(fo
rw

ar
d)

0.0 2.5 5.0 7.5
Epoch

40

60

80

NF
E

(b
ac

kw
ar

d)

0 2 4 6 8
Epoch

0

1

2

3

Tr
ai

ni
ng

 ti
m

e
(x

10
00

s) NODE
ANODE
SONODE
HBNODE
GHBNODE

0.0 2.5 5.0 7.5
Epoch

90

92

94

96

98

Te
st

 a
cc

 (%
)

Figure 6: Contrasting NODE [4], ANODE [10], SONODE [37], HBNODE, and GHBNODE for
MNIST classification in NFE, training time, and test accuracy. (Tolerance: 10−5).

parameters of NODE, ANODE, SONODE, HBNODE, and GHBNODE are 525, 567, 528, 568,206

and 568, respectively. To avoid the effects of numerical error of the black-box ODE solver we set207

tolerance of ODE solver to be 10−7. Figure 5 plots a randomly selected evolution of the point cloud208

separation for each model; we also compare the forward and backward NFEs and the training loss of209

these models (100 independent runs). HBNODE and GHBNODE improve training as the training210

loss consistently goes to zero over different runs, while ANODE and SONODE often get stuck at211

local minima, and NODE cannot separate the point cloud since it preserves the topology [10].212

5.2 Image classification213

We compare the performance of HBNODE and GHBNODE with the existing ODE-based models214

on MNIST and CIFAR10 classification tasks using the same setting as in [10]. We parameterize215

f(h(t), t, θ) using a 3-layer convolutional network for each ODE-based model, and the total number216

of parameters for each model is listed in Table 2. For a given input image of the size c× h× w, we217

first augment the number of channel from c to c+ p with the augmentation dimension p dependent218

on each method3. Moreover, for SONODE, HBNODE and GHBNODE, we further include velocity219

or momentum with the same shape as the augmented state.220

Table 2: The number of parameters for each models for image classification.

Model NODE ANODE SONODE HBNODE GHBNODE

#Params (MNIST) 85,315 85,462 86,179 85,931 85,235
#Params (CIFAR10) 173,611 172,452 171,635 172,916 172,916

NFEs. As shown in Figs. 1 and 6, the NFEs grow rapidly with training of the NODE, resulting221

in an increasingly complex model with reduced performance and the possibility of blow up. Input222

augmentation has been verified to effectively reduce the NFEs, as both ANODE and SONODE223

require fewer forward NFEs than NODE for the MNIST and CIFAR10 classification. However,224

input augmentation is less effective in controlling their backward NFEs. HBNODE and GHBNODE225

require much fewer NFEs than the existing benchmarks, especially for backward NFEs. In practice,226

reducing NFEs implies reducing both training and inference time, as shown in Figs. 1 and 6.227

Accuracy. We also compare the accuracy of different ODE-based models for MNIST and CIFAR10228

classification. As shown in Figs. 1 and 6, HBNODE and GHBNODE have slightly better classification229

accuracy than the other three models; this resonates with the fact that less NFEs lead to simpler230

models which generalize better [10, 37].231

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700

NF
E

Ba
ck

wa
rd

NODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 ANODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 SONODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 HBNODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 GHBNODE

10 5

10 3

10 1

Figure 7: NFE vs. tolerance (shown in the colorbar) for training ODE-based models for CIFAR10
classification. Both forward and backward NFEs of HBNODE and GHBNODE grow much more
slowly than that of NODE, ANODE, and SONODE; especially the backward NFEs. As the tolerance
decreases, the advantage of HBNODE and GHBNODE in reducing NFEs becomes more significant.

3We set p = 0, 5, 4, 4, 5/0, 10, 9, 9, 9 on MNIST/CIFAR10 for NODE, ANODE, SONODE, HBNODE, and
GHBNODE, respectively.

