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Abstract

Recent studies show that despite achieving high accuracy on a number of real-1

world applications, deep neural networks (DNNs) can be backdoored: by injecting2

triggered data samples into the training dataset, the adversary can mislead the3

trained model into classifying any test data to the target class as long as the trigger4

pattern is presented. To nullify such backdoor threats, various methods have been5

proposed. Particularly, a line of research aims to purify the potentially compromised6

model. However, one major limitation of this line of work is the requirement to7

access sufficient original training data: the purifying performance is a lot worse8

when the available training data is limited. In this work, we propose Adversarial9

Weight Masking (AWM), a novel method capable of erasing the neural backdoors10

even in the one-shot setting. The key idea behind our method is to formulate11

this into a min-max optimization problem: first, adversarially recover the trigger12

patterns and then (soft) mask the network weights that are sensitive to the recovered13

patterns. Comprehensive evaluations of several benchmark datasets suggest that14

AWM can largely improve the purifying effects over other state-of-the-art methods15

on various available training dataset sizes.16

1 Introduction17

Deep neural networks (DNNs) have been widely applied in a variety of critical applications, such18

as image classification [17], object detection [46, 59] , natural language processing [9], and speech19

recognition [19], with tremendous success. The training of modern DNN models usually relies20

on large amount of training data and computation, therefore, it is common to collect data over the21

Internet or directly use pretrained models from third-party platforms. However, this also gives room22

for potential training-time attacks [40, 11, 21, 36, 38]. Particularly, backdoor attack [15, 32, 6, 41,23

1, 33, 37, 43, 30] is among one of the biggest threats to the safety of the current DNN models: the24

adversary could inject triggered data samples into the training dataset and cause the learned DNN25

model to misclassify any test data to the target class as long as the trigger pattern is presented. In the26

meantime, the model still enjoy decent performances on clean tasks thus the backdoors can be hard27

to notice. Recent advanced backdoor attacks also adopt invisible [27], or even sample-specific [29]28

triggers to make it even stealthier.29

Facing the immediate threat from backdoor adversaries, many backdoor defense or detection methods30

[31, 34, 16, 48, 54, 56] have been proposed. Particularly, we focus on a line of research which aims31

to purifying the potentially compromised model without any access to the model’s training process.32

This is actually a quite realistic setting as the large-scale machine learning model nowadays [9, 2] can33
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hardly be trained by individuals. Earlier works in this line usually purify the backdoored model via34

model fine-tuning [50, 7] or distillation [28, 14]. The problem is fine-tuning and distillation procedure35

can still preserve certain information on the backdoor triggers and thus it is hard to completely remove36

the backdoor. Moreover, since it is hard to for one to access the entire training data, longer time of37

fine-tuning of a small subset of data usually leads to overfitting and deteriorated model performances38

on clean tasks. In order to remove the backdoor in a more robust way, recent researches focus on39

removing the backdoor with adversarial perturbations [53, 56]. Particularly, [53] aims to extract40

sensitive neurons (by adversarial perturbations) that are highly related to the embedded triggers and41

prune them out. However, one major limitation is that it still requires to access sufficient original42

training data in order to accurately locate those sensitive neurons: the purifying performance is a lot43

worse when the available training data is insufficient. This largely limit the practicality of the defense44

as it can be hard to access sufficient original training data in real-world scenarios.45

In this paper, we propose the Adversarial Weight Masking (AWM) method, a novel backdoor removal46

method that is capable of erasing the neuron backdoor even in the one-shot setting. Specifically, AWM47

adopts a minimax formulation to adversarially (soft) mask certain parameter weights in the neuron48

network. Intuitively, AWM aims to lower the weights on parameters that are related to the backdoor49

triggers while focusing more on the robust features [23]. Extensive experiments on backdoor removal50

with various available training data sizes demonstrate that our method is more robust to the available51

data size and even works under the extreme one-shot learning case while other baseline cannot. As a52

side product, we also found that AWM’s backdoor removal performance for smaller sized networks53

are significantly better compared to other baselines.54

2 Related Works55

There exists a large body of literature on neural backdoors. In this section, we only review and56

summarize the most relevant works in backdoor attacks, defenses and adversarial training.57

Backdoor Attacks The backdoor attack aims to embed predefined triggers into a DNN during58

training time. The adversary usually poisons a small fraction of training data through attaching a59

predefined trigger and relabeling them as corresponding target labels, which can be the same for all60

poisoned samples [6, 15] or different for each class [37]. In contrast, clean-label attacks [41, 1] only61

attach the predefined trigger to data from a target class and do not relabel any instances. On the design62

of backdoor triggers, BadNets attack [15] is the first to patch instances with a white square and reveal63

the backdoor threat in the training of DNNs. [32] optimizes trojan triggers by inversing the neurons.64

