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Abstract

Decision trees are widely used in many settings where interpretable models are
preferred or required. As confirmed by recent empirical studies, the interpretabil-
ity/explainability of a decision tree critically depends on some of its structural
parameters, like size and the average/maximum depth of its leaves. There is indeed
a vast literature on the design and analysis of decision tree algorithms that aim at
optimizing these parameters.
This paper contributes to this important line of research: we propose as a novel
criterion of measuring the interpretability of a decision tree, the sparsity of the set of
attributes that are (on average) required to explain the classification of the examples.
We give a tight characterization of the best possible guarantees achievable by a
decision tree built to optimize both our new measure (which we call the explanation
size) and the more classical measures of worst-case and average depth. In particular,
we give an algorithm that guarantees O(lnn)-approximation (hence optimal if
P 6= NP ) for the minimization of both the average/worst-case explanation size
and the average/worst-case depth. In addition to our theoretical contributions,
experiments with 20 real datasets show that our algorithm has accuracy competitive
with CART while producing trees that allow for much simpler explanations.

1 Introduction

Machine learning models and algorithms appear more and more frequently in systems that make
decisions with an impact in our lives. Thus, it is highly desirable that the output of these methods
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are interpretable so that we can use them more comfortably or, eventually, question its applicability
[13].1

Decision trees are used in many settings as a tool to provide explainability. However, their explainabil-
ity greatly depends on the depths of its leaves, as empirically demonstrated by [46]. In fact, based on
empirical data from a survey with 98 questions answered by 69 respondents, the authors conclude that
“question depth” (the depth of the deepest leaf that is required when answering questions about a tree)
turns out to be the most important parameter. Essentially, users prefer trees where the information
about the most common items are given at the top of the tree. Minimizing the average/worst-case
depth indeed has been a classic goal for decision tree algorithms (see the Related Work section
below).

However, another very important component for explainability is having decision rules that are sparse,
namely, that use as few different attributes as possible to classify an object or make a prediction. For
decision trees, this means that the path to any given leaf should test only a small number of different
attributes. Figure 1 shows two trees for the Sensorless dataset [7] with similar accuracy. While the
trees have the same size, the rightmost one gives much more concise classification rules. As a spoiler,
the left tree was constructed using CART and the right one using the algorithm we propose in this
paper. To exemplify their differences, let us consider the leaves that are marked in the figure with a
thick rectangle. Both are assigned the same class and cover the maximum number of examples in the
training set (approximately 11.500 example each). Despite this similar behaviour, the explanations
for their classifications are quite different (the Di’s denote the attributes):

CART: D11 ∈ [-0.11, 0.07] AND
D9> -0.01 AND
D10≤ 0.03

New algorithm: D11 ∈ [-0.01, 0.03]

Define the explanation size of a leaf as the number of distinct attributes tested on the path from the
root to this leaf. The above example shows that having trees whose leaves have small explanation
size yields significantly simpler (hence easier to interpret/explain) rules. However, to the best of our
knowledge there is no prior work considering decision trees optimized with respect to the explanation
size.

Figure 1: The left and right decision trees are built, respectively, by CART and the algorithm proposed
in this paper for the Sensorless dataset. The maximum depth was set to 4. Internal nodes associated
with the same attribute have the same color. The colors inside a leaf indicate the attributes that are
used to obtain its classification.

Our contributions. In this work we propose the explanation size as a novel measure to capture the
interpretability of a decision tree. In particular, we initiate a principled study of decision trees with
small explanation size by focusing on: (i) the trade-off that optimizing this criterion imposes on other
desirable metrics (e.g., average/worst-case depth); (ii) the design of efficient algorithms for building
such trees that guarantee good performance in practice.

Our first result is that it is possible to essentially obtain a best-of-both worlds in terms of average/worst-
case depth and explanation size: We show that there is always a binary decision tree that has the
smallest average explanation size possible but also has average depth not much larger than that of the

1We use the words interpretability and explainability in a broad sense; for a detailed discussion of the
different concepts related to the topic (see, for example, [41]).
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optimal tree for the latter metric (Item 2 of Theorem 1). The same result also holds when considering
worst-case explanation size and depth (Item 1 of Theorem 1). Remarkably, the latter (worst-case
bound) turns out to be tight. Theorem 2 shows it matches a necessary trade-off between optimizing
explanation size and depth, i.e., improving the bound on the depth in Theorem 1 can only be attained
at the cost of a logarithmic factor loss in the explanation size.

Despite having strong theoretical guarantees, the construction to obtain these trees is too wasteful
to be used in practice. Thus, our second contribution is an algorithm that still yields a tree that
provably approximates both optimal average/worst-case explanation size and depth (Theorem 3)
but has enough flexibility that it can be employed to obtain a good performance in practice. To
demonstrate the applicability of our proposal, we compare it against CART [11], a quite popular
method to build decision trees, on 20 real classification datasets. Our method leads to much more
(resp. more) interpretable trees in terms of explanation size (resp. average depth), while having a
performance similar to CART in terms of accuracy and speed.

2 Related work

Our work can be connected with an active line of research that proposes interpretable models for
machine learning [13], in particular more interpretable rule-based models (e.g. decision lists, sets,
and trees) [37, 30, 21, 9]. Our interpretability metric is closely related to rule sizes considered in
the rule learning literature, e.g., [31, 47]. In addition, we can relate our work with those from the
vast literature of methods with provable guarantees that are designed to build decision trees of “low
complexity” (e.g. depth of leaves, number of nodes, etc.) [23, 22, 18, 8, 24].

More interpretable rule-based models. There is a body of work that aims to understand what
makes a rule model more comprehensible via experiments with end users [4, 29, 46]. The paper [4]
compares the comprehensibility of classifiers that are learned by decision trees and rule-learning
algorithms, based on subjective comparisons of classifier pairs by 100 Computer Science students.
They conclude that decision trees are more comprehensible. In [29], based on experiments with
business students, it is concluded that decision tables are more interpretable than decision trees
and propositional “if-then” rules. One potential limitation of this study is that these students had
no experience with the representation formats, so it is not clear whether this conclusion can be
extended for more experienced users. The work of [46] reports a survey with 69 respondents that
was carried out to understand what makes a decision tree more interpretable. Among their findings is
that the depth of the leaves required by users during the experiments had one of the biggest and most
consistent impact on the usability of decision trees across multiple tasks (classify, explain, validate,
and discover).

There are some recent works that try to optimize interpretabilty metrics when building rule-based
models [37, 10, 56, 30, 40, 9]. We briefly discuss those that focus on decision trees. The paper [30]
contends that splits that have at least one of its parts/child nodes being class-homogeneous (roughly
this means that most examples have the same class) are important for interpretability, and propose a
splitting criterion that tries to balance this homogeneity and the depth of the leaves. In contrast to our
work, no provable guarantees are provided. The works [10, 56] employ Integer Linear Programming
to build trees of a given maximum depth, while [40] employs Dynamic Programming techniques to
develop an optimization framework that allows the construction of decision trees with few leaves that
optimize a variety of objective functions such as F-score and AUC. These methods, while interesting,
are much more complex to implement than ours and they do not run in polynomial time, which may
compromise their application on large datasets.

Decision trees with provable guarantees. There is a vast literature dedicated to the problem of
building decision trees with “low complexity”, where the complexity of a tree can be measured in
different ways, including worst-case/average leaf depth and number of nodes, among others [12]. It is
known that building a decision tree that minimizes the worst-case or average leaf depth, among those
that fit the training data, does not admit an o(log n) approximation unless P=NP [16, 36]. When the
goal is minimizing the number of nodes, the problem is even harder to approximate [3, 26]. Regarding
upper bounds, several algorithms with the optimal (within constants) O(log n)-approximation are
known for minimizing the worst-case and average depth [23, 22, 17, 18, 8, 24, 32, 39, 44]. What
distinguishes each method is the generality of its guarantee; for example, some consider scenarios
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that include tests with noisy outcomes [32], while others consider items/examples with non-uniform
weights and tests with non-uniform costs [18, 44].

We remark that the method we propose here also allows the use of non-uniform weights on the
examples, which can be used, for instance, to prioritize models that yield simpler explanations
for some classes of particular interest, by setting high weights for examples in these classes. The
key difference between our method and the existing ones is that ours is the only one that provides
theoretical guarantees on the explanation size.

3 Model

We describe the model used throughout for the theoretical analyses. For that, we adopt a terminology
similar to that employed by some closely related works [1, 18]. On an instance I , there is a set of
ordinal attributes A and a set of objects O, where each object o ∈ O is described by the value it takes
on each attribute a ∈ A; we denote this value by a(o). Each object o also has a class c(o) in some set
C. In order to classify an object o, we are allowed to use threshold tests of the form “Is a(o) < t?”
for some attribute a and threshold value t.

A (threshold) decision tree T is a rooted tree where each internal node ν is associated with a threshold
test “Is a(o) < t?” and the edges from a node to its children are associated to the two possible
outcomes “a(o) < t” and “a(o) ≥ t”. We also refer to this test by the attribute/threshold pair (a, t).
Each leaf ` of T is associated with a class in C. Given a decision tree T , we say that an object o
reaches a node ν of T if it agrees with all outcomes associated with the path from the root of T to ν.
For each o ∈ O, we use `(o) to denote the unique leaf reached by object o. Finally, we consider the
exact classification model, namely a decision tree must correctly classify all objects of the instance,
i.e., each object o ∈ O reaches some leaf associated to its correct class c(o).

We now formalize the measures of interpretability that were mentioned in the introduction.

Depth and explanation size of a tree. We start recalling the classical notions of worst-case and
average tree depth. Given a decision tree T , the depth of a leaf ` is the number of tests/internal-nodes
on the path from the root of T to `, and is denoted by depth(`). The worst-case depth of the tree T is
obtained by considering the maximum depth over its leaves, namely

depthwc(T ) := max
`∈leaf(T )

depth(`).

To measure the average depth of the tree, in addition to the datum above, as part of the input each
object o has a non-negative weight w(o) ∈ R+ indicating its likelihood/importance. Letting w(`)
be the sum of the weights of all objects that reach leaf `, the average depth of the tree T is then the
weighted sum of the depth of its leaves, namely

depthavg(T ) :=
∑

`∈leaf(T )

w(`) · depth(`).

We now consider the novel measures of quality/interpretability of a tree using the notion of explanation
size. The explanation size of a leaf `, denoted by expl(`), is the number of different attributes on the
tests on the path from the root of T to `. As an example, the explanation size of the leaf marked with
a thick rectangle on the left tree of Figure 1 is 3. The worst-case and average explanation size of a
tree T are then given as before by the largest and the weighted sum of the explanation sizes of its
leaves, respectively:

explwc(T ) = max
`∈leaf(T )

expl(`),

explavg(T ) =
∑

`∈leaf(T )

w(`) · expl(`).

Our goal is to obtain trees with as small worst-case/average depth and explanation size as possible.
We use depth∗wc = depth∗wc(I) to denote the smallest possible worst-case depth of a decision tree
that solves instance I , and define the optimal values expl∗wc, depth∗avg , and expl∗avg analogously.
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4 Tradeoff between depth and explanation size

Our goal is to obtain trees that simultaneously have both small worst-case/average depth and explana-
tion size. However, is this even possible? It is conceivable that in order to obtain trees with small
depth, one may be required to use several different attributes along the paths to effectively classify
the objects; but this would make the tree have a large explanation size. Conversely, in a tree with
small explanation size, the few attributes along a path may need to be used many times in order to
correctly classify the objects, leading to a large tree depth.

Perhaps surprisingly, we show that there are trees that simultaneously have optimal explanation size
and almost optimal depth.
Theorem 1. Given an instance of the classification problem, the following holds:

1. (Worst-case metrics) There exists a binary tree T for which simultaneously

• explwc(T ) = expl∗wc
• depthwc(T ) ≤ 2 depth∗wc + log n.

2. (Average metrics) There exists a binary tree T for which simultaneously

• explavg(T ) = expl∗avg
• depthavg(T ) ≤ 2 depth∗avg +W log n.,

where W is the sum of the weights of the object in the instance.

We remark that these additive bounds on the worst-case and average depth imply O(log n) multiplica-
tive approximations as well.
Observation 1. The bounds from Theorem 1 imply

depthwc(T ) ≤ 3 log n

log c
· depth∗wc

depthavg(T ) ≤ 3 log n · depth∗avg,

where c is the number of classes.

While the proof of Theorem 1 is deferred to Appendix B, we give here the main ideas behind it. We
will consider here only the worst-case metric (Item 1), since the proof is simpler and more transparent.

To show the existence of our desired tree we make use of multiway trees, i.e., a decision tree where
multiway tests are used rather than threshold tests. A multiway test associated with attribute a splits
the objects based on all possible values of this attribute. As an example, if an attribute a takes 5
distinct values for the objects in the instance and we use a at the root of a multiway tree, then the root
will have 5 children.

The starting point for the construction of the tree in Theorem 1 is the equivalence between optimal
binary trees and optimal multiway trees in terms of worst-case explanation size. While this is formally
proved in Lemmas 2 and 3, for an intuitive view of this equivalence first notice that there is a multiway
tree M∗ that is simultaneously optimal in terms of worst-case depth and worst-case explanation size,
since each attribute only needs to be used once in a path. Also, this optimal multiway tree M∗ has
worst-case explanation size (equivalently worst-case depth) at most that of the best binary tree, namely
depthwc(M

∗) = explwc(M
∗) ≤ expl∗wc, since intuitively multiway tests are more informative than

binary tests. Conversely, we can transform an optimal multiway tree M∗ into a binary decision tree T
by simulating each multiway test on an attribute a by using multiple threshold tests “Is a(o) < t” with
varying t (but same attribute a). Since explanation size only counts the number of distinct attributes
used along a path, the tree T so created has exactly the same explanation sizes as M∗, and hence
explwc(M

∗) = explwc(T ) ≥ expl∗wc. Thus, we have the equivalence explwc(M
∗) = expl∗wc.

To prove Theorem 1, we start with the optimal multiway tree M∗ and convert it into a binary tree,
as above. However, the conversion in the previous paragraph is not enough: while it preserves the
explanation size, it may greatly increase the depth of the leaves when using multiple threshold tests
to simulate a multiway test (possibly yielding depth� depth∗wc). The key idea is to use a much
more efficient simulation that is based on alphabetic codes, a classic notion from coding theory [28].
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The following result from [2, Chp. 2, p. 341], rephrased in the terminology of decision trees, gives a
sufficient condition for the existence of such codes with prescribed code-lengths di’s.
Lemma 1. Consider an instance of the classification problem with n objects but only 1 attribute.
Then for any positive integers d1, . . . , dn such that

∑n
j=1 2−di ≤ 1

2 , there exists a binary threshold
decision tree with n leaves at depths d1, . . . dn such that the i-th object reaches the leaf at depth di.

