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Abstract

Many NLP tasks benefit from using large language models (LLMs) that often1

have more than 100 billion parameters. With the release of BLOOM-176B and2

OPT-175B, everyone can download pretrained models of this scale. Still, using3

these models requires high-end hardware unavailable to many researchers. In4

some cases, LLMs can be used more affordably via RAM offloading or hosted5

APIs. However, these techniques have innate limitations: offloading is too slow for6

interactive inference, while APIs are not flexible enough for research. In this work,7

we propose PETALS1 — a system for inference and fine-tuning of large models8

collaboratively by joining the resources of multiple parties. We demonstrate that9

this strategy significantly outperforms offloading for very large models, running10

inference of BLOOM-176B on consumer GPUs with ≈ 1 step per second. Unlike11

most inference APIs, PETALS also natively exposes the hidden states of served12

models, allowing its users to train and share custom model extensions based on13

efficient fine-tuning methods.14

1 Introduction15

In recent years, the NLP community has found that pretrained language models can solve many16

practical tasks, through either fine-tuning (Radford et al., 2018) or simple prompting (Brown et al.,17

2020). Furthermore, performance tends to improve as scale increases (Radford et al., 2019; Kaplan18

et al., 2020). Following this trend, modern language models often have hundreds of billions of19

parameters (Brown et al., 2020; Rae et al., 2021; Zeng et al., 2021; Kim et al., 2021). Several research20

groups released pretrained LLMs with over 100B parameters (Zhang et al., 2022; Khrushchev et al.,21

2022; Zeng et al., 2022). Most recently, the BigScience project has released BLOOM, a 176 billion22

parameter model supporting 46 natural and 13 programming languages (BigScience, 2022).23

While the public availability of 100B+ parameter models makes them easier to access, they remain24

difficult to use for the majority of researchers and practitioners due to memory and computational25

costs. For instance, OPT-175B and BLOOM-176B need over 350GB accelerator memory for26

inference and significantly more for fine-tuning. As a result, these LLMs usually require multiple27

high-end GPUs or multi-node clusters to be run. Both of these options are extremely expensive,28

which limits the potential research directions and applications of large language models.29

Several recent works aim to democratize LLMs by “offloading” model parameters to slower but30

cheaper memory (RAM or SSD), then running them on the accelerator layer by layer (Pudipeddi31

et al., 2020; Ren et al., 2021). This method allows running LLMs with a single low-end accelerator32

by loading parameters from RAM justin-time for each forward pass. Offloading can be efficient33

for processing many tokens in parallel, but it has inherently high latency: for example, generating34

1 PETALS source code is available at https://github.com/workshop-submit/petals
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Figure 1: An overview of PETALS. Some participants (clients) want to use a pretrained language
model to solve various tasks involving processing texts in natural (e.g., French, Hindi) or programming
(e.g., C++) languages. They do it with help of other participants (servers), who hold various subsets
of model layers on their GPUs. Each client chooses a sequence of servers so that it performs an
inference or fine-tuning step in the least amount of time.

one token with BLOOM-176B takes at least 5.5 seconds for the fastest RAM offloading setup and35

22 seconds for the fastest SSD offloading. In addition, many computers do not have enough RAM to36

offload 175B parameters.37

Another way to make LLMs more accessible is through public inference APIs, where one party38

hosts the model and lets others query it over the Internet (OpenAI; AI21; Forefront). Since most of39

the engineering work is done by the API owner, this is a relatively user-friendly option. However,40

APIs are often not flexible enough for research use: there is no way to change the model control41

flow or access internal states. On top of that, current API pricing can make some research projects42

prohibitively expensive (Liu et al., 2022a).43

In this work, we explore an alternative strategy inspired by crowdsourced distributed training of44

neural networks from scratch (Ryabinin and Gusev, 2020). We introduce PETALS, a platform that45

allows multiple users to collaborate and perform inference and fine-tuning of large language models46

over the Internet. Each participant runs a server, a client or both. A server holds a subset of model47

layers (typically, Transformer blocks) on its local device and handles requests from clients. A client48

can form a chain of pipeline-parallel consecutive servers to run the inference of the entire model49

(Section 2.1). Aside from inference, participants can fine-tune the model through parameter-efficient50

training methods like adapters (Houlsby et al., 2019) or prompt tuning (Lester et al., 2021) or51

by training entire layers (Section 2.2). Once trained, submodules can be shared on a model hub52