To make the triggers harder for detection, [43] proposed an adaptive adversarial training algorithm65

that maximizes the indistinguishability of the hidden representations of poisoned data and clean66

data while training. [30, 37] composites multiple or sample-aware trojan triggers to elude backdoor67

scanners. [6] first proposed the necessity of making triggers invisible and generated poisoned images68

by blending the backdoor trigger with benign images instead of by patching directly. Following this69

idea, some other invisible attacks [27, 29] are also prevailing, suggesting that poisoned images should70

be indistinguishable compared with their benign counter-part to evade human detection.71

Backdoor Defenses Opposite to backdoor attack, backdoor defense aims to detect a triggered72

model or remove the embedded backdoor. For the purpose of detection, the defender may detect73

abnormal data before model training [45, 34, 10, 12] or identify poisoned model after training74

[49, 55]. Another line of research focuses on backdoor removal through various techniques including75

fine-tuning [48, 16, 50], distillation [7], or model ensemble [28, 25]. DeepSweep [39] searches76

data augmentation functions to transform the infected model as well as the inference samples to77

rectify the model output of trigger-patched samples. However, this method relies on the access to78

the poisoned data. Recently, [56] formalizes backdoor removal as a minimax problem and utilizes79

the implicit hypergradient to solve it. As it needs fine-tuning the parameters, performance decay80

may happen when the available fune-tuning data is limited. Another latest work [53] discovers81

that backdoored DNNs tend to collapse and predict target label on clean data when neurons are82
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perturbed, and therefore pruning sensitive neurons can purify the model. From empirical studies, we83

still discover that it cannot maintain its efficacy with a small network and one-shot learning.84

Adversarial Training Our work is also related to study of adversarial training [35], which adopts min-85

max robust optimization techniques for defending against adversarial examples [13, 47, 22, 5, 4, 8].86

[57] theoretically studies the trade-off between natural accuracy and robust accuracy. [58] proposes87

friendly adversarial training with better trade-off between natural generalization for adversarial88

robustness. Recent study [52] also reveals the relationship between robustness and model width.89

Several works also study accelerating adversarial training in practice [42, 3, 51].90

3 Preliminaries and Insignts91

3.1 Preliminaries92

Defense Setting. We adopt a typical defense setting where the defender outsourced a backdoored93

model from an untrusted adversary. The defender is not aware of whether the model is been94

backdoored or which is the target class. The defender is assumed to have access to a small set of95

training data (or data from the same distribution) but no access to the entire original training data.96

Adversarial Neuron Pruning. ANP [53] is one of the state-of-the-art backdoor removal method that97

adversarially perturbs and prunes the neurons without knowing the exact trigger patterns.98

Denote w and b as the weight and bias of the network. Considering a DNN f with L layers, let’s99

denote the k-th neuron in the l-th layer as z
(l)
k = σ(w

(l)
k z(l−1) + b

(l)
k ), where σ is the activation100

function. ANP works by first finding the neurons that are possibly compromised to the trigger patterns101

and then prune them out to remove the backdoors. Specifically, it will first perturb all the neurons102

in DNN by multiplying small numbers δ(l)k and ξ
(l)
k on the corresponding weight w(l)

k and bias b(l)
k103

respectively. Then we have z(l)k = σ((1+ δ
(l)
k )w

(l)
k z(l−1) + (1+ ξ

(l)
k )b

(l)
k ) as the new neuron output.104

To simplify the notation, let’s denote ◦ as the above multiplication on the neuron-level, n as the total105

number of neurons, ϵ the maximum level of perturbation. Then the goal of this perturbation is to find106

the perturbation that can maximize the classification loss:107

max
δ,ξ∈[−ϵ,ϵ]n

E(x,y)∼D L(f(x; (1 + δ) ◦w, (1 + ξ) ◦ b), y) (3.1)

Note that δ and w have different dimensions so that the perturbation is not weight-wise but neuron-108

wise. Those weights corresponding to the same neuron are multiplied with the same perturb fraction109

δ. [53] claimed that by solving problem (2.1), we can identify sensitive neurons related to potential110

backdoors. With the solved δ and ξ, the second step is to optimize the mask for neurons with the111

following objective:112

min
m∈{0,1}n

E(x,y)∼D αL(f(x;m ◦w,b), y) + β max
δ,ξ∈[−ϵ,ϵ]n

L(f(x; (m+ δ) ◦w, (1 + ξ) ◦ b), y)

