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Abstract

In robotic domains, learning and planning are complicated by
continuous state spaces, continuous action spaces, and long
task horizons. In this work, we address these challenges with
Neuro-Symbolic Relational Transition Models (NSRTs), a
novel class of models that are data-efficient to learn, com-
patible with powerful robotic planning methods, and gener-
alizable over objects. NSRTs have both symbolic and neural
components, enabling a bilevel planning scheme where sym-
bolic AI planning in an outer loop guides continuous plan-
ning with neural models in an inner loop. Experiments in four
robotic planning domains show that NSRTs can be learned af-
ter only tens or hundreds of training episodes, and then used
for fast planning in new tasks that require up to 60 actions and
involve many more objects than were seen during training.

1 Introduction
For robots to plan effectively in the world, they need to
contend with continuous state spaces, continuous action
spaces, and long task horizons (Figure 1, bottom row). Sym-
bolic AI planning techniques are able to solve tasks with
very long horizons, but typically assume discrete, factored
spaces (Helmert 2006). Neural network-based approaches
have shown promise in continuous spaces, but scaling to
long horizons remains challenging (Hafner et al. 2020;
Chua et al. 2018). How can symbolic and neural planning
methods be combined to overcome the limitations of each?

In this paper, we propose a new model-based approach for
learning and planning in deterministic, goal-based, multi-
task settings with continuous state and action spaces. Fol-
lowing previous work, we assume that a small number of
discrete predicates (named relations over objects) are given,
having been implemented by a human engineer (Lyu et al.
2019; Illanes et al. 2020; Wang et al. 2021), or learned from
previous experience in similar domains. These predicates
induce discrete state abstractions of the continuous envi-
ronment state (Sacerdoti 1974; Kokel et al. 2021). For ex-
ample, HOLDING(block1) abstracts away the continuous
pose with which block1 is held. Even when given predi-
cates, the question of how to make use of them to learn ef-
fective models for planning in continuous state and action
spaces is a hard problem that this paper seeks to address.
⇤ Equal contribution.

From the predicates, and through sequential interaction
with an environment, we aim to learn: (1) abstract actions,
which define transitions between abstract states; (2) an ab-
stract transition model, with symbolic preconditions and ef-
fects akin to AI planning operators; (3) a neural transition
model over the low-level, continuous state and action spaces;
and (4) a set of neural action samplers, which define how
abstract actions can be refined into continuous actions.

We unify all of these with a new class of models that
we term the Neuro-Symbolic Relational Transition Model
(NSRT) (pronounced “insert”). NSRTs have both symbolic
and neural components; all components are relational, per-
mitting generalization to tasks with any number of objects
and allowing sample-efficient learning.

To plan with NSRTs, we borrow techniques from search-
then-sample task and motion planning (TAMP) (Garrett
et al. 2021), with symbolic AI planning in an outer loop serv-
ing as guidance for continuous planning with neural mod-
els in an inner loop. This bilevel strategy allows for fast
planning in environments with continuous state and action
spaces, while avoiding the downward refinability assump-
tion, which would assume planning can be decomposed into
separate symbolic and continuous planning steps (Bacchus
and Yang 1994). When modeling robotic domains symboli-
cally, the predicates are often lossy, meaning that downward
refinability cannot be assumed (Figure 1, top and middle).

This paper focuses on how to learn NSRTs and how to
use NSRTs for planning in continuous-space, long-horizon
tasks. We show in four robotic planning domains, across
both the PyBullet (Coumans and Bai 2016) and AI2-
THOR (Kolve et al. 2017) simulators, that NSRTs are ex-
tremely data-efficient: they can be learned in only tens or
hundreds of training episodes. We also show that learned
NSRTs allow for fast planning on new tasks, with many
more objects than during training and long horizons of up
to 60 actions. Baseline comparisons confirm that integrated
neuro-symbolic reasoning is key to these successes.