(Section 2.3), where others can use them for inference or further training.53

In Section 3, we demonstrate that existing 100B+ models can run efficiently in this setting with the54

help of several optimizations: dynamic quantization, prioritizing low-latency connections, and load55

balancing between servers. Finally, in Section 4, we discuss incentives for participating in the system,56

security and privacy, and how the model can be updated over time.57

2 Design and use cases58

Practical usage of large language models can be broadly divided into two main scenarios: inference59

and parameter-efficient adaptation to downstream tasks. In this section, we outline the design of60

PETALS, showing how it handles both scenarios and also allows easily sharing trained adapters61

between the users of the system.62

2.1 Inference of billion-scale models63

When generating tokens, a client stores the model’s token embeddings (which typically comprise64

a small fraction of the total parameter count and can fit in RAM in most modern laptops, servers,65

and workstations) locally and relies on servers to run Transformer blocks. Each server holds several66

consecutive blocks, the number of which depends on the server’s available GPU memory. Before67

each inference session, the client finds a chain of servers that collectively hold all model layers.68

Once the chain is formed, the client uses the local embedding layer to look up embedding vectors for69

prefix tokens, then sends those vectors to servers and receives new representations. Once the client70

obtains the outputs of the final block, it computes next token probabilities and repeats this process.71
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# Initialize distributed BLOOM model
model = AutoModelForPromptTuning.from_pretrained("distributed-bloom")
input_ids = tokenizer(prefix_text)

with model.inference_session() as session:
# Session maintains a list of servers that
# remember attention KV from previous steps
for _ in range(sequence_length):

# Compute the word embeddings locally
hidden = model.word_embeddings(input_ids)
# Run distributed Transformer blocks,
# store attention KV for future steps
hidden = session.step(hidden)
# Generate the next token locally
probs = model.lm_head(hidden)
input_ids = sample_next_token(probs)

Figure 2: A basic PyTorch code snippet for generation with a distributed BLOOM-176B model.

While the session is active, servers store attention keys and values from past client inputs and use72

them for subsequent inference steps. Clients also store past inputs to each server so that if any server73

fails or goes offline, another one can quickly take its place. The procedure for finding servers and74

recovering from failures is detailed in Section 3.2.75

Client-side API. To generate tokens with PETALS, one first creates an inference session. An76

inference session iteratively takes inputs as PyTorch tensors, runs them through all Transformer77

blocks and returns final representations as PyTorch tensors. Under the hood, sessions form server78

chains, hold cache, and recover from server failures in a way that is transparent to the user. An79

example of using an inference session is shown in Figure 2.80

System requirements. For BLOOM-176B inference, clients need at least 12 GB RAM, most of81

which is used to store 3.6B embedding parameters. We recommend at least 25 Mbit/s bidirectional82

bandwidth to avoid bottlenecks in network transfers. Simple greedy inference can use any CPU that83

runs PyTorch, but more advanced algorithms (e.g., beam search) may require a GPU.84

In turn, servers need at least 16 GB CPU RAM, 100 Mbit/s bandwidth and a GPU of Turing generation85

or newer with at least 8 GB of memory.86

Graphical user interface. We also provide an example application that lets a user chat with the87

model in a messenger-like user interface. The interface is divided into two main blocks: the frontend88

and the backend application. We use Hugging Face Spaces as the backend application that runs greedy89

inference on the CPU for each request. It is easily usable via Python’s requests library; therefore,90

anyone can use this setup as a backend and build their own frontend applications in any format. To91

give a better idea of how to use this backend, we provide an example frontend application using92

Hugging Face Spaces and the streamlit API. In this browser application, users can communicate93

with the model by prompting it with text and receiving the generated output.94

2.2 Training for downstream tasks95

While LLMs achieve high quality on many problems with simple prompt engineering (Brown et al.,96

2020), they often need training to achieve the best results. Traditionally, this is done by fine-tuning97

all model parameters on the downstream task. However, for extremely large models, this strategy98

becomes impractical due to hardware requirements. For example, fine-tuning BLOOM-176B with99

Adam would require almost 3 TB of GPU memory to store model, gradients, and optimizer states.100

To combat this issue, the NLP community has developed parameter-efficient fine-tuning methods that101

keep most of the pretrained model intact. Some of them choose a subset of existing parameters (Sung102

et al., 2021; Guo et al., 2021), others augment the model with extra trainable weights (Hu et al., 2021;103

