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Abstract

Synthetic data generation has become a key ingredient for training machine learning1

procedures, addressing tasks such as data augmentation, analysing privacy-sensitive2

data, or visualising representative samples. Assessing the quality of such synthetic3

data generators hence has to be addressed. As (deep) generative models for syn-4

thetic data often do not admit explicit probability distributions, classical statistical5

procedures for assessing model goodness-of-fit may not be applicable. In this6

paper, we propose a principled procedure to assess the quality of a synthetic data7

generator. The procedure is a kernelised Stein discrepancy (KSD)-type test which8

is based on a non-parametric Stein operator for the synthetic data generator of9

interest. This operator is estimated from samples which are obtained from the10

synthetic data generator and hence can be applied even when the model is only11

implicit. In contrast to classical testing, the sample size from the synthetic data12

generator can be as large as desired, while the size of the observed data which the13

generator aims to emulate is fixed. Experimental results on synthetic distributions14

and trained generative models on synthetic and real datasets illustrate that the15

method shows improved power performance compared to existing approaches.16

1 Introduction17

Synthetic data capturing main features of the original dataset are of particular interest for machine18

learning methods. The use of original dataset for machine learning tasks can be problematic or even19

prohibitive in certain scenarios, e.g. under authority regularisation on privacy-sensitive information,20

training models on small-sample dataset, or calibrating models with imbalanced groups. High quality21

synthetic data generation procedures surpass some of these challenges by creating de-identified data22

to preserve privacy and to augment small or imbalance datasets. Training deep generative models23

has been widely studied in the recent years [Kingma and Welling, 2013, Radford et al., 2015, Song24

and Kingma, 2021] and methods such as those based on Generative Adversarial Networks (GANs)25

[Goodfellow et al., 2014] provide powerful approaches that learn to generate synthetic data which26

resemble the original data distributions. However, these deep generative models usually do not27

provide theoretical guarantees on the goodness-of-fit to the original data [Creswell et al., 2018].28

To the best of our knowledge, existing mainstream developments for deep generative models [Song29

and Ermon, 2020, Li et al., 2017] do not provide a systematic approach to assess the quality of the30

synthetic samples. Instead, heuristic methods are applied, e.g. for image data, the quality of samples31

are generally decided via visual comparisons. The training quality has been studied relying largely32

on the specific choice of training loss, which does not directly translate into a measure of sample33
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quality; in the case of the log-likelihood [Theis et al., 2015]. Common quality assessment measures34

for implicit generative models, on images for example, include Inception Scores (IS) [Salimans35

et al., 2016] and Fréchet Inception Distance (FID) [Heusel et al., 2017], which are motivated by36

human inception systems in the visual cortex and pooling [Wang et al., 2004]. Bińkowski et al.37

[2018] pointed out issues for IS and FID and developed the Kernel Inception Distance (KID) for38

more general datasets. Although these scores can be used for for comparisons, they do not provide a39

statistical significance test which would assess whether a deemed good generative model is “good40

enough”. A key stumbling block is that the distribution from which a synthetic method generates41

samples is not available; one only ever observes samples from it.42

For models in which the density is known explicitly, at least up to a normalising constant, some43

assessment methods are available. Gorham and Mackey [2017] proposed to assess sample quality44

using discrepancy measures called kernelised Stein discrepancy (KSD). Schrab et al. [2022] assesses45

the quality of generative models on the MNIST image dataset from LeCun et al. [1995] using an46

aggregated kernel Stein discrepancy (KSDAgg) test; still an explicit density is required. The only47

available implicit goodness-of-fit test, AgraSSt [Xu and Reinert, 2022], applies only to generators of48

finite graphs; it is also of KSD form and makes extensive use of the discrete and finite nature of the49

problem. To date, quality assessment procedures of implicit deep generative models for continuous50

data remains unresolved. This paper provides a solution of this problem.51

The underlying idea can be sketched as follows. Traditionally, given a set of n observations, each in52