2 Related Work
Model-Based Reinforcement Learning (MBRL). Our
work is related to multi-task MBRL in that we learn and
plan with transition models from data collected by en-
vironment interaction. Many recent approaches to deep
MBRL learn unstructured neural transition models on a



Figure 1: We propose Neuro-Symbolic Relational Transition Models (NSRTs). (Top row) Given the goal of placing the red
block completely into the blue target region, we first perform AI planning with the symbolic NSRT components to find a one-
step symbolic plan. The Continuous Planning 1 column shows various ways in which the agent attempts to refine this one-step
symbolic plan into a ground action, using the neural components of (ground) NSRT 1; it finds a collision-free refinement, shown
in the Final State column. (Middle row) Here, the green block is initially in a slightly different position, so the red block has no
room to be placed into the blue target region. The initial symbolic plan is the same. However, this symbolic plan is not downward
refinable, so Continuous Planning 1 fails. The agent then continues on to consider a four-step symbolic plan that first moves
the green object away (Symbolic Planning 2 column), which is successfully refined in the Continuous Planning 2 column. This
example illustrates that in the presence of complex geometric constraints which make symbolic abstractions lossy, integrated
symbolic and continuous reasoning is necessary. (Bottom row) Screenshots of our four robotic planning environments. Kitchen
uses the AI2-THOR simulator (Kolve et al. 2017); the others use PyBullet (Coumans and Bai 2016).

latent vector-space representation, and therefore must re-
sort to highly undirected planning strategies like the cross-
entropy method (Hamrick et al. 2021; Hafner et al. 2020,
2021). Some recent MBRL work has used more power-
ful planners, such as RRTs (Ichter, Sermanet, and Lynch
2020), LQR (Chebotar et al. 2017), and divide-and-conquer
MCTS (Parascandolo et al. 2020). Relational MBRL is a
subfield of MBRL that uses relational learning (Džeroski,
De Raedt, and Driessens 2001; Tadepalli, Givan, and
Driessens 2004) to learn object-centric factored transition
models (Battaglia et al. 2016; Chang et al. 2017; Kansky
et al. 2017) or to discover STRIPS operator models (Xia
et al. 2019; Lang, Toussaint, and Kersting 2012) when given
a set of predicates. Our work also learns relational transi-
tion models, but with a bilevel structure that allows planning
without assuming downward refinability.

Symbolic AI Planning for RL. Our work continues a
recent line of investigation that seeks to leverage symbolic
AI planners for continuous states and actions. For example,

previous work learns propositional (Dittadi, Drachmann,
and Bolander 2020; Konidaris, Kaelbling, and Lozano-Perez
2018) or lifted (Arora et al. 2018; Chitnis et al. 2021; Asai
2019; Ames, Thackston, and Konidaris 2018; Ahmetoglu
et al. 2020) symbolic transition models, and uses them with
AI planners (Hoffmann 2001; Helmert 2006). Other related
work has used symbolic planners as managers in hierarchi-
cal RL, where low-level option policies are learned (Lyu
et al. 2019; Sarathy et al. 2020; Illanes et al. 2020; Yang
et al. 2018; Kokel et al. 2021). This interface between sym-
bolic planner and low-level policies assumes downward re-
finability, a critical assumption we do not make in this work.

Learning for Hierarchical Planning. Reasoning at mul-
tiple levels of abstraction is a key theme in hierarchical
planning (Bercher, Alford, and Höller 2019). Prior work
has considered learning transition models that are compat-
ible with hierarchical planners, including those based on
mixed-integer nonlinear programming (Say et al. 2017; Say
2021) or hierarchical task networks (Nejati, Langley, and



Konik 2006; Zhuo et al. 2009). Task and motion planning
(TAMP) systems (Garrett et al. 2021) can plan effectively
at long horizons (Kaelbling and Lozano-Pérez 2011; Srivas-
tava et al. 2014), but they typically require hand-specified
operators and action samplers, and a known low-level tran-
sition model. While recent work can learn one of the first
two components (Loula et al. 2020; Silver et al. 2021; Wang
et al. 2021; Chitnis et al. 2016; Kim, Kaelbling, and Lozano-
Pérez 2018), our approach learns all three: the operators, the
action samplers, and the low-level transition model.

3 Problem Setting
We study a deterministic, goal-based, multi-task setting with
continuous object-oriented states, continuous actions, and a
fixed, given set of predicates. Formally, we consider an en-
vironment hT , d,A, f,Pi and a collection of tasks, each of
which is a tuple hs0, g,Hi.