Houlsby et al., 2019; Liu et al., 2021b; Lester et al., 2021; Liu et al., 2021a, 2022a).104

Despite their lower memory requirements, parameter-efficient approaches are often competitive105

with full model fine-tuning (Hu et al., 2021; Liu et al., 2021a; Yong and Nikoulina, 2022) and even106
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# Initialize distributed BLOOM with soft prompts
model = AutoModelForPromptTuning.from_pretrained("distributed-bloom")
# Define optimizer for prompts and linear head
optimizer = torch.optim.AdamW(model.parameters())

for input_ids, labels in data_loader:
# Forward pass with local and remote layers
outputs = model.forward(input_ids)
loss = cross_entropy(outputs.logits, labels)

# Distributed backward w.r.t. local params
loss.backward() # Compute model.prompts.grad
optimizer.step() # Update local params only
optimizer.zero_grad()

Figure 3: A basic PyTorch code of soft prompt tuning for sequence classification with PETALS.

outperform it in low-data regimes (Liu et al., 2022b). Another appealing property of these approaches107

for our use-case is that they allow rapidly switching a pretrained LLM between different uses.108

Distributed fine-tuning. The core principle of fine-tuning in a distributed network is that clients109

“own” trained parameters while servers host original pretrained layers. Servers can run backpropaga-110

tion through their layers and return gradients with respect to activations, but they do not update the111

server-side parameters. Thus, clients can simultaneously run different training tasks on the same set112

of servers without interfering with one another.113

To illustrate this principle, we first review an example of soft prompt-tuning for text classification and114

then generalize it to other methods and tasks. Similarly to Section 2.1, clients store the embedding115

layers locally and rely on servers to compute the activations of Transformer blocks. In this fine-tuning116

scenario, a client needs to store trainable soft prompts (task-specific input embeddings) and a linear117

classification head.118

For each training batch, the client routes its data through a chain of remote servers to compute119

sentence representations, then obtains predictions with the classifier head and computes the cross-120

entropy loss. During backpropagation, the client runs its data through the same chain of servers in121

reverse order to compute gradients for the learned prompt vectors. Having obtained those gradients,122

the client can use a regular PyTorch optimizer to update the parameters of both the head and the123

prompts, then proceed to the next minibatch.124

User interface. To allow users greater flexibility in their training workloads, we made distributed125

backpropagation module compatible with the PyTorch Autograd engine. Like in the inference stage,126

this module handles fault tolerance and load balancing transparently to the user while allowing them127

to access intermediate activations and insert custom PyTorch modules. Figure 3 shows an example128

training code snippet.129

This interface can also support other popular parameter-efficient fine-tuning algorithms, such as130

LoRA (Hu et al., 2021) or prefix tuning (Li and Liang, 2021). Finally, users can insert custom local131

modules after some of the existing blocks, which could allow use-cases like retrieval-augmented132

generation (Borgeaud et al., 2021; Lewis et al., 2020).133

2.3 Sharing and reusing trained modules134

Although most fine-tuned extensions for pretrained models can be easily shared as-is, simplifying the135

workflow for sharing these extensions enables users to more easily adapt the model to their target136

scenario. Indeed, existing model hubs (Wolf et al., 2020; TensorFlow Hub; PyTorch Hub) have gained137

immense popularity due to many supported models and ease of use, especially when vetting different138

pretrained models for a given problem. One particularly relevant project is AdapterHub (Pfeiffer et al.,139

2020), a repository of trained adapters accompanied by a library with implementations of different140

adaptation methods. While PETALS does not depend on AdapterHub, it is possible to leverage this141

library for training adapters in the distributed setting. Instead, we support sharing modules trained by142

users via the Hugging Face Hub (also used as a backend by AdapterHub). Its infrastructure and the143

corresponding open source library simplify the learning process for users already familiar with the144
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ecosystem. Because the primary navigation mechanism on the Hugging Face Hub are tags that have145

been applied to uploaded modules, a user only needs to the task it was trained on and the model upon146

which the adapter was built. Uploading the weights and the code of the fine-tuned module is done by147

committing them to a Git repository. When navigating the Hub, users can choose the most suitable148

adapters by filtering the list of all available modules by the required tags.149

3 Internal structure and optimizations150

One of the primary considerations for distributed inference is its performance. It can be broken down151

into three main aspects: computation speed (5-year-old gaming GPU vs. new data center GPU),152

communication delay due to distance between nodes (intercontinental vs. local), and communication153

delay due to bandwidth (10 Mbit/s vs. 10 Gbit/s).154

In terms of raw FLOPs, even consumer-grade GPUs like GeForce RTX 3070 could run a complete155

inference step of BLOOM-176B in less than a second (NVIDIA, 2020). However, the GPU memory156

can only hold a small fraction of model layers: running naïvely would require 44 RTX 3070 GPUs and157