Rm, one would estimate the distribution of these observations from the data and then check whether53

the synthetic data can be viewed as coming from the data distribution. Here instead we characterise54

the distribution which is generated possibly implicitly from the synthetic data generator, and then55

test whether the observed data can be viewed as coming from the synthetic data distribution. The56

advantage of this approach is that while the observed sample size n may be fairly small, the synthetic57

data distribution can be estimated to any desirable level of accuracy by generating a large number of58

samples. Similarly to the works mentioned in the previous paragraph for goodness-of-fit tests, we use59

a KSD approach, based on a Stein operator which characterises the synthetic data distribution. As the60

synthetic data generator is usually implicit, this Stein operator is not available. We show however61

that it can be estimated from synthetic data samples to any desired level of accuracy.62

Our contributions We introduce a method to assess (deep) generative models, which are often63

black-box approaches, when the underlying probability distribution is continuous, usually in high-64

dimensions. To this purpose, we develop a non-parametric Stein operator and the corresponding65

non-parametric kernel Stein discrepancies (NP-KSD), based on estimating conditional score functions.66

Moreover, we give theoretical guarantees for NP-KSD.67

This paper is structured as follows. We start with a review of Stein’s method and KSD goodness-of-fit68

tests for explicit models in Section 2 before we introduce the NP-KSD in Section 3 and analyse69

the model assessment procedures. We show results of experiments in Section 4 and conclude with70

future directions in Section 5. Theoretical underpinnings, and additional results are provided in the71

supplementary material. Code is also attached in the supplementary material.72

2 Stein’s method and kernel Stein discrepancy tests73

Stein identities, equations, and operators Stein’s method [Stein, 1972] provides an elegant tool74

to characterise distributions via Stein operators, which can be used to assess distances between75

probability distributions [Barbour and Chen, 2005, Barbour, 2005, Barbour et al., 2018]. Given a76

distribution q, an operator Aq is called a Stein operator w.r.t. q and Stein class F if the following77

Stein identity holds for any test function f∈ F : Eq[Aqf ] = 0. For a test function h one then aims to78

find a function f = fh∈ F which solves the Stein equation79

Aqf(x) = h(x)− Eq[h(x)]. (1)

Then for any distribution p, taking expectations Ep in Eq. 1 assesses the distance |Eph−Eqh| through80

|EpAqf |, an expression in which randomness enters only through the distribution p.81
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When the density function q is given explicitly, with smooth support Ωq⊂ Rm, is differentiable82

and vanishes at the boundary of Ωq, a common choice of Stein operator in the literature utilises83

the score-function, see for example Mijoule et al. [2021]. The gradient operator is denoted by ∇84

and taken to be a column vector. The score function of q is defined as sq = ∇ log q = ∇q
q (with85

the convention that sq ≡ 0 outside of Ωq). Let f = (f1, . . . , fm)⊤ where fi : Rm → R,∀i, are86

differentiable. The score-Stein operator1 is the vector-valued operator acting on (vector-valued)87

function f ,88

Aqf(x) = f(x)⊤∇ log q(x) +∇ · f(x), (2)

and the Stein identity Eq[Aqf ] = 0 holds for functions f which belong to the so-called canonical89

Stein class defined in Mijoule et al. [2021], Definition 3.2. As it requires knowledge of the density90

q only via its score function, this Stein operator is particularly useful for unnormalised densities91

[Hyvärinen, 2005], appearing e.g. in energy based models (EBM) [LeCun et al., 2006].92

Kernel Stein discrepancy Stein operators can be used to assess discrepancies between two proba-93

bility distributions; the Stein discrepancy between probability distribution p and q (w.r.t. class B ⊂ F )94

is defined as [Gorham and Mackey, 2015]95

SD(p∥q,B) = sup
f∈B

{|Ep[Aqf ]− Ep[Apf ]︸ ︷︷ ︸
=0

|} = sup
f∈B

|Ep[Aqf ]|. (3)

As the sup f over a general class B can be difficult to compute, taking B as the unit ball of a repro-96

ducing kernel Hilbert space (RKHS) has been considered, resulting in the kernel Stein discrepancy97

(KSD) defined as [Gorham and Mackey, 2017]98

KSD(p∥q,H) = sup
f∈B1(H)

|Ep[Aqf ]|. (4)

Denoting by k the reproducing kernel associated with the RKHS H over a set X , the reproducing99

property ensures that ∀f ∈ H, f(x) = ⟨f, k(x, ·)⟩H,∀x ∈ X . Algebraic manipulations yield100