7

NFEs vs. tolerance. We further study the NFEs for different ODE-based models under different232

tolerances of the ODE solver using the same approach as in [4]. Figure 7 depicts the forward233

and backward NFEs for different models under different tolerances. We see that (i) both forward234

and backward NFEs grow quickly when tolerance is decreased, and HBNODE and GHBNODE235

require much fewer NFEs than other models; (ii) under different tolerances, the backward NFEs of236

NODE, ANODE, and SONODE are much larger than the forward NFEs, and the difference becomes237

larger when the tolerance decreases. In contrast, the forward and backward NFEs of HBNODE238

and GHBNODE scale almost linearly with each other. This reflects that the advantage in NFEs of239

(G)HBNODE over the benchmarks become more significant when a smaller tolerance is used.240

5.3 Learning dynamical systems from irregularly-sampled time series241

In this subsection, we learn dynamical systems from experimental measurements. In particular, we242

use the ODE-RNN framework [4, 44], with the recognition model being set to different ODE-based243

models, to study the vibration of an airplane dataset [35]. The dataset was acquired, from time 0 to244

73627, by attaching a shaker underneath the right wing to provide input signals, and 5 attributes are245

recorded per time stamp; these attributes include voltage of input signal, force applied to aircraft,246

and acceleration at 3 different spots of the airplane. We randomly take out 10% of the data to247

make the time series irregularly-sampled. We use the first 50% of data as our train set, the next248

25% as validation set, and the rest as test set. We divide each set into non-overlapping segments of249

consecutive 65 time stamps of the irregularly-sampled time series, with each input instance consisting250

of 64 time stamps of the irregularly-sampled time series, and we aim to forecast 8 consecutive time251

stamps starting from the last time stamp of the segment. The input is fed though the the hybrid252

methods in a recurrent fashion; by changing the time duration of the last step of the ODE integration,253

we can forecast the output in the different time stamps. The output of the hybrid method is passed254

to a single dense layer to generate the output time series. In our experiments, we compare different255

ODE-based models hybrid with RNNs. The ODE of each model is parametrized by a 3-layer network256

whereas the RNN is parametrized by a simple dense network; the total number of parameters for257

ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBNODE-RNN with 16, 22,258

14, 15, 15 augmented dimensions are 15,986, 16,730, 16,649, 16,127, and 16,127, respectively. To259

avoid potential error due to the ODE solver, we use a tolerance of 10−7.260

In training those hybrid models, we regularize the models by penalizing the L2 distance between the261

RNN output and the values of the next time stamp. Due to the second-order natural of the underlying262

dynamics [37], ODE-RNN and ANODE-RNN learn the dynamics very poorly with much larger263

training and test losses than the other models even they take smaller NFEs. HBNODE-RNN and264

GHBNODE-RNN give better prediction than SONODE-RNN using less backward NFEs.265

0 10 20 30 40 50 60 70
Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Exact

0 100 200 300 400 500
Epoch

1200

1400

1600

1800

2000

2200

2400

2600

N
FE

 (
fo

rw
a
rd

)

0 100 200 300 400 500
Epoch

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

N
FE

 (
b
a
ck

w
a
rd

)

0 100 200 300 400 500
Epoch

10-2

10-1

100

T
ra

in
in

g
 l
o
ss

0 100 200 300 400 500
Epoch

10-1

100

T
e
st

 l
o
ss

NODE

ANODE

SONODE

HBNODE

GHBNODE

Figure 8: Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and
GHBNODE-RNN for learning a vibrational dynamical system. Left most: The learned curves
of each model vs. the ground truth (Time: <66 for training, 66-75 for testing).