Environments. T is a set of object types, and d : T ! N
defines the dimensionality of the real-valued attribute (fea-
ture) vector of each object type. For example, an object of
type box might have an attribute vector describing its cur-
rent pose, side length, and color. An environment state s is a
mapping from a set of typed objects o to attribute vectors of
dimension d(o), where d(o) is shorthand for the dimension
of the attribute vector of the type of object o. We use S to
denote this object-oriented state space. The A ✓ Rm is the
environment action space. The f : S ⇥A ! S [ {fail} is a
deterministic transition function mapping a state s 2 S and
action a 2 A to either a next state in S or a special failure
state fail, which can be used, e.g., to capture undesirable be-
havior such as causing a collision. The transition function f
is unknown; the agent only observes states through online
interaction with the environment.

P is a set of predicates given to the agent. A predi-
cate is a named, binary-valued relation among some num-
ber of objects. A ground atom applies a predicate to spe-
cific objects, such as ABOVE(o1, o2), where the predicate
is ABOVE. A lifted atom applies a predicate to typed place-
holder variables: ABOVE(?a, ?b). Taken together, the set of
ground atoms that hold in a continuous state define a dis-
crete state abstraction; let ABSTRACT(s) denote the ab-
stract state for state s 2 S , and let S" denote the abstract
state space. For instance, a state s where objects o1, o2,
and o3 are stacked may be represented by the abstract state
ABSTRACT(s) = {ON(o1, o2), ON(o2, o3)}; note that this
abstract state loses details about the geometry of the scene.

Tasks and Objective. A task hs0, g,Hi is an initial state
s0 2 S , a goal g, and a maximum horizon H . We will gen-
erally denote the set of objects in s0 as O. This object set
O is fixed within a task, but changes between tasks. Goals
g are sets of ground atoms over the object set O, such as
{ON(o3, o2), ON(o2, o1)}. The agent interacts with the en-
vironment episodically. An episode begins with a task’s ini-
tial state s0. The agent takes actions sequentially, observ-
ing the state at each timestep. If it encounters a state s for
which g ✓ ABSTRACT(s) (i.e., the goal holds), the episode
is solved. An episode finishes when it is solved, when the
failure state fail is reached, or after H timesteps. We con-
sider a set of training tasks and a set of test tasks; test tasks

have more objects and longer horizons, and are unknown to
the agent during training. The agent’s objective is to maxi-
mize the number of episodes solved over the test tasks.

Data Collection. We focus on the problems of learning
and planning. To isolate these, we use a simple, fixed strat-
egy for data collection that makes use of a behavior prior
⇡0(· | s), a state-conditioned distribution over A. Recent
work has studied learning behavior priors (Ajay et al. 2021);
we are assuming it is given, but it could be learned. Data-
gathering proceeds by running ⇡0 on tasks sampled from the
set of training tasks. We do not use ⇡0 at test time. Since ⇡0
is fixed and given, our setting can be seen as model-based
offline reinforcement learning (Levine et al. 2020).

4 NSRT Representation
The next three sections introduce Neuro-Symbolic Rela-
tional Transition Models (NSRTs). In this section, we de-
scribe the NSRT representation; in Section 5, we address
planning with NSRTs; and in Section 6, we discuss learning
NSRTs. Figure 2 illustrates the full pipeline.

We want models that are learnable, plannable, and gen-
eralizable. To that end, we propose the following definition:
Definition 1. A Neuro-Symbolic Relational Transition
Model (NSRT) is a tuple hO,P,E, h,⇡i, where:

• O = (o1, . . . , ok) is an ordered list of parameters; each
oi is a variable of some type from type set T .
• P is a set of symbolic preconditions; each precondition
is a lifted atom over parameters O.
• E = (E+, E�) is a tuple of symbolic effects. E+ are
add effects, and E� are delete effects; both are sets of
lifted atoms over parameters O.
• h : Rd(o1)+···+d(ok) ⇥ A ! Rd(o1)+···+d(ok) is a low-
level transition model, a neural network that predicts
next attribute values given current ones and an action.
• ⇡(a | v) is an action sampler, a neural network defining
a conditional distribution over actions a 2 A, where
v 2 Rd(o1)+···+d(ok) is a vector of attribute values.