KSD2(q∥p) = Ex,x̃∼p[uq(x, x̃)], (5)

where uq(x, x̃) = ⟨Aqk(x, ·),Aqk(x̃, ·)⟩H, which takes the exact sup without approximation and101

does not involve the (sample) distribution p. Then, KSD2 can be estimated through empirical means,102

over samples from p, e.g. V-statistic [Van der Vaart, 2000] and U-statistics [Lee, 1990] estimates are103

KSD2
v(q∥p) =

1

m2

∑
i,j

uq(xi,xj), KSD2
u(q∥p) =

1

m(m− 1)

∑
i̸=j

uq(xi xj). (6)

KSD has been studied as discrepancy measure between distributions for testing model goodness-of-fit104

[Chwialkowski et al., 2016, Liu et al., 2016].105

KSD testing procedure Suppose we have observed samples x1, . . . ,xn from the unknown distri-106

bution p. To test the null hypothesis H0 : p = q against the (broad class of) alternative hypothesis107

H1 : p ̸= q, KSD can be empirically estimated via Eq. 6. The null distribution is usually simulated108

via the wild-bootstrap procedure [Chwialkowski et al., 2014]. Then if the empirical quantile, i.e. the109

proportion of wild bootstrap samples that are larger than KSD2
v(q∥p), is smaller than the pre-defined110

test level (or significance level) α, the null hypothesis is rejected; otherwise the null hypothesis is111

not rejected. In this way, a systematic non-parametric goodness-of-fit testing procedure is obtained,112

which is applicable to unnormalised models.113

3 Non-Parametric kernel Stein discrepancies114

The construction of a KSD relies on the knowledge of the density model, up to normalisation. How-115

ever, for deep generative models where the density function is not explicitly known, the computation116

for Stein operator in Eq. 2, which is based on an explicit parametric density, is no longer feasible.117

1also referred to as Langevin Stein operator [Barp et al., 2019].
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While in principle one could estimate the multivariate density function from synthetic data, density118

estimation in high dimensions is known to be problematic, see for example Scott and Sain [2005].119

Instead, Stein’s method allows to use a two-step approach: For data in Rm, we first pick a coordinate120

i ∈ [m] := {1, . . . ,m}, and then we characterize the uni-variate conditional distribution of that coor-121

dinate, given the values of the other coordinates. Using score Stein operators from Ley et al. [2017],122

this approach only requires knowledge or estimation of uni-variate conditional score functions.123

We denote observed data z1, . . . ,zn with zi = (z
(1)
i , . . . , z

(m)
i )⊤ ∈ Rm; and denoting the generative124

model as G, we write X ∼ G to denote a random Rm-valued element from the (often only given125

implicitly) distribution which is underlying G. Using G, we generate N samples denoted by126

y1, . . . ,yN . In our case, n is fixed and n ≪ N , allowing N → ∞ in theoretical results. The kernel of127

an RKHS is denoted by k and is assumed to be bounded. For x ∈ Rm, x ∈ R and g(x) : Rm → R, we128

write gx(−i)(x) : R → R for the uni-variate function which acts only on the coordinate i and fixes the129

other coordinates to equal x(j), j ̸= i, so that gx(−i)(x) = g(x(1), . . . , x(i−1), x, x(i+1), . . . , x(m)).130

For i ∈ [m] let T (i) denote a Stein operator for the conditional distribution Q(i) = Q
(i)

x(−i) with131

E
Q

(i)

x(−i)

gx(−i)(x) = E[gy(−i)(Y )|Y (j) = y(j), j ̸= i]. The proposed Stein operator A acting on132

functions g : Rm → R underlying the non-parametric Stein operator is133

Ag(x1, . . . , xm) =
1

m

m∑
i=1

T (i)gx(−i)(x(i)). (7)

We note that for X ∼ q, the Stein identity EAg(X) = 0 holds and thus A is a Stein operator. The134

domain of the operator will depend on the conditional distribution in question. Instead of using the135

weights wi =
1
m , other positive weights which sum to 1 would be possible, but for simplicity we use136

equal weights. A more detailed theoretical justification of Eq. 7 is given in Appendix A.137