Then for each node ν of M∗ (corresponding to an attribute a, and with children ch1, ch2, . . .), we
consider all objects that reach a child chi as a “single object” (with the corresponding value in attribute
a) and applying the previous lemma we replace ν by a binary tree A where the leaf corresponding
to the objects in chi end up in a leaf at depth (in A) `i = dlog n(ν)

n(chi)
e + 1, where n(node) is the

number of objects that reach a given node in M∗. The final tree obtained, call it T , still has the
same explanation sizes as M∗, so explwc(T ) = expl∗wc. Moreover, in terms of worst-case depth, any
root-to-leaf path P in T has a corresponding path PM∗ = ν0, ν1, ν2, . . . in M∗, and the length of P
is at most

|PM∗ |−1∑
i=0

(⌈
log

n(νi)

n(νi+1)

⌉
+ 1

)
≤ log n+ 2 · [length of PM∗ ].

By looking at the longest such path we get
depthwc(T ) ≤ log n+ 2 depthwc(M

∗) ≤ log n+ 2 depth∗wc,

where the last inequality holds because of the optimality of M∗ with respect to worst-case depth.
This gives Item 1 of Theorem 1.

The average-case part of the theorem (Item 2) uses similar ideas, but in addition relies on entropy-
based calculations to argue about the average depth of the constructed tree.
Observation 2. Theorem 1 is an existential result and the construction outlined above cannot be
done in polytime, since it relies on the availability of an optimal multiway tree. However, one can
obtain in polytime a tree that is simultaneously an O(log n)-approximation for both worst-case
(respectively average) explanation size and depth by replacing the optimal multiway tree by one that
approximates within a factor of O(log n) the worst-case (resp. average) depth, which can be found
in polytime (see, e.g., [18] and references therein quoted).

Although guaranteeing asymptotically the desired optimal approximation, the construction leading to
such trees might be wasteful in practice as it involves the use of distinct alphabetic codes to turn each
multiway tests into a short sequences of threshold tests. Therefore, we present an alternative approach
in Section 5 that achieves the same approximation guarantee and has also very good performance in
practice.

4.1 Lower bound

Given these positive results, a natural question is whether it is possible to obtain a tree that is optimal
for both depth and explanation size. The next result answers this in the negative, and shows that in a
way the worst-case bound in Theorem 1 cannot be improved.
Theorem 2. Fix c and n ≥ cst · c for a sufficiently large constant cst. Then for every α ∈
[ 1
2 log c ,

1
2 ( log(n/2)

log c − 1)], there is a classification instance with n examples and c classes such that
every binary decision tree T for this instance has either

depthwc(T ) >
α

2
· depth∗wc

or
explwc(T ) >

1

4α
· log

(n
c

)
· expl∗wc.

Remark 1. To get a more concrete idea for this lower bound, consider setting α at its upper limit,
namely α ≈ 1

2
logn
log c . In this case we obtain that every tree with depthwc(T ) . 1

4
logn
log c depth∗wc

must have explwc(T ) ≥ Ω((1 − log c
logn ) log c) expl∗wc, which is Ω(log n) expl∗wc if we set c = logn

2 .
Comparing this against Theorem 1 and Observation 1 we see an interesting and subtle phenomenon:
while you can have a tree with depthwc(T ) ≤ 3 logn

log c depth∗wc and optimal explwc(T ), if you require
the approximation in the depth to be a constant factor smaller then you must lose a logarithmic factor
in the approximation in the explanation size.
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5 An efficient and practical algorithm

In this section we design an algorithm, which we name Short Explanaible Rules (SER-DT), that
always yields trees of approximately optimal average/worst-case explanation size and depth. Impor-
tantly, our method has enough flexibility that it can be tuned to trade-off accuracy and interpretability,
as shown in our computational experiments (Section 6).

Similar to other algorithms in the area, ours chooses in each step a split that creates subtrees with
“small impurity”. However, unlike most such algorithms, it is not completely greedy and allows for
the desired extra flexibility in the choices.

To describe the algorithm, consider a set of objects S ⊆ O and let S(a, i) (respectively S(a,≤ i)
and S(a,> i)) be the set of objects in S with value equal (respectively at most and larger than) i on
attribute a. Moreover, let w(S) :=

∑
o∈S w(o) denote its total weight. Let o, o′ be a pair of objects

in S such that c(o) 6= c(o′). We will refer to such a pair as a misclassified pair because if both o and
o′ reach the same leaf in the decision tree then one of them will be surely misclassified.

We use P (S) to denote the number of misclassified pairs in S. This quantity can be thought of as a
measure of the amount of work that is needed to reach a correct classification of all objects in S and
it has been previously used in [19, 22, 18]. To take into account also the importance/weight of set S
we define wpm(S) := P (S) · w(S) as the weighted pair-wise misclassification of S.

As a pre-processing step, before executing SER-DT, each weight w(o) smaller than w(O)/n3) is
replaced with w(O)/(wminn

3), where wmin is the smallest positive weight among the objects in
O. This idea (from [35]) is important to guarantee a logarithmic dependence on n instead of w(O).
After this preprocessing, SER-DT is called for the set of objects O.

The pseudo-code description of SER-DT is presented in Algorithm 1, First SER-DT tries to use any
balanced test that reduces the weighted pair-wise misclassification of the current set of objects (in
the worst case) by at least a 1

2 factor. In any path of the tree built by SER-DT the amount of these
balanced tests is at most logarithmic, so they can be easily handled in our analysis. If no balanced test
exists, then the algorithm finds an attribute a∗ and value t∗ such that in the ternary split S(a∗, < t),
S(a∗, t∗), S(a∗, > t∗), only the middle set S(a∗, t∗) has weighted pair-wise misclassification larger
than the desired 1

2wpm(S). This 3-way partition is obtained by using two binary splits. Then, the
algorithm recurses on each set. A critical issue is to show that in this case some progress is also
achieved with the problematic subproblem on S(a∗, t∗) where wpm(S(a∗, t∗)) > 1

2wpm(S). In fact,
the choice of the attribute a∗ is such that, the instance S(a∗, t∗) has the minimum weighted pair-wise
misclassification among all the attributes and other possible tripartitions. As a result, we can employ
a lower bound on the optimum ( Lemma 8 in appendix) that allows us to absorb the cost of the subtree
for the subproblem S(a∗, t) in the logarithmic guarantee.

Algorithm 1 SER-DT (S : set of objects)
1: if all objects in S are assigned to the same class, create a leaf assigned to such class and return
2: if there is a test τ that splits S into SL and SR such that max{wpm(SL), wpm(SR)} ≤ 1

2
wpm(S) then

3: Use any such test, say τ = (a, t), as the root of the decision tree
4: Recurse on the children S(a,≤ t) and S(a,> t)
5: else
6: Let a∗ be an attribute in argmin

a
{max

i
wpm(S(a, i))}

7: Let t∗ be the smallest value of the attribute a∗ such that the “left child” S(a∗,≤ t∗) satisfies

wpm(S(a∗,≤ t∗)) ≥ 1

2
· wpm(S).

8: Use two binary tests to simulate the 3-way split S(a∗, < t∗), S(a∗, t∗), S(a∗, > t∗). More precisely, at
the root use a test on attribute a∗ that splits S into the sets S(a∗, < t∗) and S(a∗,≥ t∗). Then, apply a
test on the right child of the root, currently associated with S(a∗,≥ t∗), creating two new children with
objects S(a∗, t∗) and S(a∗, > t∗)

9: Recurse on each of the three leaf nodes in the current tree
10: end if

The following is the promised guarantee for the average/worst-case depth and explanation size of the
trees produced by the algorithm.
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Theorem 3. Given an instance I , the algorithm SER-DT produces a tree T that satisfies

1. (Worst-case metrics)

• depthavg(T ) ≤ O (log n) depth∗avg,

• explavg(T ) ≤ O (log n) expl∗avg.

2. (Average metrics)

• depthwc(T ) ≤ O (log n) depth∗wc,
• explwc(T ) ≤ O (log n) expl∗wc.

We remark that, in the light of the inapproximability results from [36, 16]2 this theorem says that
SER-DT (with the preprocessing step) guarantees the best possible approximation obtainable by a
polynomial algorithm with respect to both the measures under consideration: worst/average depth
and worst/average explanation size.

6 Experiments

In this section, we report the experiments that were carried out to evaluate how our proposed algorithm
SER-DT performs in practice.

Figure 2: The left (resp. right) image shows the average accuracy (resp. explavg) over the 20 datasets
as a function of FactorExpl.

We considered the 20 datasets that appear on Column 1 of Table 1 (see Appendix E for their main
characteristics). For all of them, 70% of the examples were used for training and the remaining 30%
for testing. Moreover, all the examples (objects) were considered equally important (weight=1/size of
training set). During a preprocessing step we converted all categorical attributes into binary attributes
via one-hot-encoding. See also Appendix E for more details on the experimental setup.

Recall that in (Line 2) of algorithm SER-DT any test that splits the current set of objects into subsets
of small enough wpm could be used. We use this flexibility to select a test among these that should
further help in obtaining small explanation sizes and high accuracy in practice. To explain our
selection, recall the Gini impurity measure employed by CART. For a set of examples (objects) S,
each of them labeled with a class in {1, . . . , c}, the Gini impurity is given by

Gini(S) = 1−
c∑
i=1

(
|Si|
|S|

)2

,

where Si is the set of examples of class i. Moreover, the weighted Gini impurity Gini(τ, ν) induced
by a test τ that divides the set of examples S that reach a node ν into SL and SR is given by

Gini(τ, ν) =
|SL|
|S|

Gini(SL) +
|SR|
|S|

Gini(SR).

Let FactorExpl be a hyper-parameter in the range [0, 1]. Because we are interested in trees that
induce accurate classifiers with short explanation rules, to expand a given leaf ν, in Line 2 of the
algorithm we select, among the permissible tests 3 the test τ that minimizes

AdjustedGiniExpl(τ, ν) := I(τ, ν)× Gini(τ, ν),

2The hardness of approximation holds also for instances with only binary attributes. In this case explanation
size coincides with depth and every test can be considered a threshold test.

3A permissible τ must satisfy Gini(τ, ν) < Gini (Examples that reach ν), in addition to respect the
condition of Line 2
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where I(τ, ν) = FactorExpl if the attribute associated with test τ has already appeared in the path
from the root to ν, and I(τ, ν) = 1 otherwise. Since FactorExpl is used to favour attributes that
have already appeared in the path, when FactorExpl is set to a low value we expect to obtain trees
with short explanations but also with lower accuracy, as the effect of the Gini impurity is reduced.

In terms of stopping rules, we do not expand a leaf ν if it is either located at depth 6 or if there is
no test τ for which Gini(τ, ν) is smaller than Gini(Examples thaat reach ν). As a post-processing
step, whenever two sibling leaves are assigned the same class, we delete them both and leave their
parent as a leaf.

In our first experiment we study how the accuracy and the interpretability measures of the trees
produced by our algorithm behave when FactorExpl is varied. Figure 2 shows the average accuracy
(left image) and the average explanation size explavg (right image) as a function of FactorExpl.
More precisely, for the left image, the y-value associated with a point x corresponds to the average
accuracy on the testing set, calculated over the 20 datasets, when our algorithm is executed with
FactorExpl = x. For the right image the same logic holds. As expected, the larger the FactorExpl
the larger the accuracy and the explavg. The interesting finding, however, is that the accuracy
increases relatively slow, for FactorExpl is close to 1, compared with the growth in explavg (see the
Table 5 in the appendix for experiments with FactorExpl in the range [0.95,0.99]). This suggests
that it is possible to obtain trees that are significantly more interpretable without sacrificing the
accuracy.

Table 1: Test Accuracy, explavg and explwc for FactorExpl = 0.97. Each entry is the average of
10 runs using different seeds to select the examples in the training and testing set. Boldface values
indicate a difference of more than 1% (columns 2,3) or a gain of at least 25% in favour of SER-DT
(columns 4,5,6 and 7).

Dataset Test Accuracy explavg explwc

SER-DT CART SER-DT CART SER-DT CART

anuran 94,8% 94,7% 4,78 5,24 6,0 6,0
audit risk 99,9% 99,9% 1,00 1,00 1,0 1,0

avila 61,5% 63,2% 3,06 4,22 4,9 5,4
banknote 97,6% 98,1% 2,44 2,55 3,8 3,4

bankruptcy polish 96,6% 96,9% 2,56 4,63 5,6 5,9
cardiotocography 89,5% 89,8% 4,30 5,30 5,9 6,0

collins 13,2% 15,6% 2,13 4,76 4,4 5,9
default credit card 82,0% 81,9% 1,45 4,29 4,5 6,0

dry bean 90,1% 89,8% 3,32 4,45 5,1 6,0
eeg eye state 74,1% 73,6% 3,69 4,29 5,9 6,0

htru2 97,7% 97,7% 1,20 2,03 4,3 4,9
iris 94,2% 93,6% 1,75 1,76 3,1 3,4

letter recognition 44,9% 47,9% 3,34 5,50 5,5 6,0
mice 99,9% 99,9% 3,05 3,05 3,6 3,6

obs network 91,7% 89,5% 3,48 4,26 5,3 5,9
occupancy room 99,4% 99,3% 4,18 4,54 5,3 5,7

online shoppers intention 89,3% 89,8% 3,30 4,00 5,1 6,0
pen digits 88,6% 86,9% 4,76 5,31 5,8 6,0

poker hand 52,9% 55,0% 1,80 4,30 3,8 5,1
sensorless 87,4% 80,1% 2,94 4,03 4,9 5,5
Average 82,3% 82,2% 2,93 3,97 4,69 5,19

In our second experiment we compare the results of our method, using FactorExpl = 0.97 with
CART [11]. The value 0.97 is motivated by the above observation. To expand a leaf ν, recall that
CART selects the test τ for which Gini(τ, ν) is minimum and it only expands ν if there is a test τ for
which Gini(τ, ν) < Gini(Examples that reach ν). To provide a fair comparison with our algorithm
we set the maximum depth to 6 and applied the same aforementioned post-processing. Table 1 shows
the accuracy on the testing set as well as the average explanation size explavg and the worst-case
explanation size explwc for all datasets. Each entry in this table is the average of ten runs, where in
each of them a different seed is used to split a dataset into training and testing set.