44 communication rounds. To make this more efficient, we use quantization to store more parameters158

per GPU, reducing the number of consecutive devices and communication rounds (Section 3.1). On159

top of that, each client prioritizes nearby servers to make communication rounds faster (Section 3.2).160

3.1 Large model inference on consumer GPUs161

We assume that each server has at least 16 GB of CPU RAM, 8 GB of GPU memory. From this162

assumption, one of the primary considerations is to reduce the model memory footprint, so that each163

device can hold more Transformer blocks.164

For example, BLOOM has 176B parameters, which takes 352 GB of GPU memory in 16-bit precision.165

Thus, in the worst case, the model is distributed among 352 GB / 8 GB (per server) = 44 nodes. We166

can reduce both frequency and amount of data transfer in two ways. First, we can achieve this by167

compressing the hidden states exchanged between nodes. Second, we can compress the weights168

to 8-bit precision, reducing the number of nodes required to hold all layers. For BLOOM, this169

changes the number of required nodes from 44 to 22, which reduces latency in half and decreases the170

probability of a failure.171

Compressing communication buffers. To send less data between subsequent pipeline stages, we172

use dynamic blockwise quantization (Dettmers et al., 2022b). We apply it to the hidden states before173

pipeline-parallel communication, as done in Ryabinin et al. (2021). Dynamic blockwise quantization174

halves the bandwidth requirements without any noticeable effect on generation quality.175

Compressing model weights. We use 8-bit mixed matrix decomposition for matrix multiplication176

to quantize the weights to 8-bit precision and reduce the memory footprint compared to 16-bit weights,177

as suggested in (Dettmers et al., 2022a). This decomposition separates hidden states and weights into178

two portions: about 0.1% of 16-bit outlier and 99.9% of 8-bit regular values, which roughly halves179

the memory footprint.180

As shown in Table 1, this method has little effect on LLM quality for major benchmarks. In terms of181

inference time, Table 2 demonstrates that quantization has about 5% of overhead with batch size 1182

(20 tokens), but becomes negligible for larger batches.183

3.2 Collaborating over the Internet184

Another important challenge is to provide reliable inference and training despite nodes joining,185

leaving or failing at any time. To address this, PETALS uses the hivemind library (Learning@home,186

2020) for decentralized training and custom fault-tolerant protocols for servers and clients.187

Server load balancing. First, we ensure that servers are distributed evenly among Transformer188

blocks. Formally, servers maximize the total model throughput by choosing the blocks with the worst189

throughput and eliminating potential bottlenecks.190
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Table 1: Zero-shot accuracy for OPT-175B and BLOOM-176B with 8-bit and 16-bit weights.

Model Bits HellaSwag LAMBADA WinoGrande Avg

OPT-175B 16 78.5 74.7 72.6 75.3
8 78.5 74.6 71.7 74.9

BLOOM 16 73.0 67.2 70.1 70.1
8 72.8 68.1 70.1 70.3

Table 2: Generation throughput (tokens/s) for BLOOM-176B with 8-bit and 16-bit weights on
8× A100 GPUs.

Weights Batch size
1 8 32

16-bit 4.18 31.3 100.6
8-bit 3.95 29.4 95.8

Each server periodically announces its active blocks to a distributed hash table (Maymounkov and191

Mazieres, 2002). When a new server joins, it uses this information to identify an interval of blocks192

that contains most blocks with the worst throughput. This interval is always contiguous, since splitting193

it would harm the inference latency. Once the server has selected its layers, it measures its own194

throughput (both network and compute) and announces it to the distributed hash table.195

Since peers may leave or fail at any time, all nodes periodically check if launching a rebalancing196

procedure would significantly improve the overall throughput. If it is the case, they switch layers until197

the throughput becomes near-optimal. In particular, if all peers serving certain blocks suddenly leave198

the system, this procedure quickly redistributes the remaining resources to close the emerged gaps.199

