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Abstract

We consider speeding up stochastic gradient descent (SGD) by parallelizing it1

across multiple workers. We assume the same data set is shared among N workers,2

who can take SGD steps and coordinate with a central server. While it is possible3

to obtain a linear reduction in the variance by averaging all the stochastic gradient4

at every step, this requires a lot of communication between the workers and the5

server, which can dramatically reduce the gains from parallelism. The Local6

SGD method, proposed and analyzed in the earlier literature, suggests machines7

should make many local steps between such communications. While the initial8

analysis of Local SGD showed it needs Ω(
√
T ) communications for T local9

gradient steps in order for the error to scale proportionately to 1/(NT ), this has10

been successively improved in a string of papers, with the state-of-the-art requiring11

Ω (N ( polynomial in log (T ))) communications. In this paper, we suggest a Local12

SGD scheme that communicates less overall by communicating less frequently13

as the number of iterations grows. Our analysis shows that this can achieve an14

error that scales as 1/(NT ) with a number of communications that is completely15

independent of T . In particular, we show that Ω(N) communications are sufficient.16

Empirical evidence suggests this bound is close to tight as we further show that
√
N17

or N3/4 communications fail to achieve linear speed-up in simulations. Moreover,18

we show that under mild assumptions, the main of which is twice differentiability19

on any neighborhood of the optimal solution, one-shot averaging which only uses20

a single round of communication can also achieve the optimal convergence rate21

asymptotically.22

1 Introduction23

Stochastic Gradient Descent (SGD) is a widely used algorithm to minimize convex functions f in24

which model parameters are updated iteratively as25

xt+1 = xt − ηtĝt,

where ĝt is a stochastic gradient of f at the point xt and ηt is the learning rate. This algorithm can be26

naively parallelized by adding more workers independently to compute a gradient and then average27

them at each step to reduce the variance in estimation of the true gradient∇f(xt) (Dekel et al., 2012).28

This method requires each worker to share their computed gradients with each other at every iteration.29

We will refer to this method as "synchronized parallel SGD."30

However, it is widely acknowledged that communication is a major bottleneck of this method for31

large scale optimization applications (McMahan et al., 2017; Konečnỳ et al., 2016; Lin et al., 2018b).32

Often, mini-batch parallel SGD is suggested to address this issue by increasing the computation to33

communication ratio.34
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Nonetheless, too large mini-batch size might degrade performance (Lin et al., 2018a). Along the35

same lines of increasing the computation over communication effort, local SGD has been proposed36

to reduce communications (McMahan et al., 2017; Dieuleveut, Patel, 2019). In this method, workers37

compute (stochastic) gradients and update their parameters locally, and communicate only once in a38

while to obtain the average of their parameters. Local SGD improves the communication efficiency39

not only by reducing the number of communication rounds, but also alleviates the synchronization40

delay caused by waiting for slow workers and evens out the variations in workers’ computing time41

(Wang, Joshi, 2018b).42

On the other hand, since individual gradients of each worker are calculated at different points, this43

method introduces residual error as opposed to fully synchronized SGD. Therefore, there is a trade-44

off between having fewer communication rounds and introducing additional errors to the gradient45

estimates.46

The idea of making local updates is not new and has been used in practice for a while (Konečnỳ47

et al., 2016). However, until recently, there have been few successful efforts to analyze Local SGD48

theoretically and therefore it is not fully understood yet. Zhang et al. (2016) show that for quadratic49

functions, when the variance of the noise is higher far from the optimum, frequent averaging leads to50

faster convergence. The first question we try to answer in this work is: how many communication51

rounds are needed for Local SGD to have the similar convergence rate of a synchronized parallel52

SGD while achieving performance that linearly improves in the number of workers?53

Stich (2019) was among the first who sought to answer this question for general strongly convex54

and smooth functions and showed that the communication rounds can be reduced up to a factor of55

H = O(
√
T/N), without affecting the asymptotic convergence rate (up to constant factors), where56

T is the total number of iterations and N is number of parallel workers.57

Focusing on smooth and possibly non-convex functions which satisfy a Polyak-Lojasiewicz condition,58

Haddadpour et al. (2019) demonstrate that only R = Ω((TN)1/3) communication rounds are59

sufficient to achieve asymptotic performance that scales proportionately to 1/N .60