5.4 Walker2D kinematic simulation266

In this subsection, we evaluate the performance of HBNODE-RNN and GHBNODE-RNN on the267

Walker2D kinematic simulation task, which requires learning long-term dependency effectively [27].268

The dataset [3] consists of a dynamical system from kinematic simulation of a person walking from269

a pre-trained policy, aiming to learn the kinematic simulation of the MuJoCo physics engine [51].270

The dataset is irregularly-sampled where 10% of data are removed from the simulation. Each input271

is consisted of 64 time stamps and fed though the the hybrid methods in a recurrent fashion, and272

the outputs of hybrid methods is passed to a single dense layer to generate the output time series.273

The target is to provide auto-regressive forecast so that the output time series is as close as the274

input sequence shifted 1 time stamp to the right. We compare ODE-RNN (with 7 augmentation),275

ANODE-RNN (with 7 ANODE style augmentation), HBNODE-RNN (with 7 augmentation), and276

8

GHBNODE-RNN (with 7 augmentation) 4. The RNN is parametrized by a 3-layer network whereas277

the ODE is parametrized by a simple dense network. The number of parameters of the above four278

models are 8,729, 8,815, 8,899, and 8,899, respectively. In Fig. 9, we compare the performance of279

the above four models on the Walker2D benchmark; HBNODE-RNN and GHBNODE-RNN not280

only require significantly less NFEs in both training (forward and backward) and in testing than281

ODE-RNN and ANODE-RNN, but also have much smaller training and test losses.282

0 100 200 300 400 500
Epoch

1200

1400

1600

1800

2000

2200

2400

2600

2800

N
FE

 (
fo

rw
a
rd

)

0 100 200 300 400 500
Epoch

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

N
FE

 (
b
a
ck

w
a
rd

)

0 100 200 300 400 500
Epoch

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

N
FE

 (
te

st
)

0 100 200 300 400 500
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

T
ra

in
in

g
 l
o
ss

0 100 200 300 400 500
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

T
e
st

 l
o
ss

NODE

ANODE

HBNODE

GHBNODE

Figure 9: Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and
GHBNODE-RNN for the Walker-2D kinematic simulation.

6 Related Work283

Reducing NFEs in training NODEs. Several techniques have been developed to reduce the284

NFEs for the forward solvers in NODEs, including weight decay [15], input augmentation [10],285

regularizing the learning dynamics [13], high-order ODE [37], data control [31], and depth-variance286

[31]. HBNODEs can reduce both forward and backward NFEs at the same time.287

Second-order ODE accelerated dynamics. It has been noticed in both optimization and sampling288

communities that second-order ODEs with an appropriate damping term, e.g., the classical momentum289

and Nesterov’s acceleration in discrete regime, can significantly accelerate the first-order gradient290

dynamics (gradient descent), e.g., [40, 34, 5, 48, 55]. Also, these second-order ODEs have been291

discretized via some interesting numerical schemes to design fast optimization schemes, e.g., [47].292

Learning long-term dependencies. Learning long-term dependency is one of the most important293

goals for learning from sequential data. Most of the existing works focus on mitigating exploding294

or vanishing gradient issues in training RNNs, e.g., [1, 56, 23, 54, 32, 19, 50]. Attention-based295

models are proposed for learning on sequential data concurrently with the effective accommodation296

of learning long-term dependency [53, 8]. Recently, NODEs have been integrated with long-short297

term memory model [20] to learn long-term dependency for irregularly-sampled time series [27].298

HBNODEs directly enhance learning long-term dependency from sequential data.299

Momentum in neural network design. As a line of orthogonal work, the momentum has also been300

studied in designing neural network architecture, e.g., [33, 50, 45], which can also help accelerate301

training and learn long-term dependencies. These techniques can be considered as changing the302

neural network f in (1). We leave the synergistic integration of adding momentum to f with our303

work on changing the left-hand side of (1) as a future work.304

ResNet-style models. Interpreting ResNet as an ODE model has been an interesting research305

direction [11, 16], which has lead to interesting neural network architectures and analysis from the306

numerical ODE solvers and differential equation theory viewpoints, e.g., [16, 30, 28].307