In this paper, we will learn and plan with a collection of
NSRTs. Together with the object set O of a task, a collec-
tion of NSRTs jointly defines four things: an abstract ac-
tion space for efficient planning; a (partial) abstract transi-
tion model over the abstract state space S

" and the abstract
action space; a (partial) low-level transition model over en-
vironment states and actions; and action samplers to refine
abstract actions into environment actions. The rest of this
section describes how NSRTs define these four components.

First, we define the notion of an NSRT grounded with
objects, which represents an abstract action for a task:
Definition 2. Given an object set O, a ground NSRT is an
NSRT whose parameters oi 2 O are replaced by objects
from O, following a bijective substitution � mapping each
oi to an object. The ground preconditions and effects under
� are denoted P� and E� respectively.

Given a set of NSRTs and a task with object set O, the re-
sulting set of ground NSRTs defines an abstract action space
for that task, which we denote as A". Therefore, the phrases
abstract action and ground NSRT are interchangeable. For



instance, say we wrote an NSRT called STACK with two pa-
rameters ?x and ?y; let � = {?x 7! o3, ?y 7! o6}. Then
STACK(o3, o6) is an abstract action with substitution �.

Working toward a definition of the abstract transition
model, we next define ground NSRT applicability.
Definition 3. A ground NSRT with preconditions P� is ap-
plicable in state s 2 S if P� ✓ ABSTRACT(s). It is also
applicable in abstract state s" 2 S

" if P� ✓ s".
In words, applicability simply checks that the ground

NSRT’s precondition atoms are a subset of the abstract state
atoms. A set of ground NSRTs defines a (partial) abstract
transition model f" : S"

⇥ A
"
! S

", which maps an ab-
stract state and abstract action (ground NSRT) to a next ab-
stract state. The f"(s", a") is partial since it is only defined
when a" is applicable in s"; when it is applicable, we have:

f"(s", a") = (s" \ E�
� ) [ E+

� , (Equation 1)
where E� = (E+

� , E
�
� ) are the effects for a". In words, this

abstract transition model removes delete effects and includes
add effects, as long as the preconditions of the ground NSRT
are satisfied. This symbolic representation is akin to opera-
tors in classical AI planning (Bonet and Geffner 2001); we
use this to our advantage in Section 5.

What is the connection between the symbolic components
of an NSRT (P and E) and the environment transitions? To
answer this question, we use the following definition:
Definition 4. A ground NSRT a" with effects (E+

� , E
�
� )

covers an environment transition ⌧ = (s, a, s0), denoted
a" |= ⌧ , if (1) the ground NSRT is applicable in s; (2)
E+
� = ABSTRACT(s0) \ ABSTRACT(s); and (3) E�

� =
ABSTRACT(s) \ ABSTRACT(s0).

We assume that the following weak semantics connect P
and E with the environment: for each ground NSRT a",
there exists a state s 2 S and there exists an action a 2 A

s.t. a" |= (s, a, f(s, a)). Importantly, this means that the ab-
straction defined by the NSRTs does not satisfy downward
refinability (Marthi, Russell, and Wolfe 2007), which would
have required the “there exists a state” to be “for all states.”
These weak semantics will make learning efficient (Section
6), but will require integrated planning (Section 5).

To plan, it is important to be able to simulate the effects of
actions on the continuous environment state. The low-level
transition model h, which we discuss next, is used for this.
Definition 5. Given a state s and ground NSRT a" with sub-
stitution �, the context of s for a" is v�(s) = s[�(o1)]� · · ·�
s[�(ok)], where v�(s) 2 Rd(o1)+···+d(ok), s[·] looks up an
object’s attribute vector in s, and � is vector concatenation.

In words, the context for a ground NSRT is the subset
of a state’s attribute vectors that correspond to the ground
NSRT’s objects, assembled into a vector. The context is the
input to the low-level neural transition model h:

h(v�(s), a) ⇡ v�(f(s, a)),

where, recall, f is the unknown environment transition
model. All objects not in � are predicted to be unchanged.