More recently, Khaled et al. (2020) and Stich, Karimireddy (2019) improve upon the previous61

works by showing linear speed-up for Local SGD with only Ω (N poly log (T )) communication62

rounds when data is identically distributed among workers and f is strongly convex. Their works63

also consider the cases when f is not necessarily strongly-convex as well as the case of data being64

heterogeneously distributed among workers.65

One-Shot Averaging (OSA), a method that takes an extreme approach to reducing communication,66

involves workers performing local updates until the very end when they average their parameters67

(Mcdonald et al., 2009; Zinkevich et al., 2010; Zhang et al., 2013c; Rosenblatt, Nadler, 2016;68

Godichon-Baggioni, Saadane, 2020). This method can be seen as an extreme case of Local SGD69

with R = 1 and H = T local steps. Dieuleveut, Patel (2019); Godichon-Baggioni, Saadane (2020)70

provide an analysis of OSA and show that asymptotically, linear speed-up in the number of workers71

is achieved for a weighted average of iterates. However, both of these works make restrictive72

assumptions such as uniformly three-times continuously differentiability and bounded second and73

third derivatives or twice differentiability almost everywhere with bounded Hessian, respectively.74

The second question we attempt to answer in this work, is whether these assumptions can be relaxed75

and OSA can achieve linear speed-up in more general scenarios.76

In this work, we focus on smooth and strongly-convex functions with a general noise model. Our77

contributions are three-fold:78

1. We propose a communication strategy which requires only R = Ω(N) communication79

rounds to achieve performance that scales as 1/N in the number of workers. To the best of80

the authors’ knowledge, this is the only work to show that the number of communications81

can be taken to be completely independent of T . All previous papers required a number82

of communications which was at least N times a polynomial in log(T ), or had a stronger83

scaling with T . A comparison of our result to the available literature can be found in Table84

1.85

2. We show under mild additional assumptions, in particular twice differentiability on a86

neighborhood of the optimal point, OSA reaches linear speed-up asymptotically, i.e., with87

only one communication round we achieve the convergence rate of O(1/(NT )).88
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Table 1: Comparison of Similar Works

Reference Convergence rate f(x̂T )− f∗a Communication
Rounds R

Noise
model

Stich (2019) O( ξ
0

R3 + σ2

µNT + κG2

µR2 )b Ω(
√
TN) uniform

Haddadpour et al. (2019) O( ξ
0

R3 + κσ2

µNT + κ2σ2

µNTR ) Ω((TN)1/3)
uniform with
strong-growthc

Stich, Karimireddy (2019) Õ( κNHξ0

exp(R/(κN)) + σ2

µNT )d Ω(N ∗ poly-log(T ))
uniform with
strong-growth

Khaled et al. (2020) Õ(κξ
0

T 2 + κσ2

µNT + κ2σ2

µTR ) Ω(N ∗ poly-log(T )) uniform

This Paper O( (1+cκ2 ln(TR−2))ξ0

κ−2T 2 + κσ2

µNT + κ2σ2

µTR )e Ω(N)
uniform with
strong-growth

a Depending on the work, x̂T is either the last iterate or a weighted average of iterates up to T .
b G is the uniform upper bound assumed for the l2 norm of gradients in the corresponding work.
c This noise model is defined in Assumption 5.
d Õ(.) ignores the poly-logarithmic and constant factors.
e c is the multiplicative factor in the noise model defined in Assumption 5.

3. We simulate a simple example which is not twice differentiable at the optimizer and observe89

that our bounds for part 1. are reasonably close to being tight. In particular, using 1 or
√
N90

or N3/4 communications does not appear to result in a linear speed-up in the number of91

workers (while N communications does give a linear speed-up).92

The rest of this paper is organized as follows. In the following subsection we outline the related93

literature and ongoing works. In Section 2 we define the main problem and state our assumptions.94

We present our theoretical findings in Section 3 followed by numerical experiments in Section 4 and95

conclusion remarks in Section 5.96

1.1 Related work97

There has been a lot of effort in the recent research to take into account the communication delays98

and training time in designing faster algorithms (McDonald et al., 2010; Zhang et al., 2015; Bijral99

et al., 2016; Kairouz et al., 2019). See (Tang et al., 2020) for a comprehensive survey of commu-100

nication efficient distributed training algorithms considering both system-level and algorithm-level101

optimizations.102

Many works study the communication complexity of distributed methods for convex optimization103