(3.2)

By solving the above min-max optimization, the poisoned model prunes those sensitive neurons113

detected by neuron perturbation and removes the potential backdoors. Note that when BatchNorm114

[24] layer is used, ANP’s perturbation on w and b will be canceled out by the batch normalization115

and nothing changes after BatchNorm layers. Therefore, the implementation ANP directly perturb116

the scale and shift parameters in the BatchNorm layers in such cases.117

3.2 Problems of ANP118

ANP [53] claims to be an effective backdoor removal method without knowing the exact trigger119

pattern, and since it does not really fine-tune the model but directly prune the neurons, it can preserve120

decent model accuracy on the clean tasks. However, its backdoor removal performance largely121

depends on the effectiveness of identifying the sensitive neurons regarding the backdoor trigger: if Eq.122

(3.2) failed to identify the accurate binary mask m, ANP will perform badly on backdoor removal123

tasks.124
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Unfortunately, in certain practical settings, ANP does fail to: 1) remove the backdoor when the125

available clean training data size is small; 2) maintain high accuracy on clean tasks when the network126

size is small and the BatchNorm layer is used.127

We select the BadNets attack for illustration and set the target class as 8 to train the backdoored128

models. First, we test the ANP performances with various sizes of available training data. The129

left part of Figure 1(a) shows that the perturbed neurons (by ANP) tend to predict the target class130

a lot more often than other classes when the size of available training data is sufficient, however,131

when the size of available data drops to 10, it can no longer indicates such pattern and the prediction132

portion on different classes distributes quite evenly. As an immediate result, ANP’s backdoor removal133

performance significantly degrades when the size of available data is small (Figure 1(a) right part).134

(a) The left shows the prediction portion for each class
with perturbed neurons with various available training
data size. The right shows the ASR/ACC of the ANP
pruned models with various available training data size.

(b) The left shows the prediction portion for each
class with perturbed neurons with ResNet and VGG
model. The right shows the ASR/ACC of the ANP
pruned models under various pruning threshold.

Figure 1: An illustrative example of the failure cases of ANP.

We then investigate how the network size affects ANP’s performance by applying it on both VGG135

(small) and ResNet-18 (large) backdoored models. The left part of Figure 1 (b) indicates that while136

ANP’s perturb neuron is able to show larger prediction portion on the target class, when applying on137

smaller VGG model, its magic failed again. The right part of Figure 1 (b) illustrates the ASR/ACC138

of the ANP pruned models under various pruning threshold. We can observe that it is hard to find a139

suitable pruning threshold for the smaller VGG network to obtain both high ASR and low ACC.140

4 Our Proposed Method141

In this section, we introduce our proposed method. Inspired by the above analysis in Section 3, we142

propose Adversarial Weight Masking (AWM) for better backdoor removal under practical settings.143

Soft Weight Masking. From the analysis in Section 3, the neuron pruning method can be inappropri-144

ate when the backdoored model (with BN layers) is small and only has few layers: pruning certain145

neurons in the BN layer cuts off the information from a whole channel, which inevitably ignores146

some certain beneficial information for the clean tasks. To fix this drawbacks, we propose to adopt147

weight masking instead of neuron pruning. Let’s denote θ ∈ Rd as the entire neural network weights.148

min
m∈[0,1]d

E(x,y)∼D αL(f(x;m⊙ θ), y) + β max
δ∈[−ϵ,ϵ]d

L(f(x; (m+ δ)⊙ θ), y) (4.1)

where δ denotes the small perturbations on the network parameters, m is the weight mask of the149

same dimension as θ, ⊙ denotes the Hadamard product (element-wise product). Eq. (4.1) follows the150

general idea of ANP by first identifying the sensitive part of the neural network and then lower such151

sensitivity. The major changes here is that we are no longer pruning out the neurons, instead, we add152

an additional mask for all the network weights. Note that such design would provide more flexibility153

in removing backdoor-related parts and thus avoid over-killing in BN layers. Since we apply weight154

masking instead of neuron pruning, we can also use soft mask m ∈ [0, 1]d instead of binary neuron155

masks as in ANP [53].156
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Adversarial Trigger Recovery. Another issue identified in Section 3 is that ANP performs poorly157

when the available training data size is small. And it seems that under such challenging conditions,158

perturbing the mask itself does not give clues to which part of the network is really sensitive to159

the backdoor triggers. Inspired from adversarial training literature [35], we can first optimize the160