Finally, the neural action sampler ⇡ of an NSRT connects
the abstract and environment action spaces: it samples con-
tinuous actions from the environment action space A that

lead to the NSRT’s symbolic effects. Given a state s and
applicable ground NSRT with substitution �, if a ⇠ ⇡(· |
v�(s)), then (s, a, f(s, a)) should ideally be covered by the
ground NSRT. The fact that ⇡ is stochastic can be useful
for planning, where multiple samples may be required to
achieve desired effects (see Figure 1, or Wang et al. (2021)).

There are three key properties of NSRTs to take away from
these definitions. (1) NSRTs are fully relational, i.e., invari-
ant over object identities. This leads to data-efficient learn-
ing and generalization to novel tasks and objects. (2) NSRTs
do not assume downward refinability, as discussed above.
(3) NSRTs are locally scoped; all components of a ground
NSRT are defined only where it is applicable. This modular-
ity leads to independent learning problems; see Section 6.

5 Neuro-Symbolic Planning with NSRTs

We now describe how NSRTs can be used to plan in a given
task. Recall that the weak semantics of NSRTs (Section 4)
do not guarantee downward refinability: abstract actions that
achieve a goal cannot necessarily be turned into environment
actions achieving that goal. Our strategy will be to perform
integrated bilevel planning, with an outer search in the ab-
stract space informing an inner loop producing environment
actions. This planning strategy falls under the broad class of
search-then-sample TAMP techniques (Garrett et al. 2021).
See Appendix A.1 for pseudocode (Algorithm 1).

Symbolic Planning. We perform an outer A⇤ search from
ABSTRACT(s0) to g, with the abstract transition model of
Equation 1 and uniform action costs. For the search heuris-
tic, we use hadd, a domain-independent heuristic from the
symbolic planning literature (Bonet and Geffner 2001) that
approximates the state-to-goal distance under a delete relax-
ation of the abstract model. This A⇤ search will find candi-
date symbolic plans: sequences of ground NSRTs a" 2 A

".
Continuous Planning. For each candidate symbolic plan,

an inner loop attempts to refine it into a plan — a sequence
of actions a 2 A that achieves the goal g — using the neu-
ral components of the NSRTs. We use the action sampler ⇡
and low-level transition model h of each ground NSRT in
the symbolic plan to construct an imagined state-action tra-
jectory starting from the initial state s0. If the goal g holds
in the final imagined state, we are done. If g does not hold,
or if any state’s abstraction does not equal the expected ab-
stract state according to the A⇤ search, then we attempt to
sample again. After ntrials (a hyperparameter) unsuccessful
imagined trajectories, we return control to the A⇤ search.

Handling Failures. Recall that an episode ends if the fail-
ure state fail is reached. Following Srivastava et al. (2014),
we would like to use the presence of a failure state during
continuous planning to inform symbolic planning. In Ap-
pendix A.2, we describe a simple domain-independent pro-
cedure for learning to predict transitions to the fail state, and
using this learned model during planning. This optimization
propagates failure information back to the symbolic level
and guides the A⇤ away from repeating such situations.



Figure 2: Our pipeline, with a simplified Painting example. An NSRT (Section 4) contains both symbolic components used
for A⇤ search with AI planning heuristics, and neural components used for continuous planning. The example NSRTs shown
in the middle require that a robot must be side-grasping an object to place it into a shelf. These NSRTs are not ground: their
parameters are variables, so these NSRTs can be applied to any objects. We learn NSRTs from transition data (Section 6), and
then perform bilevel planning with the learned NSRTs (Section 5). Delete effects are omitted from this figure for visual clarity.

6 Learning NSRTs
We now address learning the structure (Section 6.1), the
symbolic components (Section 6.2), and the neural compo-
nents (Section 6.3) of NSRTs. See Appendix A.1 for pseu-
docode (Algorithm 2) and an example.

6.1 Partitioning the Transition Data
Recall that data collection (Section 3) gathers a set of sam-
ples from the unknown transition model f : each sample is a
state s 2 S , an action a 2 A, and either a next state s0 2 S

or the failure state fail. We will ignore the transitions that
led to fail here; see Appendix A.2. We begin by partition-
ing the set of transitions ⌧ = (s, a, s0) so that each partition
 2  will correspond to a single NSRT, thus determining
the number of learned NSRTs. Two transitions belong to the
same partition iff their symbolic effects can be unified:

Definition 6. Two transitions ⌧1 and ⌧2 can be uni-
fied if there exists a bijective mapping � from the
objects in EFF(⌧1) to the objects in EFF(⌧2) s.t.
�[EFF(⌧1)] = EFF(⌧2), where EFF(⌧) = (ABSTRACT(s0) \
ABSTRACT(s), ABSTRACT(s) \ ABSTRACT(s0)), and �[·]
denotes substitution following �.