(Arjevani, Shamir, 2015; Woodworth et al., 2020) and statistical estimation (Zhang et al., 2013b).104

Woodworth et al. (2020) present a rigorous comparison of Local SGD with H local steps and mini-105

batch SGD with H times larger mini-batch size and the same number of communication rounds (we106

will refer to such a method as large mini-batch SGD) and show regimes in which each algorithm107

performs better: they show that Local SGD is strictly better than large mini-batch SGD when the108

functions are quadratic. Moreover, they prove a lower bound on the worst case of Local SGD that is109

higher than the worst-case error of large mini-batch SGD in a certain regime. Zhang et al. (2013b)110

study the minimum amount of communication required to achieve centralized minimax-optimal111

rates by establishing lower bounds on minimax risks for distributed statistical estimation under a112

communication budget.113

A parallel line of work studies the convergence of Local SGD with non-convex functions Zhou, Cong114

(2018). Yu et al. (2019) was among the first works to present provable guarantees of Local SGD115

with linear speed-up. Wang, Joshi (2018b) and Koloskova et al. (2020) present unified frameworks116

for analyzing decentralized SGD with local updates, elastic averaging or changing topology. The117

follow-up work of Wang, Joshi (2018a) presents ADACOMM, an adaptive communication strategy118

that starts with infrequent averaging and then increases the communication frequency in order to119

achieve a low error floor. They analyze the error-runtime trade-off of Local SGD with nonconvex120

functions and propose communication times to achieve faster runtime.121
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Another line of work reduces the communication by compressing the gradients and hence limiting122

the number of bits transmitted in every message between workers (Lin et al., 2018b; Alistarh et al.,123

2017; Wangni et al., 2018; Stich et al., 2018; Stich, Karimireddy, 2019).124

Asynchronous methods have been studied widely due to their advantages over synchronized methods125

which suffer from synchronization delays due to the slower workers (Spiridonoff et al., 2020).126

Wang et al. (2019) study the error-runtime trade-off in decentralized optimization and proposes127

MATCHA, an algorithm which parallelizes inter-node communication by decomposing the topology128

into matchings. However, these methods are relatively more involved and they often require full129

knowledge of the network, solving a semi-definite program and/or calculating communication130

probabilities (schedules) as in Hendrikx et al. (2019).131

The homogeneous data assumption. In this work, we focus on the case when the data distribution132

is the same across workers. A number of previous works (Khaled et al., 2020; Haddadpour et al.,133

2019; Stich, 2019; Dieuleveut, Patel, 2019) studied local SGD under this assumption. The assumption134

is valid when the same data set is either shared across multiple workers in the same cluster, or135

the assignment of data points to workers is random so that any distributional differences are small.136

Sharing the data set across multiple workers in this way is a popular strategy to speed up training.137

For example, such data sharing is implemented in (Chen et al., 2012; Yadan et al., 2013; Zhang138

et al., 2013a) to speed up training of deep neural networks with multiple GPUs within a single139

sever. While there are many widely used mechanisms such as Horovod (Sergeev, Del Balso, 2018)140

for synchronous data-parallel distributed training, they share a major communication bottleneck of141

broadcasting gradients to all workers (Grubic et al., 2018). Local SGD improves on these methods by142

reducing the communication of model parameters from every iteration to a smaller number of rounds143

during the entire optimization process. Our approach further reduces the communication overhead by144

communicating less as the number of iterations grows.145

1.2 Notation146

For a positive integer s, we define [s] := {1, . . . , s}. We use bold letters to represent vectors. We147

denote vectors of all 0s and 1s by 0 and 1, respectively. We use ‖ · ‖ for the Euclidean norm of a148

vector and spectral norm of a matrix. Finally, N (µ, σ2) denotes a normal distribution with mean µ149

and variance σ2.150

2 Problem formulation151

Suppose there are N workers V = {1, . . . , N}, trying to minimize f : Rd → R in parallel. We152

assume all workers have access to f through noisy gradients. In Local SGD, workers perform local153

gradient steps and occasionally calculate the average of all workers’ iterates. Each worker i holds a154