following objective for adversarially recovery the possible trigger patterns:161

max
∥∆∥1⩽τ

E(x,y)∼D L(f(x+∆;θ), y), (4.2)

where ∥ · ∥1 denotes the L1 norm and τ limits the strength of the perturbation. Note that technically162

speaking, Eq. (4.2) only aims to find a L1 norm universal perturbation that can mislead the current163

model toward misclassification. Yet since we are not aware of the target class, this is a reasonable164

surrogate task for the trigger recovery. Based on Eq. (4.2), we can integrate it with soft weight165

masking and formulate it as a min-max optimization problem:166

min
m∈[0,1]d

E(x,y)∼D αL(f(x;m⊙ θ), y) + β max
∥∆∥1⩽τ

[L(f(x+∆;m⊙ θ), y)] , (4.3)

where α and β are tunable hyper-parameters.167

Sparsity Regularization. To push our defense to mask out backdoor-related weights more aggres-168

sively, we adopt the L1 norm regularization on m for further controlling its sparsity level.169

Combining soft weight masking, adversarial trigger recovery together with sparsity regularization on170

m, gives the full Adversarial Weight Masking formulation:171

min
m∈[0,1]d

E(x,y)∼D αL(f(x;m⊙ θ), y) + β max
∥∆∥1⩽τ

[L(f(x+∆;m⊙ θ), y)] + γ∥m∥1, (4.4)

where α, β and γ are tunable hyper-parameters. Intuitively, AWM works by first identifying the172

worst-case universal triggers (which are highly likely to be the actual triggers or different patterns173

with similar backdoor effects), and then finding an optimal weight mask m to lower the importance174

on the identified triggers while maintaining the accuracy on clean tasks.175

Unlike ANP, which directly prunes out the suspicious neurons, we aim at learning a soft mask for176

each parameter weight, i.e., each element in m lies in between [0, 1]. Such design can help preserve177

the information beneficial to the clean tasks and thus avoid over-killing. Moreover, adopting soft178

masks can also avoid the problem of setting the hyper-parameters on the pruning threshold, which is179

also heuristic and hard to generalize for various experimental settings.180

Algorithm Details. The detailed steps of AWM is summarized in Algorithm 1. We solve the min-max181

optimization problem in Eq. (4.4) by alternatively solving the inner and outer objectives. Specifically,182

we initialize all the mask values as 1. In each epoch, we repeat the following steps: 1) initialize ∆ as183

0, and then perform K-steps of gradient descent on ∆ and clip it with its L1 norm limit τ ; 2) we184

update soft weight mask in the outer optimization via stochastic gradient descent, where the first term185

is to minimize the clean classification loss, the second term is for lowering the weights associated186

with ∆, and the third term is the L1 regularization on m, followed by a clipping operation to keep187

m within [0, 1]. Note that we reinitialize ∆ in each inner optimization as we need to relearn the188

adversarial perturbation based on the current m⊙ θ. We also on purposely set T > 1 for ensuring189

sufficient optimization during each update in order to reach better convergence.190

5 Experiments191

In this section, we conduct thorough experiments to verify the effectiveness of our proposed AWM192

method and analyze the sensitivity on hyper-parameters via ablation studies.193

Datasets and Networks. We conduct experiments on two datasets: CIFAR-10 [26] and GTSRB194

[20]. CIFAR-10 contains 50000 training data and 10000 test data of 10 classes. GTSRB is a dataset195

of traffic signal images, which contains 39209 training data and 12630 test data of 43 classes. The196

poisoned model is trained with full training data with 5% poison rate on Resnet-18 [18] or a small197

VGG [44] network with three simplified blocks, containing six convolution layers followered by198

BatchNorm layers. See appendix for results on GTSRB and more training details.199
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Algorithm 1 Adversarial Weight Masking (AWM)

Input: Infected DNN f with θ, Clean dataset D = {(xi, yi)}ni=1, Batch size b, Learning rate η1, η2,
Hyper-parameters α, β, γ, Epochs E, Inner iteration loops T , L1 norm bound τ

1: Initialize all elements in m as 1
2: for i = 1 to E do

// Phase 1: Inner Optimization
3: Initialize ∆ as 0
4: for t = 1 to T do
5: Sample a minibatch (x, y) from D with size b
6: Linner = L(f(x+∆;m⊙ θ), y)
7: ∆ = ∆− η1∇∆Linner

8: end for
9: Clip ∆: ∆ = ∆×min(1, τ

∥∆∥1
)

// Phase 2: Outer Optimization
10: for t = 1 to T do
11: Louter = αL(f(x;m⊙ θ), y) + βL(f(x+∆;m⊙ θ), y) + γ∥m∥1
12: m = m+ η2∇mLouter

13: Clip m to [0, 1].
14: end for
15: end for

Output: Filter masks m for weights in network f .