7 Concluding Remarks308

We proposed HBNODEs to reduce the NFEs in solving both forward and backward ODEs, which309

also improve generalization performance over the existing benchmark models. Moreover, HBNODEs310

alleviate vanishing gradients in training NODEs, making HBNODEs able to learn long-term depen-311

dency effectively from sequential data. In the optimization community, Nesterov acceleration [34]312

is also a famous algorithm for accelerating gradient descent, that achieves an optimal convergence313

rate for general convex optimization problems. The ODE counterpart of the Nesterov’s acceleration314

corresponds to (9) with γ being replaced by a time-dependent damping parameter, e.g., t/3 [48]. The315

adjoint equation of the Nesterov’s ODE [48] is no longer a Nesterov’s ODE. We notice that directly316

using Nesterov’s ODE cannot improve the performance of the vanilla neural ODE. How to integrate317

Nesterov’s ODE with neural ODE is an interesting future direction.318

4Here, we do not compare with SONODE-RNN since SONODE has some initialization problem on this
dataset, and the ODE solver encounters failure due to exponential growth over time. This issue is originally
tackled by re-initialization [37]. We re-initialized SONODE 100 times; all failed due to initialisation problems.

9

References319

[1] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.320

In International Conference on Machine Learning, pages 1120–1128, 2016.321

[2] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with322

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.323

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,324

and Wojciech Zaremba. OpenAI Gym, 2016. cite arxiv:1606.01540.325

[4] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-326

ferential equations. In Proceedings of the 32nd International Conference on Neural Information327

Processing Systems, pages 6572–6583, 2018.328

[5] Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte Carlo.329

In International conference on machine learning, pages 1683–1691, 2014.330

[6] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,331

Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-332

decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.333

[7] Talgat Daulbaev, Alexandr Katrutsa, Larisa Markeeva, Julia Gusak, Andrzej Cichocki, and334

Ivan Oseledets. Interpolation technique to speed up gradients propagation in neural odes. In335

H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural336

Information Processing Systems, volume 33, pages 16689–16700. Curran Associates, Inc.,337

2020.338

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of339

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,340

2018.341

[9] Jianzhun Du, Joseph Futoma, and Finale Doshi-Velez. Model-based reinforcement learning342

for semi-markov decision processes with neural odes. In H. Larochelle, M. Ranzato, R. Had-343

sell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,344

volume 33, pages 19805–19816. Curran Associates, Inc., 2020.345

[10] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In H. Wallach,346

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in347

Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.348

[11] Weinan E. A proposal on machine learning via dynamical systems. Communications in349

Mathematics and Statistics, 5:1–11, 2017.350

[12] Jeffrey L Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.351

[13] Chris Finlay, Joern-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train352

your neural ODE: the world of Jacobian and kinetic regularization. In Hal Daumé III and Aarti353

Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume354

119 of Proceedings of Machine Learning Research, pages 3154–3164. PMLR, 13–18 Jul 2020.355

[14] Amilcar dos Santos Gonçalves. A Version of Beale’s Method Avoiding the Free-Variables. In356

Proceedings of the 1971 26th Annual Conference, ACM ’71, page 433–441, New York, NY,357

USA, 1971. Association for Computing Machinery.358

[15] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable re-359

versible generative models with free-form continuous dynamics. In International Conference360

on Learning Representations, 2019.361

[16] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,362

34(1):014004, 2017.363

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image364

recognition. arXiv preprint arXiv:1512.03385, 2015.365

10

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual366

networks. In European conference on computer vision, pages 630–645. Springer, 2016.367

[19] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with368

scaled Cayley transform. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th369

International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning370

Research, pages 1969–1978, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.371

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,372

9(8):1735–1780, 1997.373

[21] Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics from374

irregularly-sampled partial observations. In Advances in Neural Information Processing Systems,375

2020.376

[22] Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. In H. Wallach,377

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in378

Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.379

[23] Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark,380

and Marin Soljačić. Tunable efficient unitary neural networks (eunn) and their application to381

rnns. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,382

pages 1733–1741. JMLR. org, 2017.383

[24] Patrick Kidger, James Morrill, James Foster, and Terry J. Lyons. Neural controlled differential384

equations for irregular time series. In NeurIPS, 2020.385

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint386

arXiv:1412.6980, 2014.387

[26] Nikola B. Kovachki and Andrew M. Stuart. Continuous time analysis of momentum methods.388