We notice that the accuracy of our method is very close to that obtained by CART, while the gain in
terms of the interpretability metrics is significant. On 7 datasets (bold-faced on columns 2 and 3) we
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observe a difference larger than 1% on the accuracies; on 3 of them our algorithm outperforms CART
while on the remaining 4, CART is better. In terms of the average explanation size, our algorithm is at
least as good as CART for all datasets, and for 9 of them (bold-faced on columns 4 and 5) it improves
the explavg by at least 25%. For the explwc the gain is also clear. For all datasets, but Banknote,
our algorithm is at least as good as CART. Moreover, for 3 of them (bold-faced on columns 6 and 7),
it provides a gain of at least 25%. Boxplots for the experiments in Table 1 are provided in Section
E.5 of the appendix.

In Appendix E we compare CART and SER-DT in terms of depthavg and depthwc. For depthavg,
SER-DT performs better than CART while for depthwc the results are similar. The result for depthwc
is not surprising since we set 6 as the maximum depth in our experiments. Regarding running time,
the algorithms present similar behaviour, as it can be verified in Appendix E. This is somehow
expected since both consist of mostly a greedy split selection at each node.

In the appendix we also present additional experiments and analyses. In particular, in Section E.8,
we evaluate the impact of applying post-pruning to both CART and SER-DT. Moreover, in Section
E.7, we show comparisons of SER-DT with one of the state of the art decision tree methods that
optimize the average depth, namely the EC2 algorithm from [22]: the experiments suggest that
SER-DT performs significantly better than EC2 on all metrics.

7 Conclusion

In this work, we proposed the explanation size as a new metric to capture intrepretability of decision
trees and initiated a principled study of it. We presented upper and lower bound on the trade-off of
simultaneously optimizing this new metric and metrics related to depths of the leaves.

We also proposed a practical algorithm that provably approximates the average explanation size and
the average depth and showed, via experiments over 20 datasets, that it is competitive with the widely
used CART algorithms in terms of accuracy while being much better in terms of producing trees with
short explanation size.

On the basis of both the theoretical analysis (approximation guarantee) and the performance demon-
strated in the empirical studies, we believe that our algorithm (or some variation based on its ideas)
can be used to generate accurate and highly interpretable trees for practical applications.
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Appendix

A Multiway trees and optimal explanation sizes

In this section we prove a characterization of optimal explanation sizes via multiway trees. First
recall that the only difference between these and threshold decision trees is that in multiway trees
each test corresponds to an attribute a, and the answer to the test is the value a(o) that the desired
object o has on attribute a; each internal node ν is associated with such a test τν , and the edges from a
node to its children are associated to the possible outcomes of τν . The worst-case/average depth and
explanation size of a multiway tree are defined exactly as for threshold decision trees, see Section 3.

We start by proving this equivalence for the worst-case metrics.
Lemma 2 (Multiway trees and expl. size, worst-case). Consider an instance of the classification
problem, and let M∗ be a multiway tree of minimal worst-case depth for this instance. Then

expl∗wc = explwc(M
∗) = depthwc(M

∗).

Proof. Some quick notation: Given a multiway tree M and one of its nodes ν, let aν be the attribute
that is tested on this node. Also let Mν,i be the subtree of M rooted at the child of ν reached by
objects whose value for attribute aν is i. We use int(M) to denote the set of internal nodes of a tree
M .

We first show that expl∗wc ≤ explwc(M
∗) ≤ depthwc(M

∗). For that, we convertM∗ into a threshold
decision tree that has explanation size at most depthwc(M

∗) by just simulating the multiway tests
using multiple threshold tests in the natural way (see Fig.3 for a pictorial example of the following
construction). More formally, let Taν be binary search tree over the values of attribute aν , that is, it
is a threshold decision tree where there is a one-to-one correspondence between its leaves and the
values of the attribute aν (i.e. every object o reaches the unique leaf of Taν corresponding to the
value aν(o)). Then let T be the threshold decision tree obtained from M∗ by (starting from the root
and proceeding downwards) replacing each internal node ν of M∗ with Taν and identifying the leaf
of Taν corresponding to value aν(·) = i with the root of M∗ν,i.

Consider a leaf `M∗ in M∗. Notice that the path PM∗ from the root of M∗ to `M∗ induces a path PT
in the tree T that goes from its root to one of its leaves `T (i.e., whenever the path PM∗ goes from
a node ν to a subtree M∗ν,i, the path PT goes from the root of the binary search tree Taν to its leaf
corresponding to value aν(·) = i). We can see that the set of attributes tested in the paths PM∗ and
PT is exactly the same, and thus the leaves `M∗ and `T have the same explanation size. Looking at
the largest explanation size of the leaves in these trees, we get that explwc(T ) = explwc(M

∗). This
gives

expl∗wc ≤ explwc(T ) = explwc(M
∗) ≤ depthwc(M

∗) (1)
as desired.

Now we show that depthwc(M
∗) ≤ expl∗wc, which together with (1) above gives the desired

equalities in the lemma. Let T be a threshold decision tree achieving the optimal explanation
size expl∗wc. We will show how to build a multiway decision tree M such that depthwc(M) =
explwc(T ) = expl∗wc (refer to Fig. 4 for an example of the construction).

We first recursively turn each test of T into a multiway test on the same attribute in the natural way.
More precisely, this can be done in a recursive way: If T is a leaf, then define the multiway tree
M̃ = T. Otherwise, let (a, t) be the test at root of T , and let T< and T≥ be the subtrees of T rooted
at the children of the root and associated with the two results of the root-test, i.e., T< (resp. T≥) is the
subtree reached by the objects o such that a(o) < t (resp. a(o) ≥ t). Then M̃ is obtained by putting
the multiway test on attribute a on its root r, and for each value i of the attribute a, if i < t (resp.
i ≥ t) the i-th child of the root r is the subtree obtained by recursively applying this construction to
T< (resp. T≥).

Since this construction simply converts each threshold test (a, t) in T into a multiway test on a, it is
easy to see that

explwc(M̃) = explwc(T ) = expl∗wc. (2)
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However, the multiway tree M̃ may test the same attribute multiple times on a root-to-leaf path,
because T may do so, and so we can have depthwc(M̃) > explwc(M̃). But in M̃ these multiple
tests are redundant, because a single multiway test reveals complete information about the attribute.

So we now remove these redundancies to obtain a multiway treeM with depthwc(M) = explwc(M̃),
as follows: If there is a node ν ∈ int(M̃) and a descendant ν′ in one of the child-subtree Tν,i that tests
the same attribute as ν (i.e., aν′ = aν), we replace the subtree Tν′ with the subtree Tν′,i. Notice that
since ν′ ∈ Tν,i, any object reaching node ν′ has a(·) = i, and thus would move next to the subtree
Tν′,i; our replacement operation just bypassed the node ν′, and so we can see that the multiway tree
obtained remains equivalent to M̃ for the classification problem. Repeat this replacement operation
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until no root-to-leaf path contains two nodes that test on the same attribute. Let M be the multiway
tree obtained at the end.

Since no attribute is repeatedly tested in such paths, for every leaf ` ∈ leaf(M) we have depth(`) =
expl(`), and hence

depthwc(M) = explwc(M) ≤ explwc(M̃),

the inequality following because M was obtained by deleting nodes of M̃ . Together with inequality
(2) and the fact that M∗ is depth-optimal, this gives

depthwc(M
∗) ≤ depthwc(M) ≤ expl∗wc,

as desired. This concludes the proof of the lemma.

The same argument also shows the following analogous result about the average depth and explanation
size.
Lemma 3 (Multiway trees and expl. size, average). Consider an instance of the classification
problem, and let M∗ be a multiway tree of minimal average depth for this instance. Then

expl∗avg = explavg(M
∗) = depthavg(M

∗).

B Proof of Theorem 1

We prove the guarantees for the worst-case and average metrics (Items 1 and 2 of the theorem)
separately. As before, given a tree T and one of its nodes ν, we use Tν to denote the subtree rooted at
ν. We also use n(ν) to denote the number of objects of the instance that reach node ν (and hence
some leaf in the subtree rooted at ν); sometimes we also use a subscript nT (ν) to make it clearer
which tree we are talking about in order to avoid any confusion.

B.1 Proof of Item 1: Worst-case metrics

Recall that in this item we want a threshold tree T satisfying:

explwc(T ) = expl∗wc (3)
depthwc(T ) ≤ 2 depth∗wc + log n. (4)

Using Lemma 2, let M∗ be an optimal multiway tree with respect to both worst-case explanation size
and depth, and hence satisfying depthwc(M

∗) = explwc(M
∗) = expl∗wc.We show how to transform

M∗ into a binary tree T with explwc(T ) = explwc(M
∗) and depthwc(T ) ≤ 2 depthwc(M

∗)+log n
(which then will give (3)-(4)). Consider an internal node ν of M∗, which tests an attribute a and has
as children ch1, ch2, . . .. Let di := dlog n(ν)

n(chi)
e+ 1 and notice that∑

i

2
−(dlog n(ν)

n(chi)
e+1) ≤ 1

2

∑
i

2
− log

n(ν)
n(chi) =

1

2
, (5)

the last equation following because
∑
i n(chi) = n(ν). Then applying the result about the existence

of alphabetic codes (Lemma 1) with the attribute a and considering all objects that reach the subtree
M∗chi as a single object, we can get a threshold decision tree A with one leaf for each chi such that:
1) The leaf corresponding to chi is at height (in A) di, and; 2) Every object that in M∗ reaches node
chi, in A reaches the leaf corresponding to chi. It will be convenient to call A a code tree. Then, we
proceed like in the proof of the first part of Lemma 2 (see also Fig. 3): replace the node ν of M∗
by the tree A (with the root of the subtree M∗chi identified with the leaf of A corresponding to chi).
Perform this replacement for every node of M∗, and let T be the resulting threshold tree.

We refer to the nodes of T that are the roots of the code trees A used in the process as the original
nodes. The motivation for this terminology is that these nodes correspond to the nodes in the original
tree M∗. Observe that if v is an original node in T and u its corresponding node in M∗, then
nT (v) = nM∗(u).

We first claim that explwc(T ) = explwc(M
∗) (and hence, by definition of M∗, also equals depth∗wc).

Let `T be a leaf of T and `M∗ be the corresponding leaf of M∗. By construction, the set of attributes
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tested on the path reaching `T is the same as the set of attributes tested on the path reaching `M∗ ,
since the tests associated to the nodes ν on the latter path have been expanded in T to a path in
the code tree used to replace ν and such a code tree uses only tests on the same attribute tested at
ν. Therefore, we have that the explanation size of `T is the same as that of `M∗ . Considering the
leaves with largest explanation sizes in these trees, we get explwc(T ) = explwc(M

∗) = expl∗wc as
we wanted. This gives the desired equality (3).

Now we claim that depthwc(T ) ≤ 2 depthwc(M
∗) + log n. For that, consider any root-to-leaf path

P in T , and let ν1, . . . , νp be the original nodes in this path. Since both the root and leaves of T are
original nodes, we see that ν1 and νp are the first and last nodes of the path P , respectively. Letting
d(u, v) denote the distance (in number of edges) between two nodes u, v in T , we see that the length
(number of internal nodes, or equivalently, edges) of P can be written as

|P | =
p−1∑
i=1

d(νi, νi+1). (6)

Moreover, letting A be the alphabetic code tree used in the construction of T that is rooted at νi, we
have that the subpath between the original nodes νi and νi+1 coincides with the path of A between
its root and its leaf corresponding to νi+1. Then, by the construction of A we have

d(νi, νi+1) ≤
⌈

log
n(νi)

n(νi+1)

⌉
+ 1.

Replacing this bound in (6) gives

|P | ≤
p−1∑
i=1

(⌈
log

n(νi)

n(νi+1)

⌉
+ 1

)
(7)

≤ 2(p− 1) +

p−1∑
i=1

log
n(νi)

n(νi+1)
≤ 2(p− 1) + log n

≤ 2 depthwc(M
∗) + log n, (8)

where the last inequality follows because all of the original nodes ν1, . . . , νp−1 are (or correspond to)
internal nodes in a root-to-leaf path in M∗, and so depthwc(M

∗) ≥ p− 1. Since the bound (8) holds
for every root-to-leaf path P of T , we obtain that depthwc(T ) ≤ 2 depthwc(M

∗) + log n, proving
the claim. Since by definition of M∗ we have depthwc(M

∗) = expl∗wc, which is at most depth∗wc,
this proves the desired inequality (4).

This concludes the proof of Item 1 of Theorem 1.

B.2 Proof of Item 2: Average metrics

We now prove Item 2 of Theorem 1, regarding the average explanation size and depth, instead of the
worst-case ones, namely we want a threshold tree T satisfying:

explavg(T ) = expl∗avg (9)

depthavg(T ) ≤ 2 depth∗avg +W log n, (10)

where W =
∑
o w(o) denote the total weight of all objects. The proof is almost identical as that

of the previous section, the only difference is that the weights of the items will now be taken into
account when defining the di’s in the code trees, and we use entropy-based calculations to argue
about the average depth of the constructed tree.

Given a tree T and one of its nodes ν, let w(ν) denotes the total weights of the objects reaching node
ν (we add the subscript wT (ν) when we want to emphasize which tree we are referring to).

Let M∗ be the multiway tree given by Lemma 3, which satisfies the guarantees depthavg(M
∗) =

explavg(M
∗) = expl∗avg for the average metrics. We first note that one can compute the average cost

of a tree by summing up the weights of its internal nodes, for example

depthavg(M
∗) =

∑
ν∈int(M∗)

w(ν), (11)
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where again we use int(·) to denote the set of internal nodes of a tree.

We now show how to transform M∗ into a threshold decision tree T of small average explanation size
and depth. For an internal node ν of M∗, which tests an attribute aν and has as children the nodes
ν1, ν2, . . ., let pν be the probability distribution

(
w(ν1)
w(ν) ,

w(ν2)
w(ν) , . . . ,

)
induced by the partition at ν.

Then consider the code tree Tν given by Lemma 1 with the attribute a and considering all objects that
reach the subtree M∗νi as a single object, but such that the leaf in Tν corresponding to νi is now at
depth (in Tν) di := dlog w(ν)

w(νi)
e+ 1 (as in (5), we can see that such di’s satisfy the requirement of the

lemma). Then replace the node ν of M∗ by the tree Tν (with the root of the subtree M∗νi identified
with the leaf of Tν corresponding to νi). Perform this replacement for every node of M∗, and let T
be the resulting threshold tree.