Attacks and Defenses. For the backdoor attack baselines, we consider BadNets with square trigger200

(BadNets) [15]; Trojan-Watermark(WM) and Trojan-Square(SQ) [32]; l0-inv and l2-inv [27], two201

invisible attack methods with different optimization constraints . We mainly compare our method with202

two latest state-of-the-art methods of backdoor removal: Implicit Backdoor Adversarial Unlearning203

(IBAU) [56], Adversarial Neuron Pruning (ANP) [53]. We also provide more results on other network204

structures and attack methods in the appendix.205

Evaluations. We adopt two metrics: ACC and ASR. ACC is the test accuracy on clean dataset, while206

ASR is calculated as the ratio of those triggered samples that are still predicted as the adversary’s207

target labels. Note that usually a benign classifier is not assciated with a specific trigger, thus its208

prediction on poisoned data mainly follows its prediction on clean data. Under such case, suppose we209

have c classes in total, we can expect the ASR should be around 1/c, that is, 10% for CIFAR-10 and210

2.3% for GTSRB. Therefore, once the backdoor removal method achieves an ASR close to 1/c (less211

than 1.5/c), we consider it as successfully remove the backdoor (rather than achieving ASR= 0%).212

5.1 Backdoor Removal with Various Available Data Size213

We first study the backdoor removal performances of AWM on various available data sizes and214

compare with other state-of-the-art defense baselines. Table 1 presents the defense results on215

the CIFAR-10 dataset. Specifically, among the entire CIFAR-10 training data, 2500 images are216

backdoored. We test with varying size of available data samples ranging from 5000 to 10 for each217

defense. A fixed number of 5000 remaining samples are used to evaluate the defense result.218

The left column depicts five single-target attack methods and the first row represents two different219

adopted network structure. We present the ACC and ASR under each backdoor removal setting in the220

table, all single-target attacks are capable of achieving an ASR close to 100% and an ACC around221

88% with no defenses. For Resnet-18, the performance of the baselines are comparable with AWM222

when there are sufficient available training data (n = 5000): all methods effectively remove the223

backdoors. With the decreasing size of clean data, IBAU suffers from huge performance degradation224

and fails to remove the backdoor under several settings. The major reason is that its fine-tuning225

procedure can actually hurt the original information stored in the parameters that are crucial to its226

clean accuracy, especially when fine-tuning on small sample set. On the other hand, ANP shows227

better robustness as it prunes the neurons which reduces the negative effect of insufficient data, but228

6



Table 1: Backdoor removal performance comparison with various available data sizes on CIFAR-10
dataset with Resnet-18 and VGG Net. Numbers represent percentages. Bold numbers indicate the

best ACC after backdoor removal and blue numbers indicate successful backdoor removal.

Attack
Available Resnet-18 VGG Net
Data Size Origin ANP IBAU AWM(Ours) Origin ANP IBAU AWM(Ours)

n ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

B
ad

N
et

s 5000 ACC 85.56 10.18 86.41 11.26 86.94 10.46 ACC 77.34 8.64 81.06 12.25 83.58 13.98
500 87.83 83.39 11.15 84.88 35.61 83.56 12.11 85.98 73.17 13.76 77.30 13.52 78.20 11.93
200 ASR 83.52 11.53 82.38 83.89 84.26 10.90 ASR 64.59 13.35 75.88 14.75 76.42 12.82
100 97.90 81.48 11.42 78.80 97.82 83.57 11.10 97.96 51.19 15.86 75.53 33.62 75.69 10.64
50 81.09 11.21 73.84 98.92 80.46 11.42 49.81 17.66 68.72 45.23 73.20 12.22

Tr
oj

an
-S

Q 5000 ACC 87.30 10.66 86.34 9.38 87.08 11.21 ACC 67.70 8.68 82.38 14.20 83.82 12.76
500 88.27 85.34 9.34 81.08 10.38 86.30 10.34 85.86 63.21 35.77 76.42 11.53 79.40 10.08
200 ASR 82.72 10.51 75.72 99.94 85.38 9.41 ASR 63.84 36.31 73.81 10.69 75.50 14.40
100 99.61 80.28 7.42 66.38 93.82 85.68 10.32 99.36 40.23 7.14 74.32 55.68 74.49 12.08
50 69.68 9.29 39.83 98.80 80.78 8.48 40.06 6.41 73.20 84.32 72.23 5.01