Journal of Machine Learning Research, 22(17):1–40, 2021.389

[27] Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-sampled390

time series. arXiv preprint arXiv:2006.04418, 2020.391

[28] Qianxiao Li, Ting Lin, and Zuowei Shen. Deep learning via dynamical systems: An approxima-392

tion perspective. arXiv preprint arXiv:1912.10382, 2019.393

[29] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable394

gradients for stochastic differential equations. In Silvia Chiappa and Roberto Calandra, editors,395

Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statis-396

tics, volume 108 of Proceedings of Machine Learning Research, pages 3870–3882. PMLR,397

26–28 Aug 2020.398

[30] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:399

Bridging deep architectures and numerical differential equations. In International Conference400

on Machine Learning, pages 3276–3285. PMLR, 2018.401

[31] Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asma. Dissect-402

ing neural odes. In 34th Conference on Neural Information Processing Systems, NeurIPS 2020.403

The Neural Information Processing Systems, 2020.404

[32] Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal405

parametrisation of recurrent neural networks using householder reflections. In Proceedings of406

the 34th International Conference on Machine Learning-Volume 70, pages 2401–2409. JMLR.407

org, 2017.408

[33] Thomas Moreau and Joan Bruna. Understanding the learned iterative soft thresholding algorithm409

with matrix factorization. arXiv preprint arXiv:1706.01338, 2017.410

[34] Yurii E Nesterov. A method for solving the convex programming problem with convergence411

rate o (1/kˆ 2). In Dokl. Akad. Nauk Sssr, volume 269, pages 543–547, 1983.412

11

[35] Jean-Philippe Noël and M Schoukens. F-16 aircraft benchmark based on ground vibration test413

data. In 2017 Workshop on Nonlinear System Identification Benchmarks, pages 19–23, 2017.414

[36] Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, and Pietro Liò. Neural {ode}415

processes. In International Conference on Learning Representations, 2021.416

[37] Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On second417

order behaviour in augmented neural odes. In Advances in Neural Information Processing418

Systems, 2020.419

[38] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent420

neural networks. In International Conference on Machine Learning, pages 1310–1318, 2013.421

[39] Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and422

Jinkyoo Park. Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532,423

2019.424

[40] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR425

Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.426

[41] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge, 2018.427

[42] Alessio Quaglino, Marco Gallieri, Jonathan Masci, and Jan Koutník. Snode: Spectral dis-428

cretization of neural odes for system identification. In International Conference on Learning429

Representations, 2020.430

[43] H. H. Rosenbrock. An Automatic Method for Finding the Greatest or Least Value of a Function.431

The Computer Journal, 3(3):175–184, 01 1960.432

[44] Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential433

equations for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer,434

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing435

Systems, volume 32. Curran Associates, Inc., 2019.436

[45] Michael E. Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Momentum residual437

neural networks. arXiv preprint arXiv:2102.07870, 2021.438

[46] Bin Shi, Simon S. Du, Michael I. Jordan, and Weijie J. Su. Understanding the acceleration439

phenomenon via high-resolution differential equations. arXiv preprint arXiv:1810.08907, 2018.440

[47] Bin Shi, Simon S Du, Weijie Su, and Michael I Jordan. Acceleration via symplectic discretiza-441

tion of high-resolution differential equations. In H. Wallach, H. Larochelle, A. Beygelzimer,442

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing443

Systems, volume 32. Curran Associates, Inc., 2019.444

[48] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nes-445

terov’s accelerated gradient method: Theory and insights. In Advances in Neural Information446

Processing Systems, pages 2510–2518, 2014.447

[49] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-448

ization and momentum in deep learning. In International Conference on Machine Learning,449

pages 1139–1147, 2013.450

[50] Tan M. Nguyen and Richard G. Baraniuk and Andrea L. Bertozzi and Stanley J. Osher and Bao451