Again we refer to the nodes of T that are the roots of the code trees used in the process as the
original nodes, and observe that if v is an original node in T and u its corresponding node in M∗,
then wT (v) = wM∗(u).

Just as before, the set of attributes tested on the path in T from its root to one of its leaves `T is the
same as the set of attributes tested on the path in M∗ from its root to the leaf `M∗ that corresponds to
`T . This implies that explavg(T ) = explavg(M

∗), which by definition of M∗ also equals expl∗avg.
This proves inequality (9).

To prove inequality (10), let leaf(M∗) = {`1, . . . , `m} be the set of leaves of the multiway tree
M∗. Let pL := (w(`1)

W , . . . , w(`m)
W ) be the probability distribution induced on these leaves. Also,

let p(ν) := w(ν)
W be the sum of the probabilities of the leaves in the subtree rooted at ν. Given

a distribution p, we use H(p) :=
∑
i pi log 1

pi
to denote its Shannon entropy. The following fact

records a well-known property that allows to compute the Shannon entropy of the leaf distribution as
the weighted average of the entropy of the node distributions (see, e.g., [25, Chapter 3]).

Fact 1. It holds that H(pL) =
∑

ν∈int(M∗)

p(ν) · H(pν).

Now, we can compute the average depth of the tree T as follows: Since in T, each node ν of M∗ is
replaced by the code tree Tν , the corresponding contribution to the average depth of T is given by the
average depth of Tν , namely

depthavg(Tν) =
∑
i

w(νi) · di

=
∑
i

w(νi)

(⌈
log

w(ν)

w(νi)

⌉
+ 1

)
≤
∑
i

w(νi) log
w(ν)

w(νi)
+ 2w(ν). (12)

We can use this in the computation of the average depth of the tree T , decomposing it into the
contributions of the code trees that have been used to replace the nodes of M∗:

depthavg(T ) =
∑

ν∈int(T )

w(ν) =
∑

ν∈int(M∗)

∑
u∈int(Tν)

w(u) (13)

=
∑

ν∈int(M∗)

depthavg(Tν)

≤
∑

ν∈int(M∗)

w(ν)
∑
i

w(νi)

w(ν)
log

w(ν)

w(νi)

+ 2
∑

ν∈int(M∗)

w(ν) (14)

= W
∑

ν∈int(M∗)

p(ν) · H(pν) + 2 depthavg(M
∗) (15)

= W · H(pL) + 2 depthavg(M
∗) (16)

≤ W log |leaf(M∗)|+ 2 depthavg(M
∗) (17)

≤ W log n+ 2 depth∗avg,
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where the first line follows from (11); inequality (14) follows from using (12) to upper bound
depthavg(Tν) and then multiplying and dividing the first summation by w(ν); equation (15) follows
again from (11); (16) follows from Fact 1; finally, inequality (17) follows from the standard entropy
rank bound (i.e., the entropy of a distribution over m objects is at most logm). This proves inequality
(10), and concludes the proof of Item 2 of Theorem 1.

C Proof of Theorem 2

Construction of the hard instance. We will construct a deterministic instance for the lower bound
as follows. There are n objects, and their classes are from the set C = {0, 1, . . . , c − 1} and
“alternate”: object 1 has class 0, object 2 class 1, object 3 class 2, . . . , object c class c− 1; then this
repeats, object c+ 1 has class 0, etc. We consider throughout that n is at least cst · c for a sufficiently
large constant cst.

The first attribute in the instance, named A, has n values and gives the identity of the objects (i.e.,
object i has A-value equal to i).

The definition of the other attributes is more intricate and we first give their intuition and motivation.
First, there is a parameter t ∈ ( 2c

n ,
1
2 ) (these bounds are important so that we can ignore the floor in

btnc c). There are several binary attributes each of which discriminates a specific (1− t)-fraction of
the objects of one of the classes 6= 0 from all the other objects (a more detailed description is given
below). The idea is that the top levels of a decision tree of optimal height (which will only use tests
on binary attributes) will have the following effect:

1. All of objects of class 0 will traverse the leftmost path
2. Only tnc of the objects of each class 6= 0 will follow this left path
3. All the other (1− t)nc objects of each class 6= 0 are classified correctly by the top levels of

the tree.

Thus, the top of the tree “peels off” (namely, it completes the classification of) a (1− t) fraction of
the objects of each class 6= 0, and what is left to be “solved” is on the leftmost path. Then, starting
from the last node on the leftmost path of these top levels the tree again will use a similar subtree to
peel off another (1− t) fraction of the objects of each class 6= 0, etc. The key to the lower bound is
that for any decision tree not employing all these tests on the distinct binary attributes (in the attempt
of reducing the number of the tests on binary attributes, and equivalently, the explanation size), the
objects (of class 6= 0) that such not-performed tests would have correctly classified, will end up on
the leftmost path together with the object of class 0. But then tests on the A attribute will need to be
used to separate these objects and classify them correctly. Crucially, the objects separated by one of
these binary attribute tests will be “uniformly spread out” over [n], so they will “alternate” with the
objects of class 0; this means that you need a lot of threshold tests on the attribute A to separate these
remaining 0-class and non-0-class objects, paying a lot in terms height.

To make this more precise, let us define a round of a decision tree as the sequence of levels that are
meant to achieve the result described in the three-item list above. The sets of objects Si ⊆ [n] that
will be peeled off at round i need to have the following “spread out” property guaranteed by the next
lemma, whose proof is deferred to Appendix C.1).

Lemma 4. There are sets of objects S1, . . . , Sw (with w = log(n/c)
log(1/t) ) such that:

• These sets partition the set of elements of class 6= 0

• (Spread out) For each i, class χ 6= 0, and interval U ∈ [n], the set Si ∩ U has at least

1

2

|U |
n
ti−1(1− t)n

c
− 13 log(n/c)

objects of class χ.

Given these “peeling-off” sets, we can finally conclude the definition of the remaining attributes in the
instance: in addition to attribute A, there is a binary attribute (i, j) for each i ∈ [log(n/c)/ log(1/t)]
and j ∈ [log c] such that the test (i, j)

21



• sends to the right all the objects in Si whose class have j-th bit equal to 1
• sends to the left all other objects (in particular all those outside of Si).

This concludes the description of the instance.

Analysis. Given an integer x, we use bits(x) to denote the binary expansion of x (as a vector).
Given a (partial) decision tree, when all objects that reach a given leaf have the same class we say
that the tree classifies them correctly (since this can be naturally obtained by assigning their class to
the leaf).

We start by showing that this instance has a tree of “short” height.

Lemma 5. depth∗wc ≤
log(n/c) log c

log(1/t) .

Proof. We construct such a short tree that satisfies the bound, hence a fortiori it must also hold for
the optimum. Again, we use the term round to refer to a group of consecutive levels, where for each
level there is a specific test which is performed in all nodes of that level. (Round 1) Build a complete
binary tree of depth log c, where at each node on level j the test (1, j) is performed. We claim that
these tests peel off the set S1, and classify all of these objects correctly. To see this, observe that
these tests give a tree with c leaves, each associated with a vector y ∈ {0, 1}log c corresponding to
the outcome of these tests (where 0 means “go left” and 1 means “go right”). The main observation
is that every object of S1 of class χ ∈ {1, . . . , (log c)− 1} will traverse to the leaf corresponding to
vector y = bits(χ). In addition, all objects outside of S1 will end up in the left-most leaf (i.e. the one
with vector y = (0, . . . , 0). With this we can conclude that:

1. All leaves except the left-most one have only objects with the same class (so we do not need
to continue splitting these leaves). These leaves contain all elements in S1 (recall that S1

does not have any element of class 0).

2. The leftmost leaf has exactly all elements outside of S1.

(Round 2) We need to further split this leftmost leaf. For that, build a new complete binary tree of
depth log c, where at each node on level j test (2, j) is performed. Again by the same argument we
get another tree with c leaves, where all objects in S2 will be peeled out and only the elements in
[n]− (S1 ∪ S2) are remaining on the leftmost leaf.

Keep repeating these rounds—each round i = 1, . . . , w, corresponding to executing tests
{(i, j)}j=1,...,log c—until you finish peeling off all sets Si. At this point the leftmost path has
only objects [n]− (S1∪S2∪ . . .∪Sw), which are all objects of class 0, so they are correctly classified
by this leaf. Also, by construction all the remaining objects S1 ∪ S2 ∪ . . . ∪ Sw are also classified
correctly in the rest of the tree. So we have obtained a valid tree of total heightw ·log c = log(n/c) log c

log(1/t) ,
as desired.

Now we give a lower bound on the depth of any tree that solves the problem.
Lemma 6. Consider a tree that solves the instance described above. Then there is a root-to-leaf path
P such that

KA +KB
log(1/t)

log c
≥ 1

2
log

n

c
. (18)

where KA and KB are the number of A tests and binary tests (respectively) done on this path.

Proof. We construct the path P as follows: Start at the root of the tree; if the current node ν
corresponds to a test on a binary attribute, go to the left; if it corresponds to a threshold test on
the attribute A, go to the side where most examples would go if we ignore the tests on the binary
attributes performed before node ν (but we do take into account the previous tests on attribute A).

We claim that unless (18) holds, at least one object of class 0 and one object of another class 6= 0
would reach the end of the path P , contradicting that the tree correctly classifies each object.
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To see this claim, first consider executing all the binary tests of P and let us see which objects survive
(i.e., the result of each test on P make them continue to the next node on P ). First, all objects of class
0 survive these tests (since P only turns left on binary tests). Moreover, there are log(n/c) log c

log 1/t binary
tests (i, j) and P is only doing KB of them. Thus,

log(n/c) log c

log(1/t)
−KB

tests (i, j) are not done. Since there are log c of these j’s, an averaging argument shows that there is
one j where at least

1

log c

[
log(n/c) log c

log(1/t)
−KB

]
=

log(n/c)

log(1/t)
− KB

log c

tests {(i, j)}i are not done; let us denote it with j∗. Since the i’s range from 1 to log(n/c)
log(1/t) , this implies

that there is one test (i, j∗) that is not performed for some i ≤ KB
log c . Denote this test by (i∗, j∗).

Look at the objects in the set Si∗ with class χ where bits(χ) = (0, . . . , 0, 1, 0, . . . , 0) (with 1 in the
j∗-th position). Call this set Sχi∗ . Since all binary tests other than (i∗, j∗) send the objects Sχi∗ to
the left, again we see that all of these objects survive the binary tests of P . In summary: if we just
perform the binary tests of P , all nc objects of class 0 survive (call them S0) as well as all objects of
the set Sχi∗ .

Now we execute all the threshold tests on the attribute A that are performed along the path P . The
result of these tests is to select/isolate the objects in some interval U of [n]. That is, the objects
(S0 ∪ Sχi∗) ∩ U survive all the tests in the path P .

By construction of P , each one of such tests on the attribute A at most halves the size of the interval
of objects selected by the previous tests on A, hence U has size at least n

2KA
. Thus, since one every k

object has class 0, it is immediate to see that

|S0 ∩ U | ≥ |U |
k
− 2 ≥ 1

2KA
n

c
− 2, (19)

that is, at least these many objects of class 0 survive. Moreover, by Lemma 4 the number of surviving
objects of class χ is at least:

|Sχi∗ ∩ U | ≥
1

2

|U |
n
ti
∗−1(1− t)n

c
− 13 log(n/c)

≥ 1

2

|U |
n
· ti
∗
· n
c
− 13 log(n/c)

≥ 1

2KA+1
· t

KB
log c · n

c
− 13 log(n/c). (20)

By assumption that the decision tree correctly classifies each object, we cannot have both classes
surviving the path P . Hence, at least one of the RHSs in (19) or (20) has to be less than 1. By
observing that the RHS of (20) is not larger than the RHS of (19), it must hold that

1

2KA+1
· t

KB
log c · n

c
− 13 log(n/c) ≤ 1

so in particular (since n ≥ cst · c with cst a large constant)

1

2KA+1
· t

KB
log c · n

c

≤ 14 log(n/c)
log
≡ (KA + 1) +KB ·

log(1/t)

log c

≥ log(n/c)− log(14 log(n/c)).

Again using the fact that n ≥ cst · c for a sufficiently large constant, of the this implies the cleaner
bound

KA +KB ·
log(1/t)

log c
≥ 1

2
log(n/c),

which concludes the proof.
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Now we are ready to prove the main theorem.

Proof of Theorem 2. Set t such that α = 1
2
log 1/t
log c . i.e., t = 1

c2α . Since we assumed α ∈
[ 1
2 log c ,

1
2 ( log(n/2)

log c − 1)] we have that t ∈ [ 2cn ,
1
2 ], as required by the above argument. Then consider

the instance I defined above for this value of t.

Consider any binary tree T solving the instance I that is an α
2 -approx for the depth. It suffices to

show that this tree has explwc(T ) ≥ 1
4α log(n/c)expl∗wc, which means explwc(T ) ≥ 1

4α log(n/c)
(since expl∗wc = 1 for this instance, by using only tests on attribute A).

For that, look at the path of T given by Lemma 6. Since T is an α
2 -approx for the height, we have in

particular (using Lemma 5)

KA ≤
α

2
depth∗wc ≤

1

4

log 1/t

log c
· log(n/c) log c

log 1/t
=

1

4
log(n/c).

But then from Lemma 6 we have

KB
log 1/t

log c
≥ 1

2
log

n

c
−KA, i.e., KB ≥

1

4α
log

n

c
.

Since each binary test in KB contributes one unit to the explanation size, this proves that the
explanation size of T is at least 1

4α log(n/c) as desired.

C.1 Proof of Lemma 4

The lemma will be a direct consequence of the following result.
Lemma 7. Consider [m] and positive scalars mi such that m1 + . . .+mw ≤ m, with w ≤ m. Then
there are sets V1, . . . , Vw ⊆ [m] such that:

1. The Vi’s partition [m]

2. For every interval J ⊆ [m] and i, we have

|Vi ∩ J | ≥
1

2

|J |
m
·mi − 12 logm.

Proof. Without loss of generality assume that
∑
imi = m, by increasing one of themi’s if necessary.

Construct the sets Vi’s randomly as follows: independently for each j ∈ [m], randomly put j in one
of the sets Vi so that Pr(j ∈ Vi) = mi

m . Then by definition the Vi’s so created partition [m], giving
Item 1 of the lemma.

For Item 2, take any interval J . First note that

E|Vi ∩ J | =
∑
j∈J

Pr(j ∈ Vi) =
|J |
m
·mi.