Tr
oj

an
-W

M 5000 ACC 85.72 38.48 84.68 14.32 87.12 12.92 ACC 58.14 31.70 83.03 8.26 82.78 13.64
500 88.00 82.82 34.06 80.63 10.22 85.17 8.36 86.08 55.64 9.76 82.89 7.33 82.61 12.15
200 ASR 83.43 66.30 80.32 20.68 84.88 11.10 ASR 52.58 8.45 80.27 10.36 81.96 17.88
100 99.96 75.99 61.64 78.75 38.82 83.31 12.51 99.80 42.95 21.20 81.02 30.25 81.56 12.82
50 70.52 9.33 69.42 99.78 80.14 3.43 46.84 6.15 78.33 35.06 79.97 8.88

l 0
in

v

5000 ACC 86.08 15.20 85.32 10.72 86.38 11.74 ACC 66.90 10.21 82.90 12.68 82.26 12.88
500 88.23 83.71 15.08 80.83 14.48 84.97 11.81 86.56 67.70 30.20 80.42 10.11 75.01 20.54
200 ASR 83.47 18.18 75.83 28.90 82.83 17.79 ASR 69.47 73.10 76.26 95.50 76.20 33.74
100 100.0 77.32 16.44 73.49 70.18 82.04 12.68 100.0 60.31 59.14 67.40 93.56 62.31 24.58
50 69.21 25.26 69.83 85.34 77.68 25.73 54.95 58.08 59.13 78.20 60.73 45.36

l 2
in

v

5000 ACC 85.04 12.14 86.46 7.28 87.22 10.76 ACC 70.70 7.58 81.51 6.23 82.74 12.94
500 88.51 82.25 31.99 78.66 9.32 85.76 10.26 86.22 74.80 0.44 78.09 7.64 81.33 4.39
200 ASR 82.21 30.68 77.38 50.46 85.16 11.45 ASR 66.38 0.92 73.28 6.42 80.36 6.39
100 99.86 81.80 21.68 73.26 90.48 82.26 8.85 99.84 53.07 1.12 72.91 18.86 81.67 7.55
50 72.65 8.90 63.21 93.46 75.60 10.86 47.87 0.15 75.41 30.27 80.36 9.93

still fails on more challenging cases. On the right part of Table 1, we can observe that ANP losses229

more accuracy on the small VGG network, which backup our analysis in Section 3. AWN shows230

state-of-the-art backdoor removal performances on various the available data sizethe small VGG231

network and network structures and successfully erase the neuron backdoors in most cases.232

Table 2: An Extreme Case: One-Shot Backdoor Removal Comparison on CIFAR-10 Data. Numbers
represent percentages. Bold numbers indicate the best ACC after backdoor removal and blue numbers
indicate successful backdoor removal.

Method BadNets Trojan-SQ Trojan-WM l0 inv l2 inv
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

Origin 87.83 97.90 88.27 99.61 88.00 99.96 88.23 100.0 88.51 99.86
ANP 60.35 32.83 68.32 13.88 50.42 35.50 63.42 22.46 67.08 76.16
IBAU 60.18 97.33 45.38 96.27 57.76 99.93 69.26 95.81 63.48 89.42

AWM (Ours) 76.46 8.98 78.26 10.68 74.28 8.66 69.94 10.18 76.60 10.64

We further conduct experiments in an extreme one-shot setting, i.e., we only provide 1 image per233

class as the available data for backdoor removal tasks (total size as 10 for CIFAR-10 dataset). Table 2234

shows the result of ACC and ASR under such one-shot setting. In this case, we randomly sample235

one image for each of the ten classes and use the basic data-augmentation method such as random236

horizontal flip and random crop. Our AWM successfully removes all those backdoors with minimal237

performance drop (10% higher than other baselines on average), while other baselines failed in238

removing the existing backdoor triggers for most cases (as suggested by the large ASR values).239
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Table 3: The Effect of Each Component: From ANP to AWM. + and − indicate an increase or
decrease in accuracy. ↓ indicates large improvements in lowering ASR. R denotes Resnet-18.