local parameter xti at iteration t. There is a set I ⊂ [T ] of communication times and nodes perform155

the following update:156

xt+1
i =

{
xti − ηtĝti , if t+ 1 /∈ I,
1
N

∑N
j=1(xtj − ηtĝtj), if t+ 1 ∈ I, (1)

where ĝti is an unbiased stochastic gradient of f at xti. When I = [T ], we recover fully synchronized157

parallel SGD while I = {T} recovers one-shot averaging. Pseudo-code for Local SGD is provided158

as Algorithm 1.159

Next we state the assumptions that we will use in our results. Note that we will not require all of160

them to hold at once.161

Assumption 1 (smoothness). The function f : Rd → R is continuously differentiable and its162

gradients are L-Lipschitz, i.e.,163

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y.

Assumption 2 (strong convexity). f is µ-strongly convex with µ > 0, i.e.,164

f(x) + 〈∇f(x),y − x〉+
µ

2
‖x− y‖2 ≤ f(y), ∀x,y.
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Algorithm 1 Local SGD

1: Input: x0
i = x0 for all i ∈ [n], total number of iterations T , the step-size sequence {ηt}T−1t=0 , and

I ⊆ [T ]
2: for t = 0, . . . , T − 1 do
3: for j = 1, . . . , N do
4: evaluate a stochastic gradient ĝtj
5: if t+ 1 ∈ I then
6: xt+1

j = 1
N

∑N
i=1(xti − ηtĝti)

7: else
8: xt+1

j = xtj − ηtĝtj
9: end if

10: end for
11: end for

Note that when f satisfies Assumption 2, it has a unique optimal point x∗ where f(x∗) = f∗ where165

f∗ = minx f(x).166

Assumption 3 (Polyak-Lohasiewicz condition). f is µ-Polyak-Lohasiewicz (µ-PL for short) if167

‖∇f(x)‖2 ≥ 2µ(f(x)− f∗), ∀x.
where f∗ = minx f(x) is the global minimum of f . We further assume that f has a unique optimal168

point x∗ where f(x∗) = f∗.169

When f satisfies both Assumptions 1 and 2 or Assumptions 1 and 3, we define κ = L/µ as the170

condition number of f .171

Strong convexity implies the PL condition but the reverse does not always hold. For instance, the172

logistic regression loss function satisfies the PL condition over any compact set (Karimi et al., 2016).173

In fact, a PL function is not even necessarily convex. Charles, Papailiopoulos (2018) shows that174

deep networks with linear activation functions are PL almost everywhere in the parameter space.175

Allen-Zhu et al. (2018) show, with high probability over random initializations, that sufficiently wide176

recurrent neural networks satisfy the PL condition. Therefore, the PL condition is more applicable,177

especially in the context of neural networks (Madden et al., 2020).178

Assumption 4 (twice differentiability at the optimum). f is twice continuously differentiable on an179

open set containing the optimal point x∗.180

We make the following assumption on the noise of stochastic gradients, using wt
i = ĝti −∇f(xti) to181

denote the difference between the stochastic and true gradients.182

Assumption 5 (uniform with strong-growth noise). Conditioned on the iterate xti, the random183

variable wt
i is zero-mean and independent with its expected squared norm error bounded as,184

E[‖wt
i‖2|xti] ≤ c‖∇f(xti)‖2 + σ2,

where σ2, c ≥ 0 are constants.185

The noise model of Assumption 5 is very general and it includes the common case with uniformly186

bounded squared norm error when c = 0. As it is noted by Zhang et al. (2016), the advantage of187

periodic averaging compared to one-shot averaging only appears when c/σ2 is large. Therefore, to188

study Local SGD, it is important to consider a noise model as in Assumption 5 to capture the effects189

of frequent averaging. Among the related works mentioned in Table 1, only Stich, Karimireddy190

(2019) and Haddadpour et al. (2019) analyze this noise model while the rest study the special case191

with c = 0. SGD under this noise model with c > 0 and σ2 = 0 was first studied in Schmidt, Roux192

(2013) under the name strong-growth condition. Therefore we refer to the noise model considered in193

this work as uniform with strong-growth.194

Assumption 6 (sub-Gaussian noise). Conditioned on the iterate xti, random variable wt
i is zero-mean,195

independent and [wt
i ]l is (σ/

√
d)-sub-Gaussian, for l = 1, . . . , d, i.e.,196

E[exp(λ([wt
i ]l − E[wt

i ]l))|xti] ≤ exp

(
λ2σ2

2d

)
, ∀λ ∈ R, l = 1, . . . , d.