Moreover, using the multiplicative Chernoff bound (see, e.g., [43, Chapter 4]) we have that for a
fixed i,

Pr

(
|Vi ∩ J | ≤

1

2
E|Vi ∩ J |

)
≤ e−

E|Vi∩J|
8 = exp

(
− 1

8

|J |
m
·mi

)
.

Moreover, for any δ ∈ (0, 1), by considering the cases 1
8
|J|
m ·mi ≥ log(1/δ) and 1

8
|J|
m ·mi ≤ log(1/δ)

we see that this implies

Pr

(
|Vi ∩ J | ≤

1

2

[
E|Vi ∩ J | − 8 log(1/δ)

])
≤ δ.

Taking a union bound over all i ∈ [w] (recall w ≤ m) and over all intervals J (there are less than m2

of them) we get that with probability strictly more than 1−m3δ we have

|Vi ∩ J | >
1

2

[
E|Vi ∩ J | − 8 log(1/δ)

]
∀i,∀ intervals J ⊆ [m].
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Setting δ = 1
m3 shows that there is a scenario where

|Vi ∩ J | >
1

2

|J |
m
·mi − 12 logm ∀i,∀ intervals J ⊆ [m].

This proves the lemma.

Proof of Lemma 4. Bucket the objects [n] in buckets B1, . . . , Bn/c, each of size c (with consecutive
objects), that is, we have B1 = {1, 2, . . . , c}, B2 = {c + 1, . . . , 2c}, . . . until bucket Bn/c (for the
sake of simplifying the notation, we assume that n/c is an integer). Set w = log(n/c)

log(1/t) and apply
the previous lemma with parameter mi = ti−1(1 − t)nc (notice

∑
imi ≤ n

c ) to get a partition
V1, V2, . . . , Vw of the set of indices of buckets [n/c] . Then set

Si :=
⋃
`∈Vi

B 6=0
` ,

where B 6=0
` denotes the set of objects in bucket B` of class different from 0.

By construction we satisfy Item 1 of the lemma, namely that the Si’s partition all the objects of class
6= 0. For the second item of the lemma, notice that for any interval U ⊆ [n] (recall that Sχi is the set
of objects in Si of class χ)

|Sχi ∩ U | ≥ # buckets that compose Si
and that are fully contained in U,

since each bucket has 1 objects of class χ. Let J ⊆ [n/c] be the indices of the buckets fully contained
in U ; so the previous bound is

|Sχi ∩ U | ≥ |Vi ∩ J | ≥
1

2

|J |
n/c

ti−1(1− t)n
c
− 12 log(n/c),

where the last inequality follows from Lemma 7. Moreover, we can see that |J | ≥ |U |c − 2. Replacing
this bound in the previous displayed inequality and again using the fact n ≥ cst · c for a sufficiently
large cst gives the desired result.

D Proof of Theorem 3

D.1 The Bounds on the average case

In this section we show the bounds

depthavg(T ) ≤ O (log n) depth∗avg, (21)

explavg(T ) ≤ O (log n) expl∗avg. (22)

for a tree T produced by the algorithm SER-DT.

In Line 2 of SER-DT, the threshold factor 1
2 is used to select an attribute that reduces the weighted

pairwise misclassification. The argument we present here consider a more general case where 1
2 is

substituted by any γ ∈ [ 12 , 1). To simplify the argument, assume w.l.o.g. that (after the preprocessing)
the weights are integers and wmin = 1. To prove both parts of 21, it suffices to show that for the
constant α := max{4, 2(ln 1

γ )−1}. we have

depthavg(T ) ≤ α · ln
(
P (O)w(O)

)
· depthavg(M

∗), (23)

where M∗ is a multiway decision tree4 achieving the optimal average depth, depth∗avg, for the
instance I. Since ln(P (O)w(O)) ≤ ln(n2W ) = O(ln(nW )), and using the equivalence in Lemma
3, this implies

explavg(T ) ≤ depthavg(T ) ≤ O
(
ln
(
nW

))
· depth∗avg

= O
(
ln
(
nW

))
· expl∗avg.

4Recall that this is a decision tree where each test corresponds to an attribute a, and making this test splits the
objects based on all possible values of the this attribute, instead of just splitting them as a(o) < t and a(o) ≥ t
for some threshold t.
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To prove (23), we are going to use the following lower bound on the optimum average depth of a
multiway tree.
Lemma 8. Let (a∗, i∗) be the pair attribute/value maximizing maxa,i P (O(a, i))w(O(a, i)). Let
M∗ be an optimal multiway tree, i.e., depthavg(M

∗) = depth∗avg. Then

depthavg(M
∗) ≥ 1

2

P (O)w(O)2

P (O)w(O)− P (O(a∗, i∗))w(O(a∗, i∗))
.

Proof. For a node ν of M∗, let Oν be the set of objects associated with the leaves of the subtree
rooted at ν, and let aν be the attribute tested at node ν. Like in (11) we compute the average cost of the
optimal treeM∗ by summing up the weights of its internal nodes, depthavg(M

∗) =
∑

int(M∗) w(Oν),
where again we use int(·) to denote the set of internal nodes of a tree.

For a set of objects S ⊆ O and attribute x, define the quantity

∆x(S) := min
i

(
P (S)w(S)− P (S(x, i))w(S(x, i))

)
= P (S)w(S)−max

i
P (S(x, i))w(S(x, i)).

Notice that by definition, the attribute x = a∗ is the one that has the largest value ∆x(O), that is,
∆a(O) ≤ ∆a∗(O) for every attribute a. Hence, we have

depthavg(M
∗) =

∑
int(T∗)

w(Oν) ≥
∑

int(T∗) w(Oν) ·∆aν (O)

∆a∗(O)
. (24)

To make the numerator more “local”, we would like to replace ∆aν (O) by ∆aν (Oν). The next
lemma shows we can do this and still have a valid lower bound for depthavg(M

∗).

Claim 1. For every attribute x, the function ∆x(·) is monotone, namely for any sets of objects
V ⊆ U ⊆ O we have ∆x(V ) ≤ ∆x(U).

Proof of the claim. Let ı̄ = argmini(P (U)w(U) − P (U(x, i))w(U(x, i))) be the attribute value
that yields the definition of ∆x(U). Since ı̄ is a feasible value in the definition of ∆x(V ), we have
∆x(V ) ≤ P (V )w(V )− P (V (x, ı̄))w(V (x, ı̄)); so to show ∆x(V ) ≤ ∆x(U) it suffices to show

P (V )w(V )− P (V (x, ı̄))w(V (x, ı̄))

≤ P (U)w(U)− P (U(x, ı̄))w(U(x, ı̄)).

Let S(x, 6= i) := S \ S(x, i) be the objects in S with value different from i in the attribute x, and
notice w(S) = w(S(x, i)) + w(S(x, 6= i)). Applying this in the last displayed inequality, we see
that it is equivalent to

P (V (x, ı̄))w(V (x, 6= ı̄)) +
[
P (V )− P (V (x, ı̄))

]
︸ ︷︷ ︸

top-term

·w(V ) (25)

≤ P (U(x, ı̄))w(U(x, 6= ı̄)) +
[
P (U)− P (U(x, ı̄))

]
︸ ︷︷ ︸

bottom-term

·w(U). (26)

Since the number of pairs P (S) and the weight w(S) are monotone in S and since V ⊆ U , it is
clear that each term in (25) (except top-term) is at most the corresponding term in (26) (except
bottom-term). Thus, to prove this inequality, it suffices to argue that top-term ≤ bottom-term. But
notice that top-term is the number of pairs of objects o 6= o′ ∈ V that have different classes and
where at least one of objects has value 6= ı̄ in attribute x; bottom-term is the same thing, but over
pairs of objects o 6= o′ in U . Since every pair in the former also belongs to the latter, we see
that top-term ≤ bottom-term. This then proves inequality (25)-(26) and concludes the proof of the
claim.
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Applying this on (24) we obtain the lower bound

depthavg(M
∗) ≥

∑
int(T∗) w(Oν) ·∆aν (Oν)

∆a∗(O)
. (27)

We can think of the numerator above as the cost of a decision tree for an instance Ĩ with the same
tests and object set as I but with the additional property that applying the test on an attribute a at a
point where there are S objects incurs a cost equal to ∆a(S) In general, given a decision tree M̃ for
the instance Ĩ , its cost is defined as ∑

int(M̃)

w(Õν) ·∆ãν (Õν),

where Õν is the set of objects associated with the leaves of the subtree of M̃ rooted at ν, and ãν is the
attribute tested at the node ν. Letting depth∗avg(Ĩ) denote the minimum cost of a multiway decision
tree for Ĩ with costs given by ∆, from (27) we have

depthavg(M
∗) ≥

depth∗avg(Ĩ)

∆a∗(O)
. (28)

The proof of Lemma 8 is then completed by proving the following claim.

Claim 2. We have depth∗avg(Ĩ) ≥ P (O)w(O)2

2 .

Proof of the claim. We argue by induction on the number of pairs of distinct classes P (O). For
the base case P (O) = 1, we have that in an optimal tree the attribute a tested at the root node ρ
must separate the two object belonging to the only pair — note that such an attribute must exists
since we assume separability of objects belonging to different classes. Hence, it must hold that
P (O(a, ia)) = 0, and ∆a(O) = P (O)w(O). Therefore we have

depth∗avg(Ĩ) ≥ w(Oρ)∆a(O) = P (O)w(O)2,

as desired.

Now assume P (O) ≥ 2 and that the claim holds for all instances with the number of pairs of distinct
classes smaller than P (O). Let a be the attribute tested at the root of a tree attaining depth∗avg(Ĩ).
Also let ia be the value at attribute a that yields ∆a(O), namely ia = argmini(P (O)w(O) −
P (O(a, i))w(O(a, i))). Because of the optimality of the tree we can assume that P (O(a, ia)) <
P (O), i.e., the test a separates at least one of the pairs.

Case 1. P (O(a, ia)) = 0. Then as in the base case ∆a(O) = P (O)w(O), and again we have
depth∗avg(Ĩ) = w(O) ·∆a(O) = P (O)w(O)2.

Case 2. 1 ≤ P (S(a, ia)) < P (S). Then we consider the contribution of the root node and the subtree
rooted at the child corresponding to the value ia. Let Ĩia be the instance corresponding to the objects
in the set O(a, ia), with number of pairs P (O(a, ia)). We have

depth∗avg(Ĩ) ≥ w(O) ·∆a(O) + depth∗avg(Ĩia) (29)

≥ w(O) ·
(
P (O)w(O)− P (O(a, ia))w(O(a, ia))

)
+
P (O(a, ia))w(O(a, ia))2

2
(30)

≥ P (O)w(O)2 − P (O(a, ia))w(O)2

2
(31)

≥ P (S)w(S)2

2
, (32)

where (30)) follows from using the inductive hypothesis on depth∗avg(Ĩia), (31) follows from the
monotonicity of the weights w(O(a, ia)) ≤ w(O), and (32) follows from monotonicity of the pairs
P (O(a, ia)) ≤ P (O). This concludes the proof of the inductive step, and hence of the claim.
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Given this lower bound on the average depth of an optimal multiway tree depth∗avg we now show
the desired bound (23). Skipping trivialities, we can assume n ≥ 2. We argue by induction on the
number of pairs of distinct classes P (O) in the instance . The base case |P (O)| = 1 is easily settled
by the assumption that for every pair of objects from distinct classes there exists a test splitting them.

So assume by induction that (23) holds for the tree build by the algorithm on every instance I ′ with
objects O′ such that P (O′) < P (O). To prove that it still holds for the instance I , we consider
whether the algorithm entered the If in Line 2 or not.

Case 1: The algorithm enters the If at Line 2. Let (a, t) be the split used by the algorithm at
the root. For i = 1, 2, let Ti be the subtree of T rooted at the left and right child of the root of T .
Recall that T1 is the tree built on the instance I1 with object set O1 := O(a,≤ t) and T2 is the the
tree recursively built on the instance I2 with object set O2 := O(a,> t).5 By construction we have
wpm(O(a, t)) ≤ γ · P (O)w(O), which means that

P (Oi)w(Oi) ≤ γP (O)w(O), i = 1, 2. (33)

The average depth of the tree T build by the algorithm can then be decomposed as depthavg(T ) =
w(O)+depthavg(T1)+depthavg(T2). Moreover, we also have the following subadditivity property:
depth∗avg(I) ≥ depth∗avg(I1) + depth∗avg(I2). In fact, letting M∗ (resp. M∗1 ,M

∗
2 ) being a multiway

tree achieving depth∗avg(I) (resp. depth∗avg(I1), depth∗avg(I2)) we have

depth∗avg(I) = depthavg(M
∗) =

∑
o∈O

w(o) · depthT
∗

avg(`(o))

≥
∑
o∈O1

w(o) · depthM
∗

avg(`(o)) +
∑
o∈O2

w(o) · depthM
∗

avg(`(o))

≥
∑
o∈O1

w(o) · depthM
∗
1

avg(`(o)) +
∑
o∈O2

w(o) · depthM
∗
2

avg(`(o))

= depth∗avg(I1) + depth∗avg(I2),

where we used the notation depthMavg(`(o)) to indicate the explanation size of leaf reached by object
o in a tree M. Then we have

depthavg(T )

depth∗avg(I)
=

w(O) + depthavg(T1) + depthavg(T2)

depth∗avg(I)

≤ w(O)

depth∗avg(I)
+

depthavg(T1) + depthavg(T2)

depth∗avg(I1) + depth∗avg(I2)

≤ w(O)

depth∗avg(I)
+ max
i=1,2

depthavg(Ti)

OPTM (Ii)
. (34)

But depth∗avg(I) ≥ w(O), and by the inductive hypothesis depthavg(Ti)

depth∗avg(Ii)
≤ α ln(P (Oi)w(Oi)),

which is at most α ln(γP (O)w(O)) by (33). Plugging these bounds in the RHS of (34) gives

depthavg(T )

depth∗avg(I)
≤ 1 + α ln

(
γP (O)w(O)

)
= α ln

(
P (O)w(O)

)
+
(

1− α ln
1

γ

)
≤ α ln(P (O)w(O)),

where the last inequality follows from the fact α ≥ (ln 1
γ )−1. This proves the inductive hypothesis in

this case.
5N.B.: We have noticed that sometimes we consider threshold tests of the form “a(o) < t?” and sometimes

of the form “a(o) ≤ t?”. These tests are equivalent, by simply shifting the threshold t. Nonetheless, we will
update the next version of the paper to make the notation homogeneous.