These partitions can be computed in time linear in the
number of transitions, objects, and atoms per effect set.

6.2 Learning the Symbolic Components
We now show how to learn NSRT parameters O, symbolic
preconditions P , and symbolic effects E for each partition
 2  . First, we define a mapping REF that maps a transi-
tion ⌧ to a subset of objects in ⌧ that are “involved” in the
transition. In practice, we implement REF(⌧) by selecting all

objects that appear in EFF(⌧).1 By construction of our par-
titions, every transition ⌧ 2  will have equivalent REF(⌧),
up to object renaming. We thus introduce NSRT parameters
O corresponding to the types of all the objects in any arbi-
trarily chosen transition’s REF(⌧). For each ⌧ 2  , let �⌧ be
a bijective mapping from these parameters O to the objects
in REF(⌧). The NSRT symbolic effects follow by construc-
tion: E = ��1

⌧ [EFF(⌧)] for any arbitrarily chosen ⌧ 2  .
To learn the symbolic preconditions P for the NSRT cor-

responding to partition  , we use a simple inductive ap-
proach (Bonet, Frances, and Geffner 2019) that restricts
learning by assuming that for each lifted effect set seen in
the data, there is exactly one lifted precondition set.2 By this
assumption, the preconditions follow from an intersection:

P =
\

⌧=(s,·,·)2 

��1
⌧ [PROJECT(ABSTRACT(s))],

where PROJECT maps ABSTRACT(s) to the subset of atoms
whose objects are all in REF(⌧). See the example in Ap-
pendix A.1. Note that by construction, two different learned
NSRTs cannot cover (Definition 4) the same transition.

6.3 Learning the Neural Components
We now describe how to learn a low-level transition model
h and action sampler ⇡ for each partition’s NSRT. The key
idea is to use the state projections computed during partition-
ing to create regression problems. Recalling Definition 5, let
v� = s[�⌧ (o1)] � · · · � s[�⌧ (ok)] denote the context of state

1This suffices for our experiments, but it cannot capture “action
at a distance,” where some object influences a transition without
itself changing; other implementations of REF could be used.

2See Silver et al. (2021) for an alternative method that avoids
this assumption, with greater computational cost.



s from transition ⌧ , where (o1, o2, . . . , ok) are the NSRT
parameters. In words, v� is a vector of the attribute values
in state s corresponding to the objects that map the ground
atoms EFF(⌧) of the transition to the lifted effects E of the
NSRT. We can do the same to produce v�0 for s0. Applying
this to all transitions in  gives us a dataset of (v�, a, v�0).

Recall that we want to learn h such that h(v�(s), a) ⇡

v�(f(s, a)). With the dataset above, this learning problem
now reduces to regression, with v� and a being the inputs
and v�0 being the output. We use a fully connected neural
network (FCN) as the regressor, trained to minimize mean-
squared error. Learning ⇡ requires distribution regression,
where we fit P (a | v�) to the transitions (v�, a, ·). We use
an FCN that takes v� as input and predicts the mean µ and
covariance matrix ⌃ of a Gaussian. This FCN is trained to
maximize the likelihood of action a under N (µ,⌃).3 Since
Gaussians have limited expressivity, we also learn an ap-
plicability classifier that maps pairs (v�, a) to 0 or 1, imple-
mented as an FCN with binary cross-entropy loss. To sample
from ⇡, we then rejection sample from the Gaussian.4

7 Experiments
Our empirical evaluations address the following key ques-
tions: (Q1) Can NSRTs be learned data-efficiently? (Q2)
Can learned NSRTs be used to plan to long horizons, es-
pecially in tasks involving new and more objects than were
seen during training? (Q3) Is bilevel planning efficient and
effective, and are both levels needed? (Q4) To what extent
are learned action samplers useful for planning?

7.1 Experimental Setup
We evaluate Q1-Q4 by running eight methods on four envi-
ronments. All experiments were run on Ubuntu 18.04 using
4 CPU cores of an Intel Xeon Platinum 8260 processor.