Thus, it has uniformly bounded variance E[‖wt
i‖2|xti] ≤ σ2.197
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A sub-Gaussian noise model is commonly assumed for deriving concentration bounds for SGD,198

which we will use to prove our results for OSA.199

As already mentioned in the Introduction, the main goal of this paper is to study the effect of200

communication times on the convergence of the Local SGD and provide better theoretical guarantees.201

In what follows, we claim that by carefully choosing the communication times, linear speed-up of202

parallel SGD can be attained with only a small number of communication instances. Moreover, we203

will obtain a set of sufficient conditions for OSA to achieve linear speed-up.204

3 Convergence results205

In this section we present our main convergence results for Local SGD and OSA. In what follows,206

we denote by x̄t := (
∑N
i=1 x

t
i)/N the average of the iterates of all workers. Notice that xti = x̄t for207

t ∈ I and i.208

3.1 Local SGD209

Let us introduce the notation
0 = τ0 < τ1 < . . . < τR = T,

for the communication times. Further, let us define Hi := τi+1 − τi to be the i’th interc-210

communication interval. Our first theorem gives a performance bound under the assumption that Hi211

grows linearly with i.212

Theorem 1. Suppose Assumptions 1 (smoothness), 2 (strong convexity) and 5 (uniform with strong213

growth noise) hold.214

Choose the parameters as follows: R such that 1 ≤ R ≤
√

2T and a := d2T/R2e ≥ 1,Hi = a(i+1)215

and τi+1 = min(τi +Hi, T ) for i = 0, . . . , R− 1. Choose β ≥ max{9κ, 12κ2cmax{ln(3), ln(1 +216

T/(4κR2))}+ 3κ(1 + c/N)} and set the learning rate as ηt = 3/µ(t+ β), t = 0, 1, . . . , T − 1.217

Then using Algorithm 1 we have,218

E[f(x̄T )]− f∗ ≤ β2(f(x̄0)− f∗)
T 2

+
9Lσ2

2µ2NT
+

144L2σ2

µ3RT
.

Corrollary 1. Under the assumptions of Theorem 1, selecting the number of communications219

R = Ω(κN) we obtain220

E[f(x̄T )]− f∗ ≤ β2(f(x̄0)− f∗)
T 2

+O
(

Lσ2

µ2NT

)
.

The choice of communication times in Theorem 1 aligns with the intuition that workers need to221

communicate more frequently at the beginning of the optimization. As the the step-sizes become222

smaller and workers’ local parameters get closer to the global minimum, they diverge more slowly223

from each other and therefore, less communication is required to re-align them. The advantage224

of this communication strategy over fixed periodic averaging has been only empirically shown in225

Haddadpour et al. (2019). The proof of Theorem 1 can be found in Appendix B.226

3.2 One-shot averaging227

The previous literature literature has shown OSA achieves asymptotic linear speed-up under some228

restrictive assumptions. For instance, Dieuleveut, Patel (2019) shows this for three times continuously229

differentiable functions with second and third uniformly bounded derivatives. Similarly, Godichon-230

Baggioni, Saadane (2020) requires the objective function to be strongly convex, twice continuously231

differentiable almost everywhere, with a bounded Hessian everywhere and gradients satisfying the232

following condition for some constant Cm and all x ∈ Rd,233 ∥∥∇f(x)−∇2f(x∗)(x− x∗)
∥∥ ≤ Cm‖x− x∗‖2.

This inequality is similar to the assumption from Dieuleveut, Patel (2019) of uniformly bounded third234

derivatives. In the following theorem, we relax these assumptions and show that OSA achieves linear235

speed-up under considerably milder assumptions.236
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Before proceeding, let us define the step-size sequence {θt} as237

θt =

{
1
L , for t = 0, . . . , t0 − 1,

2t
µ(t+1)2 , for t ≥ t0,

(2)

where t0 = b2L/µc. Notice that θt ≤ 1/L for all t.238

Theorem 2. Under Assumptions 1 (smoothness), 3 (PL condition), 4 (twice differentiability at the239

optimum) and 6 (sub-Gaussian noise) and with step-size sequence {ηt} = {θt} defined in (2), we240

have for T ≥ t0,241

E
[∥∥x̄T − x∗

∥∥2] ≤ 4σ2

3µ2NT
+ o

(
1

T

)
.