28



Case 2: The algorithm does not enter the If at Line 2. In this case, the top of the tree T produced
by the algorithm uses the splits (a∗, t∗ − 1) and (a∗, t∗), and has (up to) three subtrees T1, T2, T3 as
children of these nodes, where:

• T1 is constructed recursively for the instance I1 with object set O1 := O(a∗,≤ t∗ − 1)

• T2 is constructed recursively for the instance I2 with object set O2 := O(a∗, t∗)

• T3 is constructed recursively for the instance I3 with object set O3 := O(a∗, > t∗).

(Note that one of the instances I1, I3 may be empty.) The average depth of T can be decomposed
based on the contribution of the two splits (a∗, t∗ − 1) and (a∗, t∗) (which is at most 2w(O)) and of
the subtrees Ti’s, namely

depthavg(T ) ≤ 2w(O) + depthavg(T1) + depthavg(T2)

+ depthavg(T3).

Thus, as in inequality (34) we have

depthavg(T )

depth∗avg(I)
≤ 2w(O)

depth∗avg(I)
+ max
i=1,2,3

depthavg(Ti)

depth∗avg(Ii)
,

where if an instance Ii is empty (so the tree Ti does not exist) we ignore the corresponding term in
the max.

By definition of t∗, for i = 1, 3 the instance Ii satisfies P (Oi)w(Oi) ≤ γP (O)w(O) , and so
applying the induction hypothesis on the instances Ii we get

depthavg(T )

depth∗avg(I)
≤ 2w(O)

depth∗avg(I)

+ max

{
α ln

(
γP (O)w(O)

)
, α ln

(
P (O2)w(O2)

)}
.

If P (O2)w(O2) ≤ γP (O)w(O), the max becomes simply α ln(γP (O)w(O)) and again using
depth∗avg(I) ≥ w(O) we get

depthavg(T )

depth∗avg(I)
≤ 2 + α ln

(
γP (O)w(O)

)
≤ α ln(P (O)w(O)),

where the last inequality uses the fact α ≥ 2(ln 1
γ )−1; so the inductive hypothesis holds in this case.

Now consider the case where P (O2)w(O2) > γP (O)w(O), and hence the max becomes
α ln(P (O2)w(O2)). In this case, we use the lower bound on depth∗avg(I) from Lemma 8 to obtain
(let a∗ and i∗ be defined as in the lemma)

depthavg(T )

depth∗avg(I)
≤

4
(
P (O)w(O)− P (O(a∗, i∗))w(O(a∗, i∗))

)
P (O)w(O)

+ α lnP (O2)w(O2)

≤ 4

(
1− P (O(a∗, i∗))w(O(a∗, i∗))

P (O)w(O)

)
+ α ln(P (O(a∗, i∗))w(O(a∗, i∗)))

≤ 4 ln
P (O)w(O)

P (O(a∗, i∗))w(O(a∗, i∗))

+ α ln(P (O(a∗, i∗))w(O(a∗, i∗)))

≤ α ln (P (S)w(S)) ,

where the second inequality follows the fact P (O(a∗, i∗))w(O(a∗, i∗)) ≥ P (O(a∗, t∗)w(a∗, t∗)) =
P (O2)w(O2) (by optimality of i∗), the third inequality follows from the fact 1− x ≤ − lnx valid
for all x > 0 (since by convexity lnx ≥ ln(1) + ln′(1)(x− 1)), and the last inequality follows from
the fact α ≥ 4.
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This concludes the proof of the inductive step, and hence that inequality (23) holds and as a conse-
quence, we have

depthavg(T ) ≤ O
(

ln

(
n
W

wmin

))
depth∗avg,

explavg(T ) ≤ O
(

ln

(
n
W

wmin

))
expl∗avg,

where W = w(O) is the total weight of the objects, wmin = mino∈S w(o) is the smallest weight of
an object. Finally, by the preprocessing step (following the approach from [35]) we have that the
approximation term O

(
ln
(
n W
wmin

))
) becomes O(log n), i.e., we can remove the dependency on

the weights and achieve the desired O(log n) approximation bound as given in the statement of the
theorem.

D.2 Proof of Worst Case

We now focus on the proof of the worst case bounds

depthwc(T ) ≤ O (log n) depth∗wc, (35)
explwc(T ) ≤ O (log n) expl∗wc. (36)

for the decision tree T built by SER-DT. Again to simplify the argument, assume w.l.o.g. that (after
the preprocessing) the weights are integers and wmin = 1.

Let P be longest path from the root to a leaf in T . For a node g in P , its weighted pair-wise
misclassification (wpm) is the wpm of the set of objects that reach g. The nodes of P can be split
based on whether they were added in Line 3 or Line 8 of one of the recursive calls of SER-DT. More
specifically, let G be the set of nodes in P that are associated with the set of objects S(a∗, t∗) at Line
8 of SER-DT. We note that the total number of nodes in P is at most

depthwc(T ) = |P| ≤ 2|G|+ log(P (O)w(O)), (37)

since in every recursive call where a node in G is added to P , its parent is also added, hence the
factor of 2 in the formula; on the other hand, if the recursive call adds a node to P outside of G (Line
3) then it means the condition in Line 2 was satisfied, and so the wpm of the node that is added to P
is at most half of the wpm of its parent and, thus, only O(log(P (O)w(O)) additions of this type are
possible (recall that we are assuming (scaled) integer weights ≥ 1).

Let M∗wc be a multiway decision tree achieving the minimum worst-case depth for the instance. We
want to relate |G| to depthwc(M

∗
wc). The following claim lower bounds the latter quantity and is the

worst-case version of Lemma 8.
Lemma 9. Consider a set S ⊆ O of objects of the instance, and let (a∗, i∗) be the pair attribute/value
solving the optimization mina maxi P (S(a, i))w(S(a, i)). Then

depthwc(M
∗
wc) ≥

1

2

P (S)w(S)

P (S)w(S)− P (S(a∗, i∗))w(S(a∗, i∗))
.

Proof. Define the normalized weights w′(o) := w(o)
w(S) , which then form a probability distribution

over the objects in S. Let M∗avg be a multiway tree for S with minimum average depth with respect
to the weights w′, i.e. that—over all multiway decision tree M for the instance—minimizes

depthavg(M,w′) =
∑

`∈leaf(M)

w′(`) · depth(`),

where we included w′ in depthavg(M,w′) to avoid confusion.

Using the fact that the maximum is always at least the average (w.r.t. a probability distribution) and
the optimality of M∗avg we get

depthwc(M
∗
wc) ≥ depthavg(M

∗
wc, w

′) ≥ depthavg(M
∗
avg, w

′). (38)
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Moreover, applying Lemma 8 to the instance with objects S and weights w′ we obtain

depthavg(M
∗
avg, w

′) ≥ 1

2

P (S)w′(S)2

P (S)w′(S)− P (S(a∗, i∗))w′(S(a∗, i∗))

=
1

2

P (S)w(S)

P (S)w(S)− P (S(a∗, i∗))w(S(a∗, i∗))
, (39)

where the equality follows from using the fact w′(S) = 1 to remove one of these terms in the
numerator and then multiplying both numerator and denominator by w(S). (Observe that (a∗, t∗)
is exactly the one required in this application of Lemma 8 because the solutions to the problems
mina maxi P (S(a, i))w(S(a, i)) and mina maxi P (S(a, i))w′(S(a, i)) are the same, as w′ is just a
scaling of w.) Combining (38) and (39) gives the desired result.

We are now ready to upper bound |G| with respect to the quantity in (39). For that, let G =
(g1, g2, . . . , g|G|) be the nodes in G in order of traversal of P (from root to leaf). For a node gj ,
consider the call of SER-DT that created this node (in Line 8). Let Sj be the set of objects that was
received as input by this call, and let (a∗j , t

∗
j ) be the attribute and threshold value used in Line 8 to

create node gj . Thus, the objects of the whole instance that reach node gj (in the tree T ) are precisely
Sj(a

∗
j , t
∗
j ).

Applying Lemma 9 to the set of objects Sj and reorganizing the terms gives

1 ≤ 2 · depthwc(M
∗
wc)

·
P (Sj)w(Sj)− P (Sj(a

∗
j , i
∗
j ))w(Sj(a

∗
j , i
∗
j ))

P (Sj)w(Sj)
.

Thus:

|G| =
∑
j≤|G|

1

≤ 2 · depthwc(M
∗
wc)

·
∑
j≤|G|

P (Sj)w(Sj)− P (Sj(a
∗, i∗))w(Sj(a

∗, i∗))

P (Sj)w(Sj)

≤ 2 · depthwc(M
∗
wc)

·
∑
j≤|G|

ln

(
P (Sj)w(Sj)

P (Sj(a∗j , i
∗
j ))w(Sj(a∗j , i

∗
j ))

)
,

where the last step uses the inequality 1 − 1
x ≤ lnx which is valid for all x ∈ (0, 1]. But by

definition we have Sj+1 ⊆ Sj(aj , tj), and hence the denominator in the log can be lower bounded as
P (Sj(a

∗
j , i
∗
j ))w(Sj(a

∗
j , i
∗
j )) ≥ P (Sj)w(Sj), and hence we obtain the desired upper bound on G:

|G| ≤ 2 · depthwc(M
∗
wc) ·

∑
j≤|G|

ln

(
P (Sj)w(Sj)

P (Sj+1)w(Sj+1)

)
≤ 2 · depthwc(M

∗
wc) · ln(P (S1)w(S1))

≤ 2 · depthwc(M
∗
wc) · ln(P (O)w(O)).

Plugging this bound in (37) and using the equivalence between the optimal worst-case explanation
size and the optimal worst-case depth for multiway trees from Lemma 2, i.e., expl∗wc = depth∗wc =
depthwc(M

∗
wc), we obtain

depthwc(T ) ≤ 4 expl∗wc · ln(P (O)w(O)) ≤ O(log n) · expl∗wc,

the last inequality holding since P (O) ≤ n2 and, because of the pre-processing step before the
algorithm we have w(O) ≤ n4 . This implies both the bounds in (35)-(36), explwc(T ) ≤ O(log n) ·
expl∗wc and depthwc(T ) ≤ O(log n) · depth∗wc, thus completing the proof of the lemma.
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E Experiments – Additional Details and Statistics

Our experiments were executed with the following settings: Notebook Inspiron 14-7460; Processor:
7th generation Intel Core i5; 16GB RAM (DDR4 at 2400 MHz); Storage type: SSD; GPU NVIDIA
GeForce 940MX.

For our implementation we employed Python 3.8.10; pandas 1.4.2; numpy 1.22.3; sklearn 1.0.2. Our
code is available on

https://github.com/user-anonymous-researcher/interpretable-dts

Our datasets as well as their main characteristics are described in Table 2.

Table 2: Datasets. n is the number of examples; numeric the number of numerical features; categ.
the number of categorical features; d the total of features (after doing the one-hot encoding) and
classes the number of output classes.

Dataset n numeric categ. d classes source

Anuran 7195 22 0 22 4 [33]
Audit Risk 773 26 0 26 2 [45]

Avila 20867 10 0 10 12 [53]
Banknote 1372 4 0 4 2 [6]

Bankruptcy Polish 4885 64 0 64 2 [54]
Cardiotocography 2126 21 0 21 10 [14]

Collins 1000 19 0 19 30 [55]
Defaults Credit Card 30000 20 3 33 2 [57]

Dry Bean 13611 16 0 16 7 [34]
EEG Eye State 14980 14 0 14 2 [51]

Htru2 17898 8 0 8 2 [42]
Iris 150 4 0 4 3 [20]

Letter Recognition 20000 16 0 16 26 [38]
Mice 552 77 3 83 8 [27]

OBS Network 1060 19 2 24 4 [50]
Occupancy Room 10129 16 0 16 4 [49]

Online Shoppers Intention 12330 12 5 54 2 [52]
Pen Digits 10992 16 0 16 10 [5]

Poker Hand 1025010 10 0 10 10 [15]
Sensorless 58509 48 0 48 11 [7]

To generate the plots from Figure 2, we executed SER-DT with FactorExpl varying in the set

{0.1× i|i = 1, . . . , 9} ∪ {0.9 + 0.01× i|i = 1, . . . , 10}.

In the following sections, we present some additional metrics and visualizations related to the
experiments described in Section 6. Moreover, we also present two new experiments: in one of them,
we remove the constraint on the depth of the trees while in the other we replace the Gini with entropy
as a splitting criterion. We note that each entry presented in the following tables is given by the the
average of 10 runs using different seeds to select the examples in the training and testing set.

E.1 Metrics related to depth and running time

Table 3 shows the metrics depthavg and depthwc for the decision trees produced by both CART and
SER-DT (experiment from Section 6). The metric depthavg for our algorithm is better than that of
CART for 17 datasets and it is worse for only 3. For depthwc the results are similar, which is somehow
expected since we set the maximum allowed depth to 6.

Table 4 shows the average running times in seconds of CART and our algorithm. The ratio between
the fastest and slowest is at most 2 for all datasets.
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Table 3: depthavg and depthwc for the experiment described in Section 6. We bold-faced the cases
where the difference in accuracy is larger than 1% and also the cases where the gain in terms of
depthavg or depthwc is larger than 25%.