Environments. In this section, we describe our four envi-
ronments at a high level, with details in Appendix A.3. The
environments are illustrated in Figure 1 (bottom row). Each
environment has three sets of tasks: training, “easy” test, and
“hard” test. “Hard” test tasks require generalization to more
objects. In all environments, we transition to the failure state
fail whenever a geometric collision occurs.
• Environment 1: In “PickPlace1D,” a robot must pick

blocks and place them into designated target regions on a
table. All poses are 1D. Some placements are obstructed
by movable objects; none of the predicates capture ob-
structions, leading to a lack of downward refinability.

• Environment 2: In “Kitchen,” a robot waiter in 3D must
pick cups, fill them with water, wine, or coffee, and serve
them to customers. Some cups are too heavy to be lifted;
the cup masses are not represented by the predicates,
leading to a lack of downward refinability.

• Environment 3: In “Blocks,” a robot in 3D must stack
blocks on a table to make towers. In this environment
only, the downward refinability assumption holds.

3Here, we are assuming that the desired action distribution has
nonzero measure. In practice, ⌃ can be arbitrarily small.

4If this fails the applicability classifier enough times (10 in ex-
periments), we terminate the inner loop and continue the A⇤ search.

• Environment 4: In “Painting,” a robot in 3D must pick,
wash, dry, paint, and place widgets into a box or shelf.
Placing into the box (resp. shelf) requires picking with
a top (resp. side) grasp. All widgets must be painted a
particular color before being placed, which first requires
washing/drying if the widget starts off dirty or wet. The
box has a lid that may obstruct placements; whether the
lid will obstruct a placement is not represented symboli-
cally, leading to a lack of downward refinability.

Methods Evaluated. We evaluate the following methods.
See Appendix A.4 for additional details.
• Ours: Bilevel planning with NSRTs. This is our main ap-

proach. Plans are executed open-loop.
• B1: Symbolic planning only. This baseline performs

symbolic planning using the symbolic components of
the learned NSRTs. When a symbolic plan is found that
reaches the goal, it is immediately executed by calling
the learned action samplers for the corresponding ground
NSRTs in sequence, open-loop. The low-level transition
models are not used. This baseline ablates away our in-
tegrated planner and assumes downward refinability.

• B2: Neural planning only with forward shooting. This
baseline randomly samples H-length sequences of
ground NSRTs and uses their neural components to
imagine a trajectory, repeating until it finds a trajectory
where the final state satisfies the goal. This baseline does
not use the symbolic components of the NSRTs, and thus
can be seen as an ablation of the symbolic planning.

• B3: Neural planning only with hill climbing. This base-
line performs local search over full plans. At each itera-
tion, a random plan step is resampled using the learned
action sampler of a random NSRT. The new plan is re-
jected unless it improves the number of goal atoms sat-
isfied in the final imagined state. As in B2, the symbolic
components of the NSRTs are not used.

• B4: GNN action-value function learning. This “model-
free” baseline trains a goal-conditioned graph neural
network (GNN) action-value function using fitted Q-
iteration. The GNN takes as input a continuous low-level
state, the corresponding abstract state, and a continuous
action; it outputs expected discounted future returns. At
evaluation time, given a state, we draw several candidate
actions from the behavior prior ⇡0, and take the best one.

• B5: Behavior prior only. This baseline takes actions that
are directly sampled from the prior ⇡0.

• B6: Bilevel planning with prior. This baseline is an abla-
tion of our main approach that does not use the learned
NSRT action samplers ⇡. Instead, actions are selected by
rejection sampling from the prior ⇡0, with rejections de-
termined by checking the learned applicability classifier.

• B7: Forward shooting with prior. This baseline uses the
forward shooting of B2 with rejection sampling from ⇡0,
like B6. Only the low-level transition models h are used.

All methods except B5 (non-learning) receive the same data.