In what follows we use as Stein operator for a differentiable uni-variate density q the score operator138

from Eq. 2, given by139

T (i)
q f(x) = f ′(x) + f(x)

q′(x)

q(x)
. (8)

In Proposition D.1 of Appendix D we shall see that the operator in Eq. 7 equals the score-Stein140

operator in Eq. 2; in Appendix D an example is also given. For the development in this paper, Eq. 7 is141

more convenient as it relates directly to conditional distributions. Other choices of Stein operators are142

discussed for example in Ley et al. [2017], Mijoule et al. [2021], Xu [2022].143

Re-sampling Stein operators The Stein operator Eq. 7 depends on all coordinates i ∈ [m]. When144

m is large we can estimate this operator via re-sampling with replacement, as follows. We draw B145

samples {i1, . . . , iB} with replacement from [m] such that {i1, . . . , iB} ∼ Multinom(B, { 1
m}i∈[m]).146

The re-sampled Stein operator acting on f : Rm → R is147

ABf(z) :=
1

B

B∑
b=1

A(ib)f(z). (9)

Then we have EABf(X) = 1
B

∑B
b=1 EA(ib)f(X) = 0. So AB is again a Stein operator.148

In practice, when m is large, the stochastic operator in Eq. 9 creates a computationally efficient way149

for comparing distributions. A similar re-sampling strategy for constructing stochastic operators150

are considered in the context of Bayesian inference [Gorham et al., 2020], where conditional score151

functions, which are given in parametric form, are re-sampled to derive score-based (or Langevin)152

Stein operators for posterior distributions. The conditional distribution has been considered [Wang153

et al., 2018] and [Zhuo et al., 2018] in the context of graphical models [Liu and Wang, 2016]. In154

graphical models, the conditional distribution is simplified to conditioning on the Markov blanket155

[Wang et al., 2018], which is a subset of the full coordinate; however, no random re-sampling is used.156

Conditional distributions also apply in message passing, but there, the sequence of updates is ordered.157
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Algorithm 1 Estimating the conditional probability via summary statistics
Input: Generator G; summary statistics t(·); number of samples N from G; re-sample size B
Procedure:

1: Generate samples {y1, . . . ,yN} from G.
2: Generate coordinate index sample {i1, . . . , iB}
3: For ib ∈ [m], l ∈ [N ], estimate q(z(ib)|t(z−ib) from samples {y(ib)l , t(yl

−ib)}l∈[N ] via the score-
matching objective in Eq. 10.

Output: ŝ
(i)
t,N (z(i)|t(z(−i))),∀i ∈ [m].

Estimating Stein operators via score matching Usually the score function q′/q in Eq. 8 is not158

available but needs to be estimated. An efficient way of estimating the score function is through159

score-matching, see for example [Hyvärinen, 2005, Song and Kingma, 2021, Wenliang et al., 2019].160

Score matching relies on the following score-matching (SM) objective [Hyvärinen, 2005],161

J(p∥q) = Ep

[
∥∇ log p(x)−∇ log q(x)∥2

]
, (10)

which is particularly useful for unnormalised models such as EBMs. Additional details are included162

in Appendix E. Often score matching estimators can be shown to be consistent, see for example Song163

et al. [2020]. Proposition 3.1, proven in Appendix B, gives theoretical guarantees for the consistency164

of a general form of Stein operator estimation, as follows.165

Proposition 3.1. Suppose that for i ∈ [m], ŝ(i)N is a consistent estimator of the uni-variate score166

function s(i). Let T (i) be a Stein operator for the uni-variate differentiable probability distribution167

Q(i) of the generalised density operator form Eq. 8. Let168

T̂ (i)
N g(x) = g′(x) + g(x)ŝ

(i)
N and Âg = T̂ (I)

N gx(−I) .