We are thus able to relax the conditions from the earlier literature, which required everywhere or242

almost everywhere higher derivatives with uniform bounds on third derivatives to merely twice243

differentiability at a single point. As a bonus, we also replace strong convexity with the PL condition.244

This theorem is proved in Appendix C. The main difference between Theorem 2 and Corollary 1 is245

that Theorem 2 shows a linear speed-up with only one communication round but with slightly more246

restrictive assumptions such as sub-Gaussian noise model and twice-differentiable objective function247

at the optimal point. On the other hand, our results for OSA only require the PL-condition instead of248

strong convexity.249

4 Numerical experiments250

To verify our findings and compare different communication strategies in Local SGD, we performed251

the following numerical experiments, using an Nvidia GTX-1060 GPU and Intel Core i7-7700k252

processor.253

4.1 Quadratic function with strong-growth condition254

As discussed in Zhang et al. (2016); Dieuleveut, Patel (2019), under uniformly bounded variance, one-255

shot averaging performs asymptotically as well as mini-batch SGD, at least for quadratic functions.256

Therefore, to fully capture the importance of the choice of communication times I , we design a hard257

problem, where noise variance is uniform with strong-growth condition, defined in Assumption 5.258

Let us define,259

F (x) = Eζf(x, ζ), f(x, ζ) :=

d∑
i=1

i

2
x2i (1 + z1,i) + x>z2, (3)

where ζ = (z1, z2) and z1, z2 ∈ Rd, z1,i ∼ N (0, c1) and z2,i ∼ N (0, c2), ∀i ∈ [d], are random260

variables with normal distributions. We assume at each iteration t, each worker i samples a ζti and261

uses ∇f(x, ζti ) as a stochastic estimate of ∇F (x). It is easy to verify that F (x) is 1-strongly convex262

and d-smooth, F ∗ = 0 and Eζ [‖∇f(x, ζ) − ∇F (x)‖2] = c‖∇F (x)‖2 + σ2, where c = c1 and263

σ2 = dc2.264

We use Local SGD to minimize F (x) using different communication strategies, namely, synchronized265

SGD where H = 1, H ≈
√
TN Stich (2019), H ≈ (TN)1/3 Haddadpour et al. (2019), R = N with266

constant H ≈ T/N Stich, Karimireddy (2019); Khaled et al. (2020) and finally the communication267

strategy proposed in this work with R = N and linearly growing Hi local steps. We used N = 20268

workers, T = 1000 iterations, c1 = 1.0 and c2 = 10−10 with d = 3 and step-size sequence269

ηt = 3/(µ(t+ 1)). To estimate the expected value of errors, we repeated the optimization using each270

strategy 100 times and reported the average and 1-standard-deviation error bar in Figure 1.271

We make the following observations from Figure 1:272

• Figure 1(a) shows that a communication strategy with increasing local steps (proposed in273

this work), outperforms all the other methods, both in transient and final error performance,274

specifically the one with the same number of communication rounds evenly spread through-275

out the whole optimization. This confirms the advantage of more frequent communication276

at the beginning of the optimization, especially when the ratio of c to σ2 in the noise with277

growth condition is large (see the definition in Assumption 5).278
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(a) Error over iteration. (b) Error over communication round.

Figure 1: Minimizing (3) using Local SGD with different communication strategies. Figures (a) and
(b) show the error over iteration and communication rounds, respectively.