7.2 Results and Discussion
See Figure 3 for learning curves. The main observation is
that in all environments, our method quickly learns to solve
tasks within the allotted 3-second timeout. Thus, Q1 and Q2



Figure 3: Learning curves for every environment, showing the percentage of 100 randomly generated test tasks (top row: easy
tasks; bottom row: hard tasks) solved as a function of the number of training episodes. Each curve depicts a mean over 8 seeds,
with standard deviation shaded. All methods are given a timeout of 3 seconds per task. We can see that our method (green)
quickly learns to solve many more tasks than all the baselines, especially in the hard tasks of each environment.

PickPlace1D Kitchen Blocks Painting
Methods Easy Hard Easy Hard Easy Hard Easy Hard
Bilevel planning with NSRTs (Ours) 98.4 85.0 99.1 90.4 95.0 79.6 99.6 89.6
Bilevel planning with prior (B6) 95.9 46.4 71.9 32.6 89.9 53.4 84.5 0.1
Forward shooting with prior (B7) 71.1 0.0 0.0 1.5 62.9 8.6 5.4 0.0

Table 1: Percentage of 100 randomly generated test tasks solved after 500 episodes of training. Each number is a mean over 8
seeds; bold results are within one standard deviation of best (Appendix A.5).

can be answered affirmatively. Turning to Q3, we can study
whether bilevel planning is effective by comparing Ours, B1,
and B2. The gap between Ours and B1 shows the importance
of integrated bilevel planning. B1 will not be effective in
any environment where downward refinability does not hold
— only Blocks is downward refinable, which explains the
identical performance of Ours and B1 there. B2 fails in most
cases, confirming the usefulness of the learned abstractions.

Both B3 and B4 are generally ineffective. B3 performs
local search, which is much weaker than our directed A⇤.
B4 is model-free, forgoing planning in favor of learning
an action-value function directly; such strategies are known
to be more data-hungry (Moerland, Broekens, and Jonker
2020). B5 does not require any training, and is just included
to illustrate the performance of the behavior prior alone.

To evaluate Q4, we turn to an ablation study. Table 1 com-
pares our method with B6 and B7, both of which rejection
sample from the generic behavior prior ⇡0 rather than us-
ing our learned NSRT action samplers. First, comparing B6
and B7, bilevel planning is much better than shooting, which
speaks to the benefits of using the symbolic components of
the NSRTs to guide the continuous planning; this conclusion

was also supported by Figure 3. Second, comparing Ours
and B6, the learned action samplers help substantially ver-
sus rejection sampling from ⇡0. This is because the behavior
prior is highly generic, not targeted toward any specific set
of effects like NSRT action samplers are, so rejection sam-
pling can take many tries to pass the applicability classifier.

8 Conclusion, Limitations, and Future Work
We proposed NSRTs for long-horizon, goal-based, object-
oriented planning tasks. We showed that their neuro-
symbolic structure affords fast bilevel planning, and found
experimentally that they are data-efficient to learn and ef-
fective at generalization, outperforming several baselines.

Key limitations of the current work include: (1) that pred-
icates are given; (2) that a behavior prior is given for data
collection; (3) that environments are deterministic and fully
observable. To address (1), NSRTs could be combined with
work on learning predicates from high-dimensional inputs
(Asai 2019). (2) could be addressed using skill prior learning
techniques (Ajay et al. 2021). For (3), we hope to draw on
TAMP techniques for handling stochasticity and partial ob-
servability (Hadfield-Menell et al. 2015; Garrett et al. 2020).
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Lozano-Pérez, T. 2021. GLIB: Efficient exploration for re-
lational model-based reinforcement learning via goal-literal
babbling. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence.
Chua, K.; Calandra, R.; McAllister, R.; and Levine, S. 2018.
Deep Reinforcement Learning in a Handful of Trials using
Probabilistic Dynamics Models. In Advances in Neural In-
formation Processing Systems, volume 31.
Clevert, D.; Unterthiner, T.; and Hochreiter, S. 2016. Fast
and Accurate Deep Network Learning by Exponential Lin-
ear Units (ELUs). In 4th International Conference on Learn-
ing Representations.
Coumans, E.; and Bai, Y. 2016. PyBullet, a python mod-
ule for physics simulation for games, robotics and machine
learning. GitHub repository.
Dittadi, A.; Drachmann, F. K.; and Bolander, T. 2020. Plan-
ning From Pixels in Atari With Learned Symbolic Repre-
sentations. arXiv preprint arXiv:2012.09126.
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