Then T̂ (i)
N is a consistent estimator for T (i), and Â is a consistent estimator of A.169

Non-parametric Stein operators with summary statistics In practice, the data y(−i) ∈ Rm−1170

can be high dimensional, e.g. image pixels, and the observations can be sparse. Thus, estimation171

of the conditional distribution can be unstable or exponentially large sample size is required. In-172

spired by Xu and Reinert [2021] and Xu and Reinert [2022], we use low-dimensional measurable173

non-trivial summary statistics t and the conditional distribution of the data given t as new target174

distributions. Heuristically, if two distributions match, then so do their conditional distributions.175

Thus, the conditional distribution Q(i)(A) is replaced by Q
(i)
t (A) = P(X(i) ∈ A|t(x(−i))). Setting176

t(x(−i)) = x(−i) replicates the actual conditional distribution. We denote the uni-variate score func-177

tion of qt(x|t(x−i)) by s
(i)
t (x|t(x−i)), or by s

(i)
t (x) when the context is clear. The summary statistics178

t(x(−i)) can be uni-variate or multi-variate, and they may attempt to capture useful distributional179

features. Here we consider uni-variate summary statistics such as the sample mean.180

The non-parametric Stein operator enables the construction of Stein-based statistics based on Eq. 7with
estimated score functions ŝ(i)t,N using generated samples from the model G, as shown in Algorithm 1.
The re-sampled non-parametric Stein operator is

ÂB
t,Ng =

1

B

∑
b

T̂ (ib)
t,N gx(−ib)=

1

B

∑
b

(
g′
x(−ib)

+ gx(−ib) ŝ
(i)
t,N

)
.

Non-parametric kernel Stein discrepancy With the well-defined non-parametric Stein operator,181

we define the corresponding non-parametric Stein discrepancy (NP-KSD) using the Stein operator in182

Eq. 9, the Stein discrepancy notion in Eq. 3 and choosing as set of test functions the unit ball of the183

RKHS within unit ball RKHS. Similarly to Eq. 4, we define the NP-KSD with summary statistic t as184

NP-KSDt(G∥p) = sup
f∈B1(H)

Ep[ÂB
t,Nf ]. (11)
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A similar quadratic form as in Eq. 5 applies to give185

NP-KSD2
t (G∥p) = Ex,x̃∼p[û

B
t,N (x, x̃)], (12)

where ûB
t,N (x, x̃) = ⟨ÂB

t,Nk(x, ·), ÂB
t,Nk(x̃, ·)⟩H. The empirical estimate is186

̂NP-KSD
2

t (G∥p) = 1

n2

∑
i,j∈[n]

[ûB
t,N (zi, zj)], (13)

where S = {z1, . . . ,zn} ∼ p. Thus, NP-KSD allows the computation between a set of samples and187

a generative model, enabling the quality assessment of synthetic data generators even for implicit188

models.189

The relationship between NP-KSD and KSD is clarified in the following result; we use the notation190

ŝt,N = (ŝt,N (x(i)), i ∈ [m]). Here we set191

KSD2
t (qt∥p) = Ex,x̃∼p[⟨Atk(x, ·),Atk(x̃, ·)⟩H with Atg(x) :=

1

m

m∑
i=1

T (i)
qt gx(−i)(x(i))

(14)
as in Eq. 7, and following Eq. 8, T (i)

qt gx(−i)(x) = g′
x(−i)(x)+ gx(−i)(x)s

(i)
t (x|t(x(−i))). More details192

about the interpretation of this quantity are given in App. B.1.193

Theorem 3.2. Assume that the score function estimator vector ŝt,N= (ŝ
(i)
t,N , i = 1, . . . ,m)⊤ is194

asymptotically normal with mean 0 and covariance matrix N−1Σs. Then NP-KSD2
t (G∥p) converges195

in probability to KSD2
t (qt∥p) at rate at least min(B− 1

2 , N− 1
2 ).196

The proof of Theorem 3.2, which is found in App. B, also shows that the distribution197

NP-KSD2
t (G∥p)−KSD2

t (qt∥p) involves mixture of normal variables. The assumption of asymptotic198

normality for score matching estimators is often satisfied, see for example Song et al. [2020].199

Model assessment with NP-KSD Given an implicit generative model G and a set of observed200

samples S = {z1, . . . ,zn}, we aim to test the null hypothesis H0 : S ∼ G versus the alternative201