Dataset Test Accuracy depthavg depthwc

SER-DT CART SER-DT CART SER-DT CART

anuran 94,8% 94,7% 5,38 5,57 6,00 6,00
audit risk 99,9% 99,9% 1,00 1,00 1,00 1,00

avila 61,5% 63,2% 5,14 5,29 6,00 6,00
banknote 97,6% 98,1% 4,39 4,43 6,00 6,00

bankruptcy polish 96,6% 96,9% 4,45 4,94 6,00 6,00
cardiotocography 89,5% 89,8% 4,98 5,51 6,00 6,00

collins 13,2% 15,6% 5,89 5,91 6,00 6,00
default credit card 82,0% 81,9% 2,15 4,33 6,00 6,00

dry bean 90,1% 89,8% 4,76 5,41 6,00 6,00
eeg eye state 74,1% 73,6% 5,15 5,47 6,00 6,00

htru2 97,7% 97,7% 2,80 5,30 6,00 6,00
iris 94,2% 93,6% 2,50 2,52 4,90 4,80

letter recognition 44,9% 47,9% 5,96 5,94 6,00 6,00
mice 99,9% 99,9% 3,05 3,05 3,60 3,60

obs network 91,7% 89,5% 4,47 4,39 6,00 6,00
occupancy room 99,4% 99,3% 4,72 4,83 6,00 6,00

online shoppers intention 89,3% 89,8% 3,89 4,77 6,00 6,00
pen digits 88,6% 86,9% 5,73 5,80 6,00 6,00

poker hand 52,9% 55,0% 4,61 4,30 6,00 5,30
sensorless 87,4% 80,1% 5,26 5,33 6,00 6,00
Average 82,3% 82,2% 4,31 4,70 5,58 5,54

Table 4: Running times for CART and our algorithm for the experiment described in Section 6
Dataset SER-DT (sec) CART (sec)
anuran 7.0 3.7

audit risk 0.1 0.1
avila 9.0 9.2

banknote 0.2 0.1
bankruptcy polish 9.8 5.2
cardiotocography 1.4 1.7

collins 2.2 1.7
default credit card 18.1 19.3

dry bean 12.1 7.1
eeg eye state 3.5 4.0

htru2 5.0 3.0
iris 0.0 0.0

letter recognition 17.1 26.1
mice 1.7 1.0

obs network 0.5 0.5
occupancy room 2.7 3.7

online shoppers intention 9.1 11.7
pen digits 5.4 7.1

poker hand 330.8 443.6
sensorless 178.5 120.5

E.2 Sensitivity to FactorExpl

Figure 2 suggests that FactorExpl can be used to provide a trade-of between accuracy and explain-
ability (measured according to explavg). To provide additional evidence, in Table 5 we show the test
accuracy and explavg for FactorExpl ∈ {0.9, 0.95, 0.99}.
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Table 5: Sensitivity with respect to FactorExpl(FE below)

Dataset Test Accuracy explavg

FE= 0,99 FE=0,95 FE=0,90 FE=0,99 FE=0,95 FE=0,90

anuran 94,8% 94,8% 94,6% 5,11 4,50 3,85
audit risk 99,9% 99,9% 99,9% 1,00 1,00 1,00

avila 66,0% 57,8% 55,9% 4,22 1,99 1,64
banknote 97,8% 97,6% 97,5% 2,51 2,38 2,36

bankruptcy polish 96,7% 96,6% 96,7% 3,73 1,92 1,50
cardiotocography 89,7% 89,3% 89,5% 4,51 4,10 3,98

collins 15,9% 13,1% 12,8% 3,74 1,61 1,35
default credit card 81,9% 82,0% 82,0% 1,94 1,41 1,40

dry bean 89,7% 90,0% 89,8% 3,60 3,25 3,05
eeg eye state 74,6% 72,9% 67,1% 4,32 3,15 1,82

htru2 97,7% 97,7% 97,6% 1,27 1,19 1,15
iris 94,2% 94,2% 94,2% 1,75 1,75 1,75

letter recognition 51,9% 42,4% 40,1% 4,20 2,90 2,59
mice 99,9% 99,9% 99,9% 3,05 3,05 3,05

obs network 91,7% 91,3% 90,3% 3,75 3,15 2,67
occupancy room 99,3% 99,4% 99,5% 4,25 4,15 4,07

online shoppers intention 89,9% 89,1% 88,7% 3,82 3,12 2,94
pen digits 88,5% 88,6% 87,7% 4,90 4,75 4,42

poker hand 53,0% 52,8% 52,7% 1,89 1,79 1,76
sensorless 87,5% 87,0% 85,9% 3,01 2,85 2,67
Average 83,0% 81,8% 81,1% 3,33 2,70 2,45

We observe that explavg has a very predictable behavior: the smaller the FactorExpl the smaller
the explavg (last 3 columns of this table). In terms of accuracy, for 13 datasets the difference between
FactorExpl = 0.99 and FactorExpl = 0.9 is smaller than 1%. This number increases to 16 when
we consider FactorExpl = 0.99 and FactorExpl = 0.95. We do not recommend using small
values for FactorExpl( < 0.9) in practice because the loss in terms of accuracy may be severe. In
fact, we recommend using SER-DT with FactorExpl ∈ [0.95, 0.99].

E.3 Removing the maximum depth constraint

In our experiments, in order to prevent (very) large trees, we set the maximum allowed depth to 6.
Table 6 and 7 show the results when this constraint is removed. Some observations are in order:

• SER-DT builds trees that are much more shallower than those built by CART (Columns 6
and 7 of Table 7). This was not possible to observe when the maximum depth was set to 6;

• The gains of SER-DT over CART for all explainability metrics become larger when the depth
constraint is removed.

E.4 Entropy as a split criterion

In our experiments on Section 6 we compared SER-DT against CART. We also implemented a
variation of our method that employs the Shannon Entropy, rather than Gini, to evaluate the goodness
of a split. We note that (a normalized version of) the entropy is employed by the widely used C4.5
algorithm [48]. We tested our variation against a variation of CART that uses the entropy rather than
Gini to evaluate the quality of a split and also to determine whether a leaf shall be expanded or not
(stopping rule).

Table 8 presents the results for the test accuracy and the metrics related to the explanation size. The
results are inline with those from Section 6.
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Table 6: Test accuracy, explavg and explwc when no limit on the maximum depth is set. We bold-
faced the cases where the difference in accuracy is larger than 1% and also the cases where the gain
in terms of explavg or explwc is larger than 30%.

Dataset Test Accuracy explavg explwc

SER-DT CART SER-DT CART SER-DT CART

anuran 95,7% 95,6% 6,00 8,74 9,4 11,1
audit risk 99,9% 99,9% 1,00 1,00 1 1

avila 92,8% 98,4% 5,47 5,81 9 9,6
banknote 97,8% 98,0% 2,46 2,56 3,8 3,8

bankruptcy polish 95,9% 95,8% 3,14 7,25 8 13
cardiotocography 87,6% 88,0% 5,73 8,54 8,7 14,6

collins 12,0% 14,5% 4,30 7,81 7,3 12,7
default credit card 72,7% 72,5% 5,74 13,08 11,1 20,2

dry bean 89,5% 89,3% 4,60 7,41 8,6 11,4
eeg eye state 82,2% 82,9% 6,48 8,31 11,1 13

htru2 96,7% 96,7% 1,74 4,24 6,2 7,3
iris 94,2% 93,6% 1,75 1,76 3,1 3,4

letter recognition 84,3% 86,2% 6,84 8,83 11,5 14,8
mice 99,9% 99,9% 3,05 3,05 3,6 3,6

obs network 100,0% 100,0% 3,94 4,83 6,5 8,2
occupancy room 99,6% 99,5% 4,26 4,98 6,9 7,9

online shoppers intention 86,2% 86,3% 5,72 9,15 10,1 16,4
pen digits 95,7% 96,0% 6,64 7,87 10,4 12,7

poker hand 81,0% 62,5% 6,05 8,74 10 10
sensorless 98,4% 98,1% 4,93 9,60 10,3 20,3
Average 88,1% 87,7% 4,49 6,68 7,83 10,75

Table 7: Test accuracy, depthavg and depthwc when no limit on the maximum depth is set. We
bold-faced the cases where the difference in accuracy is larger than 1% and also the cases where the
gain in terms of depthavg or depthwc is larger than 20%.

Dataset Test Accuracy depthavg depthwc

SER-DT CART SER-DT CART SER-DT CART

anuran 95,7% 95,6% 7,69 10,79 11,2 15,1
audit risk 99,9% 99,9% 1,00 1,00 1,0 1,0

avila 92,8% 98,4% 11,25 11,49 18,9 21,1
banknote 97,8% 98,0% 4,51 4,60 6,9 7,3

bankruptcy polish 95,9% 95,8% 5,37 8,22 9,8 16,6
cardiotocography 87,6% 88,0% 7,56 10,20 11,5 17,5

collins 12,0% 14,5% 9,44 10,55 16,2 21,1
default credit card 72,7% 72,5% 12,46 19,89 21,0 42,3

dry bean 89,5% 89,3% 9,20 12,16 15,8 25,0
eeg eye state 82,2% 82,9% 10,81 13,38 18,1 25,2

htru2 96,7% 96,7% 8,26 10,86 14,4 22,2
iris 94,2% 93,6% 2,50 2,52 4,9 4,8

letter recognition 84,3% 86,2% 11,39 12,92 22,4 27,8
mice 99,9% 99,9% 3,05 3,05 3,6 3,6

obs network 100,0% 100,0% 5,36 5,73 8,9 9,8
occupancy room 99,6% 99,5% 5,09 6,08 9,6 10,5

online shoppers intention 86,2% 86,3% 9,01 11,56 15,8 24,2
pen digits 95,7% 96,0% 8,91 9,73 14,1 17,6

poker hand 81,0% 62,5% 17,92 20,75 30,5 40,7
sensorless 98,4% 98,1% 9,64 13,66 17,6 31,6
Average 88,1% 87,7% 8,02 9,96 13,6 19,3
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Table 8: explavg and explwc when Entropy (Entr.) is used instead of GINI. We bold-faced the cases
where the difference in accuracy is larger than 1% and also the cases where the gain in terms of
explavg or explwc is larger than 20%.

Dataset Test Accuracy explavg explwc

SER-DT Ent Entr. SER-DT Ent Entr. SER-DT Ent Entr.

anuran 94,5% 94,5% 4,92 5,06 6,0 6,0
audit risk 99,9% 99,9% 1,00 1,00 1,0 1,0

avila 66,5% 65,3% 3,54 4,18 5,0 5,1
banknote 97,9% 97,9% 2,41 2,51 3,8 3,8

bankruptcy polish 97,1% 97,3% 2,95 3,17 5,6 6,0
cardiotocography 89,1% 89,6% 4,36 4,69 6,0 6,0

collins 14,1% 14,2% 3,51 4,81 5,0 5,7
default credit card 82,0% 81,9% 1,41 3,82 4,2 6,0

dry bean 90,1% 90,0% 3,66 4,34 5,8 6,0
eeg eye state 73,2% 72,1% 3,42 4,26 5,6 6,0

htru2 97,8% 97,8% 1,47 1,97 4,6 5,0
iris 94,5% 94,2% 1,70 1,73 3,2 3,3

letter recognition 58,5% 59,6% 4,13 5,01 6,0 6,0
mice 99,9% 99,9% 3,00 3,00 3,0 3,0

obs network 89,4% 87,5% 3,54 4,17 5,2 6,0
occupancy room 99,5% 99,5% 3,27 3,37 4,6 5,0

online shoppers intention 89,1% 89,9% 2,63 3,47 4,2 5,9
pen digits 89,6% 89,7% 5,12 5,44 6,0 6,0

poker hand 53,0% 55,7% 1,83 4,53 4,0 5,0
sensorless 90,0% 90,0% 3,08 4,53 4,9 5,8
Average 83,3% 83,3% 3,05 3,71 4,68 5,13
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E.5 Boxplots for CART and SER-DT

Figures 5-8 present boxplots for the test accuracy of CART and SER-DT for the experiments described
on Section 6. Figures 9-12 present boxplots for the explavg .

Figure 5: Test Accuracy for CART and SER-DT for some datasets

Figure 6: Test Accuracy for CART and SER-DT for some datasets
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Figure 7: Test Accuracy for CART and SER-DT for some datasets

Figure 8: Test Accuracy for CART and SER-DT for some datasets
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Figure 9: explavg for CART and SER-DT for some datasets

Figure 10: explavg for CART and SER-DT for some datasets
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Figure 11: explavg for CART and SER-DT for some datasets

Figure 12: explavg for CART and SER-DT for some datasets
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E.6 Other examples of trees

We present some other examples of trees produced by SER-DT and CART. These examples provide
additional evidence that our algorithm generates trees with better explainability but similar accuracy
compared to CART. All trees were constructed by setting a maximum allowed depth to 4. For SER-DT
we set FactorExpl = 0.97, such as reported on Section 6.

Our first example employs dataset default credit card. Figures 13 and 14 show the trees
produced by CART and SER-DT, respectively. CART has a Test Accuracy of 81.9%, while SER-DT
obtains 81.8%. In contrast, visually the SER-DT tree is much simpler than that of CART, and SER-DT
achieves explavg = 1.19 against explavg = 2.27 from CART.

Figure 13: Tree produced with CART for dataset default credit cart

Figure 14: Tree produced with SER-DT for dataset default credit cart
.
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Our second example uses dataset online shoppers intention, whose corresponding decision
trees are represented in Figures 15 and 16. CART generates a tree with a Test Accuracy of 90.0%,
while SER-DT achieves 89.1% for this metric. In this case, SER-DT also clearly yields a simpler
tree, achieving depthavg = 1.54 against depthavg = 2.38 from CART.

Figure 15: Tree produced with CART for dataset online shoppers intention

Figure 16: Tree produced with SER-DT for dataset online shoppers intention

The final example shows trees for dataset dry bean, in Figures 17 and 18. Although at first glance
there doesn’t seem to be much improvement, SER-DT yields a tree with explavg of 2.60, in contrast
to 3.49 for CART, which is a reduction of 25.6%. In terms of prediction, SER-DT gives 82.8% of Test
Accuracy, while CART gives 82.4%.
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Figure 17: Tree produced with CART for dataset dry bean

Figure 18: Tree produced with SER-DT for dataset dry bean

Table 9: Test Accuracy, explavg and explwc for FactorExpl = 0.97. Each entry is the average of
10 runs using different seeds to select the examples in the training and testing set.

Dataset Test Accuracy explavg explwc

SER-DT EC2 SER-DT EC2 SER-DT EC2

anuran 94.8 ± 0.5% 89.4 ± 1.7% 4.78 4.36 6.00 5.90
audit risk 99.9 ± 0.3% 99.3 ± 0.8% 1.00 3.07 1.00 3.90

avila 61.5 ± 2.1% 57.7 ± 1.2% 3.06 4.03 4.90 6.00
banknote 97.6 ± 0.8% 92.3 ± 1.7% 2.44 1.88 3.80 3.00

bankruptcy polish 96.6 ± 0.7% 97.4 ± 0.4% 2.56 2.19 5.60 5.50
cardiotocography 89.5 ± 1.3% 80.1 ± 3.3% 4.30 3.81 5.90 5.70

collins 13.2 ± 1.8% 16.0 ± 1.2% 2.13 4.95 4.40 6.00
default credit card 82.0 ± 0.4% 80.5 ± 0.3% 1.45 3.65 4.50 6.00

dry bean 90.1 ± 0.4% 83.9 ± 0.5% 3.32 4.40 5.10 6.00
eeg eye state 74.1 ± 0.5% 71.1 ± 0.5% 3.69 3.78 5.90 5.60

htru2 97.7 ± 0.2% 97.7 ± 0.1% 1.20 1.52 4.30 4.60
iris 94.2 ± 2.6% 86.7 ± 7.0% 1.75 2.57 3.10 3.60

letter recognition 44.9 ± 1.2% 37.8 ± 0.5% 3.34 5.32 5.50 6.00
mice 99.9 ± 0.2% 71.0 ± 4.1% 3.05 4.79 3.60 6.00

obs network 91.7 ± 2.1% 81.2 ± 1.5% 3.48 3.95 5.30 5.30
occupancy room 99.4 ± 0.2% 98.6 ± 0.4% 4.18 4.77 5.30 5.60

online shoppers intention 89.3 ± 0.5% 89.5 ± 0.6% 3.30 1.84 5.10 5.60
pen digits 88.6 ± 2.0% 75.3 ± 1.8% 4.76 4.74 5.80 6.00

poker hand 52.9 ± 1.0% 52.0 ± 0.7% 1.80 3.72 3.80 5.70
sensorless 87.4 ± 1.0% 74.4 ± 0.4% 2.94 4.19 4.90 6.00
Average 82.3% 76.6% 2.93 3.68 4.69 5.40
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E.7 Comparision between SER-DT and EC2

As noted in Section 5 and Section 6, SER-DT combines the theoretically best possible guarantee with
very competitive performance in practice. The results shown in this section give evidence that in
general optimal approximation guarantee on the (average) depth does not imply good results in terms
of explanation size and accuracy.