Client-side routing. Next, we want clients to be able to find a sequence of servers that run the200

model in the least amount of time. During generation, clients process one or few tokens at a time;201

in practice, the inference time is mostly sensitive to the network latency. Thus, clients have to202

ping nearby servers to measure latency and then find the path with minimal time via beam search.203

Conversely, during fine-tuning one needs to process a batch of examples in parallel. Here, clients204

can split their batches between multiple servers using the algorithm from Ryabinin et al. (2021). If a205

server fails during training or inference, a client removes it from consideration and reruns routing to206

find a replacement. During inference, the client sends all previous inputs to the replacement server,207

so that it has the same attention keys and values.208

3.3 Benchmarks209

We evaluate the performance of PETALS by running BLOOM-176B in emulated and real-world210

setups. Our first setup consists of 3 local servers, each running on an A100 80GB GPU. This is an211

optimistic scenario that requires the least amount of communication. In the second setup, we simulate212

12 weaker devices by partitioning each A100-80GB into several virtual servers (3 large and 1 small).213

We evaluate the above setups with three network configurations: 1 Gbit/s with < 5 ms latency, 100214

Mbit/s with < 5 ms latency and 100 Mbit/s with 100 ms latency2. The client-side nodes have 8 CPU215

cores and no GPU.216

Next, we benchmark BLOOM in a real-world distributed setting with 14 smaller servers holding217

RTX 2×3060, 4×2080Ti, 2×3090, 2×A4000, and 4×A5000 GPUs. These are personal servers and218

servers from university labs, spread across Europe and North America and connected to the Internet219

at speeds of 100–1000 Mbit/s. Four of the servers operate from under firewalls3.220

In Table 3, we report the performance of sequential inference and training-time forward passes. For221

inference, performance does not depend much on bandwidth or sequence length but degrades in222

2We simulate network conditions with https://github.com/magnific0/wondershaper, which
uses tc qdisc

3We use the Circuit Relay protocol from libp2p to traverse NATs and firewalls, see https://docs.
libp2p.io/concepts/circuit-relay/
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Table 3: Performance of sequential inference steps and training-time forward passes.

Network Inference (steps/s) Forward (tokens/s)
Sequence length Batch size

Bandwidth Latency 128 2048 1 64

Offloading, max. speed on 1x A100

256 Gbit/s – 0.18 0.18 2.7 170.3
128 Gbit/s – 0.09 0.09 2.4 152.8

Offloading, max. speed on 3x A100

256 Gbit/s – 0.09 0.09 5.1 325.1
128 Gbit/s – 0.05 0.05 3.5 226.3

PETALS on 3 physical servers, with one A100 each

1 Gbit/s < 5 ms 1.22 1.11 70.0 253.6
100 Mbit/s < 5 ms 1.19 1.08 56.4 182.0
100 Mbit/s 100 ms 0.89 0.8 19.7 112.2

PETALS on 12 virtual servers, simulated on 3x A100

1 Gbit/s < 5 ms 0.97 0.86 37.9 180.0
100 Mbit/s < 5 ms 0.97 0.86 25.6 66.6
100 Mbit/s 100 ms 0.44 0.41 5.8 44.3

PETALS on 14 real servers in Europe and North America

Real world 0.68 0.61 32.6 179.4

high-latency settings, especially for 12 virtual servers. In turn, training-time forward passes for large223

batches are affected by both bandwidth and latency.224

We also test the effect of having multiple clients. For 12 servers with 100 Mbit/s bandwidth and 100225

ms latency, if 8 clients run inference concurrently, each of them gets ≈ 20% slowdown compared to226

the case when it runs inference alone.227

Additionally, we compare PETALS with parameter offloading to run large models with limited228

resources (Ren et al., 2021; Rajbhandari et al., 2021). For the offloading benchmark we calculate229

the maximum inference and forward training throughput to receive an upper bound on offloading230

performance. We base our offloading numbers on the best possible hardware setup for offloading:231

CPU RAM offloading via PCIe 4.0 with 16 PCIe lanes per GPU and PCIe switches for pairs of GPUs.232

We calculate the maximum throughput for offloading as follows. In 8-bit, the model uses 1 GB of233

memory per billion parameters while PCIe 4.0 with 16 lanes has a throughput of 256 Gbit/s (or 128234