H1 : S ̸∼ G. This test assumes that samples generated from G follows some (unknown) distribution202

q and S are generated according to some (unknown) distribution p. The null hypothesis is H0 : p = q203

while the alternative is H1 : p ̸= q. We note that the observed sample size n is fixed.204

NP-KSD testing procedures NP-KSD can be applied for testing the above hypothesis using the205

testing procedure outlined in Algorithm 2. In contrast to the KSD testing procedure in Section 2,206

the NP-KSD test in Algorithm 2 is a Monte Carlo based test [Xu and Reinert, 2021, 2022, Schrab207

et al., 2022] for which the null distribution is approximated via samples generated from G instead208

of the wild bootstrap procedure [Chwialkowski et al., 2014]. The reasons for employing the Monte209

Carlo testing strategy instead of the wild-bootstrap are 1). The non-parametric Stein operator depends210

on the random function ŝt so that classical results for V-statistics convergence which assume that211

the sole source of randomness is the bootstrap may not apply2; 2). While the wild-bootstrap is212

asymptotically consistent as observed sample size n → ∞, it may not necessarily control the type-I213

error in a non-asymptotic regime where n is fixed. More details can be found in Appendix F.214

Here we note that any test which is based on the summary statistic t will only be able to test for215

a distribution up to equivalence of their distributions with respect to the summary statistic t; two216

distributions P and Q are equivalent w.r.t. the summary statistics t if P (X|t(X)) = Q(X|t(X)).217

Thus the null hypothesis for the NP-KSD test is that the distribution is equivalent to P with respect to218

t. Hence, the null hypothesis specifies the conditional distribution, not the unconditional distribution.219

2A KSD with random Stein kernel has been briefly discussed in Fernández et al. [2020] when the hq function
requires estimation from relevant survival functions.
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Algorithm 2 Assessment procedures for implicit generative models
Input: Observed sample set S = {z1, . . . ,zn}; generator G and generated sample size N ; estima-

tion statistics t; RKHS kernel K; re-sampling size B; bootstrap sample size b; confidence level
α;

1: Estimate ŝ(z(i)|t(z(−i))) based on Algorithm 1.
2: Uniformly generate re-sampling index {i1, . . . , iB} from [m], with replacement.

3: Compute τ = ̂NP-KSD
2
(ŝt;S) in Eq. (13).

4: Simulate Si = {y′
1, . . . ,y

′
n} for i ∈ [b] from G.

5: Compute τi = ̂NP-KSD
2
(ŝt;Si) in again with index re-sampling.

6: Estimate the empirical (1- α) quantile γ1−α via {τ1, . . . , τb}.
Output: Reject the null hypothesis if τ > γ1−α; otherwise do not reject.

Related works To assess whether an implicit generative models can generate samples that are220

significantly good for the desired data model, several hypothesis testing procedures have been221

studied. Jitkrittum et al. [2018] has proposed kernel-based test statistics, Relative Unbiased Mean222

Embedding (Rel-UME) test and Relative Finite-Set Stein Discrepancy (Rel-FSSD) test for relative223

model goodness-of-fit, i.e. whether model S is a better fit than model R. While Rel-UME is applicable224

for implicit generative models, Rel-FSSD still requires explicit knowledge of the unnormalised density.225

The idea for assessing sample quality for implicit generative models is through addressing two-sample226

problem, where samples generated from the implicit model are compared with the observed data. In227

this sense, maximum-mean-discrepancy (MMD) may also apply for assessing sample qualities for228

the implicit models. With efficient choice of (deep) kernel, Liu et al. [2020] applied MMD tests to229

assess the distributional difference for image data, e.g. MNIST [LeCun et al., 1998] v.s. digits image230

trained via deep convolutional GAN (DCGAN) [Radford et al., 2015]; CIFAR10 [Krizhevsky, 2009]231

v.s. CIFAR10.1 [Recht et al., 2019]. However, as the distribution is represented via samples, the232

two-sample based assessment suffers from limited probabilistic information from the implicit model233

and low estimation accuracy when the sample size for observed data is small.234

4 Experiments235

4.1 Baseline and competing approaches236

We illustrate the proposed NP-KSD testing procedure with different choice of summary statistics. We237

denote by NP-KSD the version which uses the estimation of the conditional score, i.e. t(x(−i)) =238

x(−i); by NP-KSD_mean the version which uses conditioning on the mean statistics, i.e. t(x(−i)) =239
1

m−1

∑
j ̸=i x

(j); and by NP-KSD_G the version which fits a Gaussian model as conditional density3.240