Table 9 presents the comparison between the EC2 algorithm and our SER-DT, with respect to accuracy
and explanation size. EC2 is a greedy algorithm proposed by [22] which is proved to achieveO(log n)-
approximation guarantee for the minimization of the average depth. Note that this means that it
attains the best approximation guarantee that it is possible in polynomial time, under the hypothesis
P 6= NP.

In terms of accuracy SER-DT performs significantly better than EC2 on almost all datasets, and,
similarly, in terms of the interpretability metrics the results also show a significant difference in
favour of our algorithm. More precisely, on 14 datasets (bold-faced on columns 2 and 3) we observe
a difference larger than 1% in terms of accuracies; on 13 of them, our algorithm outperforms EC2
while only on 1, EC2 is better. When considering the average explanation size, our algorithm is better
than EC2 on 14 datasets, and for 8 of them (bold-faced on column 4), it improves on the explavg of
EC2 by at least 25%. Finally, in terms of explwc, on 15 datasets our algorithm is at least as good as
EC2, and on 5 of them the improvement is at least 25% (bold-faced in column 6).

Table 10: Test Accuracy, depthavg and depthwc for FactorExpl = 0.97. Each entry is the average
of 10 runs using different seeds to select the examples in the training and testing set.

Dataset Test Accuracy depthavg depthwc

SER-DT EC2 SER-DT EC2 SER-DT EC2

anuran 94.8 ±0.5% 89.4 ± 1.7% 5.38 4.83 6.00 6.00
audit risk 99.9 ±0.3% 99.3 ± 0.8% 1.00 4.34 1.00 5.90

avila 61.5 ±2.1% 57.7 ± 1.2% 5.14 5.04 6.00 6.00
banknote 97.6 ±0.8% 92.3 ± 1.7% 4.39 3.85 6.00 6.00

bankruptcy polish 96.6 ±0.7% 97.4 ± 0.4% 4.45 2.40 6.00 6.00
cardiotocography 89.5 ±1.3% 80.1 ± 3.3% 4.98 5.15 6.00 6.00

collins 13.2 ±1.8% 16.0 ± 1.2% 5.89 5.89 6.00 6.00
default credit card 82.0 ±0.4% 80.5 ± 0.3% 2.15 3.79 6.00 6.00

dry bean 90.1 ±0.4% 83.9 ± 0.5% 4.76 5.03 6.00 6.00
eeg eye state 74.1 ±0.5% 71.1 ± 0.5% 5.15 5.19 6.00 6.00

htru2 97.7 ±0.2% 97.7 ± 0.1% 2.80 3.26 6.00 6.00
iris 94.2 ±2.6% 86.7 ± 7.0% 2.50 3.34 4.90 5.70

letter recognition 44.9 ±1.2% 37.8 ± 0.5% 5.96 5.87 6.00 6.00
mice 99.9 ±0.2% 71.0 ± 4.1% 3.05 4.93 3.60 6.00

obs network 91.7 ±2.1% 81.2 ± 1.5% 4.47 4.62 6.00 6.00
occupancy room 99.4 ±0.2% 98.6 ± 0.4% 4.72 5.64 6.00 6.00

online shoppers intention 89.3 ±0.5% 89.5 ± 0.6% 3.89 3.49 6.00 6.00
pen digits 88.6 ±2.0% 75.3 ± 1.8% 5.73 5.65 6.00 6.00

poker hand 52.9 ±1.0% 52.0 ± 0.7% 4.61 4.71 6.00 6.00
sensorless 87.4 ±1.0% 74.4 ± 0.4% 5.26 5.47 6.00 6.00
Average 82.3% 76.6% 4.31 4.62 5.58 5.98

Table 10 shows the analogous results for the metrics depthavg and depthwc. We bold-faced values
in column 4 and 6 that show an improvements by at least 25% over EC2. We notice that for 12
datasets our algorithm has better depthavg than EC2. Moreover, considering those where SER-DT’s
performance is worse, on only one the difference is larger than 25% (bankruptcy polish). The values
for the metric depthwc are similar for both algorithms, which is likely due to having set an upper
bound of 6 on the maximum depth. Nonetheless, we observe that for 2 datasets the performance of
SER-DT is significantly better (audit risk and mice).
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E.8 Post-pruning experiments

In this section, we present the results obtained through the application of a post-pruning strategy for
trees. The algorithm consisted of checking if merging two leaves would not decrease the accuracy in
a validation set formed by half of the original test set. If so, these leaves are joined and the algorithm
proceeds recursively to the root.

Table 11 presents the results obtained before and after post-pruning for SER-DT, limiting the
maximum depth to 6 and FactorExpl = 0.97. We observed that post-pruning did not have a
significant effect in terms of accuracy, leading to differences of not more than 0.5% for all datasets.
In terms of explanation size, post-pruning produces smaller explavg for all datasets (as expected,
since we are joining nodes) and for 4 the gain was more than 20% (bold-faced in table). Similarly, the
pruning algorithm led to no worse values of explwc for all datasets, and for 3 of these, the difference
was greater than 20%.

Table 11: Test Accuracy, explavg and explwc for SER-DT with FactorExpl = 0.97, with and
without post-pruning. Each entry is the average of 10 runs using different seeds to select the examples
in the training and testing set. We bold-faced the values (columns 4,5,6 and 7) that represent an
improvement of more than 20% in terms of explainability.

Dataset Test Accuracy explavg explwc

No pruning Pruning No pruning Pruning No pruning Pruning

anuran 94.7% 94.5% 4.78 4.07 6.00 6.00
audit risk 99.9% 99.9% 1.00 1.00 1.00 1.00

avila 61.2% 60.9% 3.06 2.98 4.90 4.90
banknote 97.8% 97.8% 2.44 2.37 3.80 3.40

bankruptcy polish 96.5% 97.3% 2.56 1.45 5.60 4.50
cardiotocography 89.1% 89.4% 4.30 3.76 5.90 5.60

collins 13.1% 13.1% 2.13 1.40 4.40 3.30
default credit card 82.0% 82.0% 1.45 1.29 4.50 3.90

dry bean 90.1% 89.9% 3.32 3.17 5.10 4.70
eeg eye state 73.9% 73.6% 3.69 3.56 5.90 5.80

htru2 97.7% 97.8% 1.20 1.09 4.30 3.70
iris 93.7% 93.2% 1.75 1.44 3.10 1.70

letter recognition 44.9% 44.4% 3.34 3.21 5.50 5.30
mice 100.0% 100.0% 3.05 3.05 3.60 3.60

obs network 92.0% 91.6% 3.48 3.35 5.30 5.30
occupancy room 99.3% 99.3% 4.18 3.22 5.30 4.70

online shoppers intention 89.3% 89.8% 3.30 1.81 5.10 4.00
pen digits 88.7% 88.3% 4.76 4.56 5.80 5.40

poker hand 52.9% 52.9% 1.80 1.78 3.80 3.80
sensorless 87.4% 87.4% 2.94 2.81 4.90 4.80
Average 82.2% 82.1% 2.93 2.57 4.69 4.27
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Table 12 is similar to the previous table but shows metrics depthavg and depthwc. For all datasets,
there is no worsening in these metrics and for 6 of these there is an improvement of more than 20%
in depthavg , while for 1 dataset there is an improvement of more than 20% in depthwc.

Tables 13 and 14 show the results for CART and SER-DT after applying post-pruning. We observe
similar accuracy values for both algorithms. On 7 of the datasets (bold-faced in columns 2 and 3)
we observe a difference of more than 1% in accuracies; on 3 of them, SER-DT outperforms CART
while on the remaining 4, CART is better. In terms of explavg and explwc, our algorithm is clearly
better. Only for 2 datasets CART had better explavg than SER-DT and for 7 datasets our algorithm
outperforms CART by more than 20%. Regarding explwc our algorithm was worst for only 3 datasets,
and for 4 the improvement was more than 20% compared to CART.

For depth-related metrics, we noted more balanced values between the two algorithms when compar-
ing to Table 3 (without post-pruning). As shown in Table 14, considering depthavg our algorithm
is better than CART for 12, worst for 6 and equal for 2 datasets. For 3 datasets the difference is
more than 20%; for 2 of these SER-DT is better while for the remaining one, CART is the winner. In
terms of depthwc we observe close values between the algorithms: only for the dataset bankruptcy
the difference is more than 20%. In this sense, we observe that dataset bankruptcy was an outlier
considering explainability metrics.

Table 12: depthavg and depthwc for SER-DT with FactorExpl = 0.97, with and without post-
pruning. Each entry is the average of 10 runs using different seeds to select the examples in the training
and testing set. We bold-faced the values (columns 2, 3, 4 and 5) that represent an improvement of
more than 20% in terms of explainability.

Dataset depthavg depthwc

No pruning Pruning No pruning Pruning

anuran 5.38 4.44 6.00 6.00
audit risk 1.00 1.00 1.00 1.00

avila 5.14 4.99 6.00 6.00
banknote 4.39 3.69 6.00 5.70

bankruptcy polish 4.45 2.01 6.00 5.30
cardiotocography 4.98 4.12 6.00 6.00

collins 5.89 4.38 6.00 5.90
default credit card 2.15 1.76 6.00 5.90

dry bean 4.76 4.40 6.00 6.00
eeg eye state 5.15 4.85 6.00 6.00

htru2 2.80 2.12 6.00 5.80
iris 2.50 1.74 4.90 2.30

letter recognition 5.96 5.77 6.00 6.00
mice 3.05 3.05 3.60 3.60

obs network 4.47 4.31 6.00 6.00
occupancy room 4.72 3.52 6.00 6.00

online shoppers intention 3.89 2.19 6.00 5.90
pen digits 5.73 5.46 6.00 6.00

poker hand 4.61 4.56 6.00 6.00
sensorless 5.26 5.08 6.00 6.00
Average 4.31 3.67 5.58 5.37
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Table 13: Test Accuracy, explavg and explwc for SER-DT (FactorExpl = 0.97) and CART, both
with post-pruning. Each entry is the average of 10 runs using different seeds to select the examples in
the training and testing set. We bold-faced the values that represent improvements of at least 1% in
accuracies (columns 2 and 3) and increase of more than 20% in terms of explainability (columns 4, 5,
6 and 7).

Dataset Test Accuracy explavg explwc

CART SER-DT CART SER-DT CART SER-DT

anuran 94.3% 94.5% 4.58 4.07 6.00 6.00
audit risk 99.9% 99.9% 1.00 1.00 1.00 1.00

avila 62.7% 60.9% 4.17 2.98 5.40 4.90
banknote 98.2% 97.8% 2.51 2.37 3.20 3.40

bankruptcy polish 97.5% 97.3% 1.15 1.45 2.50 4.50
cardiotocography 89.4% 89.4% 4.02 3.76 5.40 5.60

collins 14.5% 13.1% 3.94 1.40 5.40 3.30
default credit card 82.1% 82.0% 2.38 1.29 5.10 3.90

dry bean 89.7% 89.9% 3.89 3.17 5.80 4.70
eeg eye state 72.9% 73.6% 4.18 3.56 5.80 5.80

htru2 97.8% 97.8% 1.15 1.09 3.70 3.70
iris 93.7% 93.2% 1.54 1.44 1.80 1.70

letter recognition 47.9% 44.4% 5.37 3.21 6.00 5.30
mice 100.0% 100.0% 3.05 3.05 3.60 3.60

obs network 88.4% 91.6% 4.09 3.35 5.80 5.30
occupancy room 99.3% 99.3% 3.17 3.22 4.90 4.70

online shoppers intention 89.8% 89.8% 2.49 1.81 5.50 4.00
pen digits 86.1% 88.3% 4.98 4.56 6.00 5.40

poker hand 55.0% 52.9% 4.28 1.78 5.10 3.80
sensorless 80.1% 87.4% 3.85 2.81 5.40 4.80
Average 82.0% 82.1% 3.29 2.57 4.67 4.27

Table 14: depthavg and depthwc for SER-DT (FactorExpl = 0.97) and CART, both with post-
pruning. We bold-faced the values that represent an improvement of more than 20% in terms of
explainability.

Dataset depthavg depthwc

CART SER-DT CART SER-DT

anuran 4.72 4.44 6.00 6.00
audit risk 1.00 1.00 1.00 1.00

avila 5.19 4.99 6.00 6.00
banknote 3.74 3.69 6.00 5.70

bankruptcy polish 1.17 2.01 2.60 5.30
cardiotocography 4.19 4.12 5.70 6.00

collins 4.95 4.38 6.00 5.90
default credit card 2.39 1.76 5.10 5.90

dry bean 4.55 4.40 6.00 6.00
eeg eye state 5.22 4.85 6.00 6.00

htru2 2.52 2.12 5.80 5.80
iris 1.71 1.74 2.10 2.30

letter recognition 5.80 5.77 6.00 6.00
mice 3.05 3.05 3.60 3.60

obs network 4.19 4.31 6.00 6.00
occupancy room 3.29 3.52 5.70 6.00

online shoppers intention 2.75 2.19 6.00 5.90
pen digits 5.41 5.46 6.00 6.00

poker hand 4.28 4.56 5.20 6.00
sensorless 5.12 5.08 6.00 6.00
Average 3.76 3.67 5.14 5.37
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