Wang. MomentumRNN: Integrating momentum into recurrent neural networks. In Advances in452

Neural Information Processing Systems (NeurIPS), pages 9154–9164, 2020.453

[51] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based454

control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages455

5026–5033, 2012.456

[52] Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep latent457

gaussian models in the diffusion limit. arXiv preprint arXiv:1905.09883, 2019.458

12

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,459

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,460

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural461

Information Processing Systems, volume 30. Curran Associates, Inc., 2017.462

[54] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonality and learn-463

ing recurrent networks with long term dependencies. In Proceedings of the 34th International464

Conference on Machine Learning-Volume 70, pages 3570–3578. JMLR. org, 2017.465

[55] Ashia C. Wilson, Benjamin Recht, and Michael I. Jordan. A Lyapunov Analysis of Momentum466

Methods in Optimization. arXiv preprint arXiv:1611.02635, 2018.467

[56] Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-capacity468

unitary recurrent neural networks. In Advances in Neural Information Processing Systems,469

pages 4880–4888, 2016.470

[57] Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. ODE2VAE: Deep generative second471

order ODEs with Bayesian neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,472

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing473

Systems, volume 32. Curran Associates, Inc., 2019.474

[58] Tianjun Zhang, Zhewei Yao, Amir Gholami, Joseph E Gonzalez, Kurt Keutzer, Michael W475

Mahoney, and George Biros. ANODEV2: A Coupled Neural ODE Framework. In H. Wallach,476

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in477

Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.478

[59] Juntang Zhuang, Nicha C Dvornek, sekhar tatikonda, and James s Duncan. {MALI}: A memory479

efficient and reverse accurate integrator for neural {ode}s. In International Conference on480

Learning Representations, 2021.481

13

Checklist482

1. For all authors...483

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s484

contributions and scope? [Yes]485

(b) Did you describe the limitations of your work? [Yes] See Section 4.1.486

(c) Did you discuss any potential negative societal impacts of your work? [N/A]487

(d) Have you read the ethics review guidelines and ensured that your paper conforms to488

them? [Yes]489

2. If you are including theoretical results...490

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section491

4.1.492

(b) Did you include complete proofs of all theoretical results? [Yes] See Supplementary493

Materials494

3. If you ran experiments...495

(a) Did you include the code, data, and instructions needed to reproduce the main experi-496

mental results (either in the supplemental material or as a URL)? [Yes]497

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they498

were chosen)? [Yes]499

(c) Did you report error bars (e.g., with respect to the random seed after running experi-500

ments multiple times)? [Yes]501

(d) Did you include the total amount of compute and the type of resources used (e.g., type502

of GPUs, internal cluster, or cloud provider)? [Yes]503

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...504

(a) If your work uses existing assets, did you cite the creators? [Yes]505

(b) Did you mention the license of the assets? [Yes]506

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]507

508

(d) Did you discuss whether and how consent was obtained from people whose data you’re509

using/curating? [N/A]510

(e) Did you discuss whether the data you are using/curating contains personally identifiable511

information or offensive content? [N/A]512

5. If you used crowdsourcing or conducted research with human subjects...513

(a) Did you include the full text of instructions given to participants and screenshots, if514

applicable? [N/A]515

(b) Did you describe any potential participant risks, with links to Institutional Review516

Board (IRB) approvals, if applicable? [N/A]517

(c) Did you include the estimated hourly wage paid to participants and the total amount518

spent on participant compensation? [N/A]519

14

	Introduction
	Contribution
	Organization

	Heavy Ball Neural Ordinary Differential Equations
	Heavy ball ordinary differential equation
	Heavy ball neural ordinary differential equations

	Generalized Heavy Ball Neural Ordinary Differential Equations
	Learning long-term dependencies – Vanishing gradient
	Experimental Results
	Point cloud separation
	Image classification
	Learning dynamical systems from irregularly-sampled time series
	Walker2D kinematic simulation

	Related Work
	Concluding Remarks