• Figure1(b) shows that our communication method uses fewer communication rounds, 20279

versus 28 (Haddadpour et al., 2019), 143 (Stich, 2019) and 1000 rounds for synchronized280

SGD.281

• OSA appears to perform relatively well despite using only one communication round, though282

not quite as well as other methods. This shows that the choice of communication is important283

in this experiment. In other words, it is not true that the success of our communication284

strategy is merely a byproduct of the experiment design, where any communication strategy,285

as long as it communicates at least once, will succeed.286

4.2 Speed-up curves287

In this experiment, we minimize a one-dimensional function defined as,288

F (x) =

{
1
2x

2, x ≤ 0,

x2, x > 0,
(4)

using Local SGD with gradients corrupted by a normal noise N (0, σ2). We chose this specific289

cost function since it is not twice continuously differentiable at the minimizer x∗ = 0 and does not290

satisfy Assumption 4 required by Theorem 2 for OSA to achieve linear speed-up. The results of this291

experiment will help us understand whether twice differentiability is a necessary assumption for OSA292

to obtain a linear up.293

The speed-up curve is derived by dividing the expected error of a single worker SGD by the expected294

error of each method at the final iterate T , over different number of workers N . Thus in the case295

where the error decreases linearly in the number of workers, we should expect to see a straight line296

on the graph.297

We plot the speed-up curve for N workers using different communication strategies: synchronized298

SGD, R = N communication rounds with linearly increasing number of local steps Hi, R = N with299

constant number of local steps H ≈ T/R, as well as OSA with only R = 1 communication at the300

end. We use the step-size sequence ηt = min{1/L, 2/(µ(t + 1))} with µ = 1, L = 2, and σ = 8,301

T = 1000.302

Our results in Figure 2(a) show that Local SGD with R = N (increasing or constant H) achieves303

linear speed-up in the number of workers, albeit with a worse constant compared to synchronized SGD.304

However, OSA fails to scale as N increases. This suggests that the condition of twice differentiability305

(Assumption 4) is necessary for Theorem 2, as this function satisfies all the other assumptions of that306

theorem.307

While our theoretical results provide only an upper bound onR to achieve linear speed-up, this setting308

gives us a chance to find out if smaller number of communication rounds are enough. Therefore309

we repeat this experiment for larger number of workers N and T = 8000, using R ≈ N3/4 and310
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(a) (b)

Figure 2: Speed-up curves for different communication strategies, over different ranges of N and T .
Figure (a) establishes the linear speed-up of local SGD with R = N communication rounds as well
as failure of OSA to achieve speed-up even with small number of workers N ≤ 32 over T = 1000
iterations. Figure (b) additionally plots speed-up curves for R ≈ N3/4 and R ≈ N1/2 for larger
values of 32 ≤ N ≤ 256 and T = 8000.

R ≈ N1/2 communication rounds. Our results in Figure 2(b) show that R = N clearly achieves311

speed-up for larger values of N , as expected and R = 1 and R ≈ N1/2 fail to speed-up. However,312

R ≈ N3/4 also struggles to linearly speed-up in the number of workers, as the slope of the speed-up313

curve declines with N increasing. It would be of interest to look into a more granular choice of314

communication rounds such as R ≈ N0.9 or even R ≈ N0.99 but this would require much larger315

values of N and T and thus more repeated simulations, which is beyond our computational resources,316

which were already exhausted by generating Figure 2(b).317

It is worth mentioning that in both experiments of Figure 2(a) and 2(b), R = N with increasing H318

outperforms the one with constant H , even though the noise model used in this experiment is simply319

uniformly bounded, without strong-growth condition. This further endorses the use of more frequent320

averaging at the beginning of optimization, when paired with decreasing step-size sequence.321

4.3 Regularized logistic regression322

We also performed additional numerical experiments with regularized logistic regression using two323

large real datasets: (i) a national dataset (NSQIP) of surgeries performed in the U.S., seeking to324

predict short-term hospital re-admissions, which consists of 722101 data points (surgeries) each325

characterized by d = 231 features, (ii) the a9a dataset from LIBSVM (Chang, Lin, 2011) which326

includes 32561 data points with d = 124 features. The results of these experiments are presented327

and discussed in Appendix A.328

5 Conclusion329

In this work, we studied the communication complexity of Local SGD and provided an analysis330

that shows that R = Ω(N) number of communication rounds, independent of the total number of331

iterations T , is sufficient to achieve linear speed-up. Moreover, we showed only a single round of332

averaging is needed provided that the objective is twice differentiable at the optimum point. This333

assumption appears to be necessary, as our simulations show that not only one-shot averaging but334

using N1/2 or N3/4 communications in local SGD fails to deliver linear speed-up on a simple335

example which is not twice differentiable at the optimum.336
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