Two-sample testing methods can be useful for model assessment, where the observed sample set241

is tested against sample set generated from the model. In our setting where n ≪ N , we consider242

a consistent non-asymptotic MMD-based test, MMDAgg [Schrab et al., 2021], as our competing243

approach; see Appendix F for more details. For synthetic distributions where the null models have244

explicit densities, we include the KSD goodness-of-fit testing procedure in Section 2 as the baseline.245

Gaussian kernels are used and the median heuristic [Gretton et al., 2007] is applied for bandwidth246

selection. As a caveat, in view of [Gorham and Mackey, 2015], when the kernel decays more rapidly247

than the score function grows, then identifiability of qt through a KSD method may not be guaranteed.248

Details while MMD is not included in this list are found in Appendix F.249

4.2 Experiments on synthetic distributions250

Gaussian Variance Difference (GVD) We first consider a standard synthetic setting, studied in251

Jitkrittum et al. [2017], in which the null distribution is multivariate Gaussian with mean zero and252

3NP-KSD_G for non-Gaussian densities is generally mis-specified. We deliberately check this case to assess
the robustness of the NP-KSD procedure under model mis-specification.
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(d) MoG: m = 40

Figure 1: Rejection rates of the synthetic distributions: test level α = 0.05; 100 trials per round of
experiment; 10 rounds of experiment are taken for average and standard deviation; bootstrap sample
size b = 500; m = 3 for (a) and (b); m = 6 for (c); n = 100, σper = 0.5 for (d).

identity covariance matrix. The alternative is set to perturb the the diagonal terms of the covariance253

matrix, i.e. the variances, all by the same amount.254

The rejection rate against the variances perturbation is shown in Figure 1(a). From the result, we255

see that all the tests presented have controlled type-I error. For all the tests the power increases with256

increased perturbation. NP-KSD and NP-KSD_mean outperform the MMDAgg approach. Using257

the mean statistics, NP-KSD_mean is having slightly higher power than KSD. The mis-specified258

NP-KSD_G has lower power, but is still competitive to MMDAgg.259

The test power against the sample size N generated from the null model is shown in Figure 1(b). The260

generated samples are used as another sample set for the MMDAgg two-sample procedure, while261

used for estimating the conditional score for NP-KSD-based methods. As the generated sample size262

increases, the power of MMDAgg increases more slowly than that of the NP-KSD-based methods,263

which achieve maximum test power in the presented setting. The NP-KSD-based tests tend to have264

lower variability of the test power, indicating more reliable testing procedures than MMDAgg.265

Mixture of Gaussian (MoG) Next, we consider as a more difficult problem that the null model is a266

two-component mixture of two independent Gaussians. Both Gaussian components have identity267

covariance matrix. The alternative is set to perturb the covariance between adjacent coordinates.268

The rejection rate against this perturbation of covariance terms are presented in Figure 1(c). The269

results show consistent type I error. The NP-KSD and NP-KSD_mean tests have better test power270

compared to KSD and MMDAgg, although NP-KSD has slightly higher variance. Among the271

NP-KSD tests, the smallest variability is achieved by NP-KSD_mean. For the test with m = 40,272

we also vary the re-sample size B. As shown in Figure 1(d), while the variability of the average test273

power also increased slightly. From the result, we also see that for B = 20 = m/2 the test power is274

already competive compared to B = 40. Additional experimental results including computational275

runtime and training generative models for synthetic distributions are included in Appendix C.276

4.3 Applications to deep generative models277

For real-world applications, we assess models trained from well-studied generative modelling proce-278

dures, including a Generative Adversarial Network (GAN) [Goodfellow et al., 2014] with multilayer279

perceptron (MLP), a Deep Convolutional Generative Adversarial Network (DCGAN) [Radford et al.,280

2015], and a Variational Autoencoder (VAE) [Kingma and Welling, 2013]. We also consider a Noise281