Gbit/s if two GPUs are behind a PCIe switch). As such, offloading 176B parameters takes 5.5 seconds235

for a regular setup and 11 seconds for a multi-GPU setup. We assume an offloading latency of zero236

for the upper bound estimation.237

These results are also shown in Table 3. We can see that offloading is about an order of magnitude238

slower for inference compared to PETALS. For the training-time forward pass, offloading is competi-239

tive if multiple GPUs are used and the networking for PETALS is limited to 100 Mbit/s or has high240

latency. In other cases, PETALS offers higher throughput than offloading for training.241

4 Discussion and future work242

Incentives for peers to contribute. In PETALS, peers using the client are not required to run a243

server. Naturally, this may lead to an imbalance between supply (peers who dedicate GPUs to serve244

model layers) and demand (peers using the servers to perform inference or fine-tuning for their own245

needs) in the network. One way to encourage users to serve model layers would be to introduce246

a system of incentives: peers running servers would earn special points, which can be spent on247

high-priority inference and fine-tuning or exchanged for other rewards.248
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Security. We assume that servers in our system are run by many independent parties. In practice,249

some of them may turn out to be faulty and return incorrect outputs instead of the actual results of250

forward and backward passes. This may happen due to a malicious intent to influence other people’s251

outputs or, when rewards are introduced (as described above), to earn a reward for serving layers252

without actually performing the calculations.253

A possible way to address these issues would be to use an economically motivated approach. Some254

servers may vouch for the correctness of their outputs (e.g., in exchange for increased inference255

price) by depositing a certain number of points as a pledge. Then, for each request, they announce a256

cryptographic hash of the input and output tensors, so anyone having the inputs can check whether257

the outputs are correct.258

If someone finds a mismatch confirmed by a trusted third party, they can claim the server’s pledge as259

a reward. In practice, it may be a client who suspects that they received wrong outputs or a “bounty260

hunter” sending requests to different servers in the hope of catching errors. While this approach261

still leaves a chance of receiving wrong outputs, it makes cheating costly and creates an incentive to262

quickly expose the malicious servers.263

Privacy. A key limitation of our approach is that peers serving the first layers of the model can264

use their inputs to recover input tokens. Thus, clients working with sensitive data should only use265

the servers hosted by trusted institutions that are allowed to process this data. This limitation may266

be addressed in future work using secure multi-party computing (Evans et al., 2018) or privacy-267

preserving hardware (NVIDIA, 2022).268

Making changes to the main model. As discussed in Section 2.2, distributed parameter-efficient269

fine-tuning makes it easy for users to apply the base model to new tasks. In Section 2.3, we also270

described how these updates can be easily shared and reused by others. This capability provides a271

meaningful step towards collaborative improvement of machine learning models (Raffel, 2021): as272

more and more users train the base model, it will effectively become more capable over time.273

Furthermore, we might expect the model parameters that perform best on a specific task to change274

over time. Similarly to version control systems for code, it would be useful to track versions of275

fine-tuned model parameters as they change. A system for rapidly testing the performance of a set276

of parameters on “living benchmarks” (Kiela et al., 2021; Gehrmann et al., 2022; Gao et al., 2021)277

would be valuable to ensure that subsequent versions improve the desired capabilities.278

Apart from adaptation to new tasks, it would also be useful to eventually update the main model.279

Ideally, such updates could be tracked in a principled way. Users of PETALS could specify the versions280

of the model they want to use, and servers could indicate which versions they support. Introducing281

a newer version of the model then reduces to adding a new group of layers, which then naturally282

supersedes older parameters based on the approach from Section 3.2. Similarly, fine-tuned adapters283

could be annotated with tags denoting the model version they are applicable for. Such fine-grained284

model versioning is currently uncommon but would be straightforward to add to PETALS.285

5 Conclusion286

This paper introduces PETALS, a system for efficient collaborative inference and fine-tuning of large287

language models. We offer a user-friendly generation interface and a flexible API to access models288

served over the Internet. We use 8-bit compression that reduces the resource requirements to run very289

large models. In addition, we develop algorithms for reliable routing and load balancing.290

Since PETALS is open-source, we would like it to evolve based on the community’s feedback,291

incorporating relevant research advances and adding support for features in demand. With the release292

of this system, we hope to broaden access to large language models and pave the road to applications,293

studies or research questions that were previously not possible or simply too expensive.294
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