Attack&Network Avail. ANP ANP+SWM ANP+SWM+ATR Full AWM
Data Size ACC ASR ACC ASR ACC ASR ACC ASR

BadNets (R)
500 83.39 11.15 83.25 (-0.14) 12.62 84.78 (+1.53) 12.08 85.33 (+0.55) 11.76
100 81.48 11.42 82.25 (+0.77) 13.04 83.83 (+1.58) 9.55 83.57 (-0.26) 11.10
10 53.26 34.38 73.34 (+19.9) 10.16 ↓ 80.38 (+7.04) 10.41 76.46 (-3.92) 8.98

Trojan-SQ (R)
500 85.34 9.34 85.27 (-0.07) 12.00 84.06 (-1.19) 9.02 84.91 (-0.85) 10.20
100 80.28 7.42 82.01 (+1.73) 10.35 83.23 (+1.22) 11.95 85.07 (+1.84) 11.34
10 68.32 13.88 73.12 (+4.80) 11.42 82.04 (+8.92) 10.72 78.26 (-3.78) 10.68

Trojan-WM (R)
500 82.82 34.06 83.07 (+0.25) 9.34 ↓ 85.23 (+2.16) 7.79 84.88 (-0.35) 10.12
100 75.99 31.64 78.23 (+2.24) 15.02 ↓ 82.99 (4.76) 4.61 ↓ 84.21 (+1.22) 11.18
10 50.42 35.50 61.64 (+11.2) 17.88 ↓ 75.66 (+14.0) 7.54 ↓ 74.28 (-1.38) 8.66

l0 inv (R)
500 83.71 15.08 83.31 (-0.40) 11.67 84.14 (+0.83) 13.91 84.83 (0.69) 12.15
100 77.32 16.44 81.16 (+3.84) 13.11 84.39 (+3.23) 17.87 82.44 (+1.95) 11.97
10 63.42 22.46 65.46 (+2.04) 10.40 73.66 (+8.20) 14.70 69.94 (+3.72) 10.18

l2 inv (R)
500 82.25 31.99 82.59 (+0.34) 13.94 ↓ 82.15 (-0.45) 6.26 85.22 (+3.07) 13.13
100 81.80 21.68 80.51 (-1.29) 10.47 ↓ 81.08 (+0.57) 11.24 79.79 (+1.29) 11.77
10 67.08 76.16 60.36 (-6.72) 12.20 ↓ 66.78 (+6.42) 15.80 76.60 (+9.82) 10.64

l2 inv (VGG)
500 74.80 0.44 76.35 (+1.55) 3.17 82.08 (+5.73) 5.81 81.33 (-0.75) 4.39
100 66.38 0.92 75.63 (+9.25) 7.89 79.42 (+3.79) 6.46 80.36 (+0.94) 6.39
10 47.08 30.15 70.82 (+23.7) 19.17 78.34 (+7.52) 14.73 80.32 (+1.98) 12.52

5.2 Ablation Study on Each Component of AWM240

We further perform an ablation study on each component of AWM. For notational simplicity, we refer241

soft weight masking as SWM, adversarial trigger recovery as ATR. From left to right in Table 3, we242

demonstrate the performance of the original ANP method, ANP + SWM (as in Eq. (4.1)), ANP +243

SWM + ATR (as in Eq. (4.3), and our full AWM method.244

Table 3 shows that each component in AWM is non-trivial and necessary, since adding each component245

would enhance the performance on average. Previous analysis in Section 3 suggests two of the ANP’s246

weakness: when the network is small and when the available training data size is small. The first247

weakness motivates us to adopt soft label masking. As expected, SWM contributes more with the248

small VGG net and verifies that it overcome the drawback of neuron pruning in a smaller network’s249

BN layer. The second weakness motivates us to perform adversarial trigger recovery. From Table 3250

we can easily observe ATR’s improvements in terms of lowering the ASR as well as significantly251

improving the ACC. The effect of L1 regularization is comparably small but it indeed forces more the252

mask m to be sparse and thus further lowering the influence of weights associated with the recovered253

trigger patterns.254

5.3 Additional Ablation Studies255

In this section, we perform additional empirical studies on the necessity of regularization and AWM’s256

robustness on the hyper-parameters. We compare our AWM with the following modified models: 1)257

No Clip: AWM with no ∆ clipping; 2) No Shrink: AWM with no L1 regularization on m; 3) NC-NS:258

AWM with no ∆ clipping and m regularization; 4) L2 Reg: AWM with ∆’s L2 regularization; 5) L2259

Reg NC: AWM with ∆’s L2 regularization and no clipping;260

Constraints on ∆ and m. In Table 4, we compare the results of different modifications of AWM.261

On one hand, the clipping of the virtual trigger ∆ is necessary as No Clip and L2 Reg NC either262

remove the backdoor incompletely or sacrifice the accuracy too much. L2 Reg changes the form263

of regularization and achieves comparable results on several settings but is less stable then the264

than AWM. The comparison between AWM and L2 Reg also shows that both L1 and L2 norm265

regularization work for ∆. On the other hand, the regularization of m helps better learning the soft266

mask. NC-NS differs from No Clip only in the m but successfully unlearns more backdoors. This is267
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Table 4: Ablation Study on AWM. ↓ indicates significant performance drop; ↑ indicates negative
effect on backdoor removal. The base for comparison is Full AWM.