Conditional Score Network (NCSN) [Song and Ermon, 2020], which is a score-based generative282

modelling approach, where the score functions are learned [Song and Ermon, 2019] to performed283

annealed Langevin dynamics for sample generation. We also denote Real as the scheme that generates284

samples randomly from the training data, which essentially acts as a generator of the null distribution.285

MNIST Dataset This dataset contains 28 × 28 grey-scale images of handwritten digits [Le-286

Cun et al., 1998]4. It consist of 60, 000 training samples and 10, 000 test samples. Deep gen-287

4https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html
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erative models in Table 1 are trained using the training samples. We assess the quality of288

these trained generative models by testing against the true observed MNIST samples (from the289

test set). Samples from both distributions are visually illustrated in Figure 3 in Appendix C.290

GAN_MLP DCGAN VAE NCSN Real
NP-KSD 1.00 0.92 1.00 1.00 0.03
NP-KSD_m 1.00 1.00 1.00 1.00 0.01
MMDAgg 1.00 0.73 0.93 1.00 0.06

Table 1: Rejection rate for MNIST generative models.

600 samples are generated291

from the generative models292

and 100 samples are used for293

the test; test level α = 0.05.294

From Table 1, we see that all295

the deep generative models296

have high rejection rate, show-297

ing that the trained models are not good enough. Testing with the Real scheme has controlled type-I298

error. Thus, NP-KSD detects that the “real” data are a true sample set from the underlying dataset.299

CIFAR10 Dataset This dataset contains 32 × 32 RGB coloured images [Krizhevsky, 2009]5.300

It consist of 50, 000 training samples and 10, 000 test samples. Deep generative models in Ta-301

ble 2 are trained using the training samples and test samples are randomly drawn from the test set.302

DCGAN NCSN CIFAR10.1 Real
NP-KSD 0.68 0.73 0.92 0.06
NP-KSD_m 0.74 0.81 0.96 0.02
MMDAgg 0.48 0.57 0.83 0.07

Table 2: Rejection rate for CIFAR10 generative models.

Samples are illustrated in Figure 4 in303

Appendix C. We also compare with304

the CIFAR10.1 dataset[Recht et al.,305

2018]6, which is created to differ from306

CIFAR10 to investigate generalisation307

power for training classifiers. 800 sam-308

ples are generated from the generative309

models and 200 samples are used for the test; test level α = 0.05. Table 2 shows higher rejection rates310

for NP-KSD tests compared to MMDAgg, echoing the results for synthetic distributions. The trained311

DCGAN generates samples with lower rejection rate in the CIFAR10 dataset than in the CIFAR10.1312

dataset. We also see that the score-based NCSN has higher rejection rate than the non-score-based313

DCGAN, despite NP-KSD being a score-based test. The distribution difference between CIFAR10314

and CIFAR10.1 can be well-distinguished from the tests. Testing with the Real scheme again has315

controlled type-I error.316

5 Conclusion and future directions317

Synthetic data are in high demand, for example for training ML procedures; quality is important.318

Synthetic data which miss important features in the data can lead to erroneous conclusions, which319

in the case of medical applications could be fatal, and in the case of loan applications for example320

could be detrimental to personal or business development. NP-KSD provides a method for assessing321

synthetic data generators which comes with theoretical guarantees. Our experiments on synthetic322

data have shown that NP-KSD achieves good test power and controlled type-I error. On real data,323

NP-KSD detects samples from the true dataset. That none of the classical deep learning methods used324

in this paper has a satisfactory rejection rate indicates scope for further developments in synthetic325

data generation.326

Future research will assess alternatives to the computer-intensive Monte Carlo method for estimating327

the null distribution, for example adapting wild-bootstrap procedures. It will explore alternative328

choices of score estimation as well as of kernel functions.329

Finally, some caution is advised. The choice of summary statistic may have strong influence on the330

results and a classification based on NP-KSD may still miss some features. Erroneous decisions331

could be reached when training classifiers. Without scrutiny this could lead to severe consequences332

for example in health science applications. Yet NP-KSD is an important step towards understanding333

black-box data generating methods and thus understanding their potential shortcomings.334

5https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR10.html
6https://github.com/modestyachts/CIFAR-10.1/tree/master/datasets
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