Avail. Method BadNets Trojan-SQ Trojan-WM l0 inv l2 inv
Data Size ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

200

No Clip 82.86 ↓ 19.36 ↑ 79.21 ↓ 20.58 ↑ 84.82 32.16 ↑ 80.17 ↓ 46.85 ↑ 81.76 ↓ 17.28 ↑
No Shrink 84.52 10.31 83.06 ↓ 9.20 84.33 9.96 83.34 16.52 84.66 10.43

NC-NS 82.33 ↓ 15.78 ↑ 78.41 ↓ 26.93 ↑ 84.40 37.81 ↑ 77.84 ↓ 36.37 ↑ 81.80 ↓ 12.39
L2 Reg 81.46 ↓ 13.29 83.60 ↓ 8.81 83.93 14.63 83.04 18.52 85.30 9.48

L2 Reg NC 83.72 11.64 83.49 ↓ 30.13 ↑ 83.55 ↓ 7.56 81.27 ↓ 29.61 ↑ 83.45 ↓ 21.54 ↑
Full AWM 84.26 10.90 85.38 9.41 84.88 11.10 82.83 17.79 85.16 11.44

one-shot

No Clip 66.03 ↓ 16.28 ↑ 62.14 ↓ 20.68 ↑ 55.32 ↓ 12.28 61.68 ↓ 37.38 ↑ 72.71 16.15 ↑
No Shrink 66.32 ↓ 9.97 76.62 12.83 73.50 9.26 70.69 21.36 ↑ 75.57 14.86

NC NS 65.32 ↓ 9.77 68.17 ↓ 26.14 ↑ 73.62 59.52 ↑ 70.22 24.87 ↑ 71.52 29.84 ↑
L2 Reg 72.71 8.98 75.21 8.06 71.32 8.48 72.42 14.73 76.96 12.35

L2 Reg NC 73.96 14.38 72.50 ↓ 13.74 73.39 10.61 68.94 31.53 ↑ 72.06 20.87 ↑
Full AWM 76.46 8.98 78.26 10.68 74.28 8.66 69.94 10.18 76.60 10.64

(a) Coefficient α (b) Coefficient γ (c) Clipping bound τ

Figure 2: Sensitivity on hyper-parameters. Performance (±std) over 5 random run is reported.

also reasonable since: by punishing the L1 norm, the soft masks are forced to reach smaller value268

and thus being more aggressive on suspicious trigger-related features.269

Hyper-parameters. We test AWM’s sensitivity to hyper-parameters: the coefficient α, β, and the270

clipping bound τ for ∆. We test with α ∈ [0.5, 0.8], β = 1− α, γ ∈ [10−8, 10−5], τ ∈ [100, 2000]271

and shows the performance changes under the l2-inv attack with 500 training data. When varying272

the value of one specific hyper-parameter, we fix the others to the default value as α0 = 0.9, γ0 =273

10−7, τ0 = 1000. As shown in Figure 2, γ is quite robust within the selected range. However, if we274

choose an overly large γ, the mask would shrink its value too much and hurt the accuracy. α works275

the best around 0.8 to 0.9. If α is too close to 1, the major goal of AWM would shift to maintain the276

clean accuracy while pay less attention to backdoor removal. The clipping bound τ should also be277

selected within a moderate range, as the adversarial perturbation should neither be too small to fail in278

capturing the real trigger nor be too large to lead to difficulties in finding the optimal soft mask m.279

6 Conclusions and Future Work280

In this work, we propose a novel Adversarial Weight Masking method which adversarially recover the281

potential trigger patterns and then lower the parameter weights associated to the recovered patterns.282

One major advantage of our method is its ability to erasing neuron backdoors even in the extreme283

one-shot settings while the current state-of-the-art defenses cannot. Extensive empirical studies show284

that our adversarial weight masking method relies less on the network structure and the available data285

size than neuron pruning based methods.286

Note that currently, our AWM method still need at least one image per class in order to properly erase287

the neuron backdoors. It would be interesting to explore whether it is possible to further extend our288

approach into zero-shot backdoor removal settings. We leave this as a future work.289
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