Published as a Tiny Paper at ICLR 2023

TOWARDS HANDLING METASTABLE FAILURES IN DIS-
TRIBUTED SYSTEMS WITH OFFLINE RL

Yueying Li'*, Daochen Zha?, Tianjun Zhang?, , Edward Suh!, Christina Delimitrou*, Francis Yan®
!Cornell University ?Rice University ~ *University of California, Berkeley ~*MIT >Microsoft

ABSTRACT

This paper presents a load shedding mechanism that effectively prevents
metastable failures using offline reinforcement learning (RL). Previous ap-
proaches have heavily relied on heuristics that are reactive and exhibit limited gen-
eralizability. Online RL algorithms are ill-equipped to avert or mitigate metastable
failures in real cloud systems due to the challenges in accurately simulating system
dynamics and acquiring data with sufficient coverage. In contrast, our algorithm,
using offline reinforcement learning, learns from existing logging data. Exten-
sive empirical experiments demonstrate that our algorithm outperforms rule-based
methods or supervised learning algorithms in a proactive, adaptive, generalizable,
and safe manner. Deployed in a Java compute service with diverse execution time
distributions and configurations, our algorithm showcases faster reaction times
and achieves the Pareto frontier of throughput and tail latencies.

1 INTRODUCTION

Building reliable cloud services has long been an important area in distributed systems. With the
proliferation of microservice (Gan et al. |a)), it is important for applications to shield their services
from cascading failures and sustained latency degradation (Gan et al., b; |2021). The microservice
design pattern is prone to a new type of failure, metastable failure (Huang et al.,|2022; Bronson et al.,
2021)), a class of system failures characterized by sustaining effects that keep systems in a degraded
state and resist recovery, which were the culprits behind big outages at large internet companies.

We focus on rate limiting to prevent system from such catastrophic failures. Prior works often
adopt heuristics for rate limiting to prevent system overload (Netflix; Kumar; Amazon)). However,
those solutions are more reactive than proactive; systems that encounter metastability still suffer
from long-term capacity degradation. Moreover, some strategies have convergence issues under
non-stationary environments (Figure Lastly, the heuristics need to configure lots of system-
dependent parameters which cannot generalize across different system contexts.

To address these limitations, we explore learning-based approaches for load control to prevent sys-
tem metastability. One natural solution is to use Reinforcement Learning (RL) since this problem
can be naturally treated as a sequential decision process where the rate limit can be predicted based
on the system status at each interval. However, existing online RL algorithms are ill-equipped to
prevent or mitigate metastable failures in the wild for the following reasons: 1) It is hard to access a
high-fidelity simulator that can accurately capture the dynamics; 2) Exploring online and collecting
unsafe data in a real cloud system is infeasible. To address these challenges, we ask: “Is it possi-
ble to train a load-shedding policy solely using existing transformed log data from cloud services,
eliminating the need for extensive tuning of static thresholds for rate limiters?”

Offline reinforcement learning (Levine et al., [2020) has come at rescue as an attractive method
for load control. In this paper, we propose a load-shedder for preventatively mitigating metasta-
bility failures with offline RL. We learn from native system logging data with minimal overhead.
We deploy our solution on a Java compute service which can suffer from Metastability because

'In this figure, we show a typical case where the heuristic-based load shedder cannot react to system state
changes in a timely manner, resulting in cyclic latency spikes and service level objective (SLO) violations

Published as a Tiny Paper at ICLR 2023

of design anti-patterns, demonstrating that our policy can always obtain Pareto frontier compared
with carefully selected heuristics across different contexts (Figure [3)), and react faster by 12% than
heuristics]

2 METHOD

We model the task of load-shedding to resolve overload and prevent metastable failure as a Markov
Decision Process (MDP). Below is the formulation:

Action Space: The output of our RL-based load shedder policy is a rate limit A, (how many requests
to admit per second) at each pre-configured monitoring time window (AT'). However, in order to
be generalizable to different applications with different service time distributions, we scale them
by little’s law. a; = A;Tg.g, Where T, is the average execution time of the requests (excluding
waiting time in the queue, which can be computed from logging data). In deployment, we divide the
action by the 7,4 to obtain the rate limit.

State space: The input to our RL agent is s; = {Qlen,, ewma(Qlen,), Lat;, ewma(Lat,)}. Each
ewma is an exponentially weighted moving average over a time interval [min{0, t —nAT}, t], where
n is a predefined parameter that captures the dependencies in the series of queue lengths (Qlen)
and request latencies (L.at) in the log data. An alternative approach is to concatenate a window
of historical data into the current observed features, but there exists a trade-off between the state’s
dimension and the ability to capture dependencies in the time-series data.

Reward: We start from a well-studied metric in the context of congestion control called Power,
defined as throughput divided by delay (Giessler et al., [1978)). Gail and Kleinrock proved that
the optimal operation point for both the network and individual flows is attained when Power
is maximized (Gail & Kleinrock, [1981). Considering the significance of tail latency in captur-
ing application SLO requirements and metastability signals, we define the reward using aggre-
gated statistics—average throughput and the 95th percentile of tail latency—over a consecutive 10-
second period into the future. This approach helps mitigate the influence of temporal load spikes
and captures the delayed impact of rewards. Formally, the reward R;(«) = Throughput,, [t :
t + nAT]| — o - Latencygs [t : t + nAT], where « controls the trade-off between throughput and
latency. More detailed experimental setups and results are shown in Table[6] [7]and Section[A.4}{A 8]

800 400

g (R R T Ry
D 00 (§ 00 ‘ ‘\ | w0 £ 0. {a00 Generate Reward Learn Offline
Q 0| T 250 ‘ [00 2 {250 2 {as0 £
= 5 o K - (S ar, 841,71}
g 400 g 200 - 400 E 200 o 200 ;
: 00t 150 20 5 10 § 150 g E E
2 200k £ 100 200 () {100 O 100 Collect
< = [C]

100 s0- 100 s0 o

0 0 ' ' ' 0 0 0
o 50 100 150 200 .
Time (s) Application Log Cloud Environment PolicyShedder
(a) Metastable failures (b) An overview of PolicyShedder

Figure 1: (a) Illustration of metastable failure. (b) System high-level diagram of PolicyShedder.
We collect the data from the application and then parse the log with a user-predefined function
to generate rewards and append them to different trajectories. These trajectories are then used to
learn a policy offline ("PolicyShedder”), which is further deployed online to interact with the cloud
environment.

3 CONCLUSION AND OUTLOOK

We present a practical application of offline reinforcement learning (RL) in cloud systems, with a
focus on mitigating critical system failures. This data-driven offline RL-based abstraction provides
a valuable tool for constructing intelligent and reliable distributed systems. An extension of our re-
search is to use a multi-agent formulation to enable load shedding for interconnected cloud services,
thereby protecting applications from cascading failures.

?Reaction time is defined by the time from vulnerable system state with high latency to a normal state.

Published as a Tiny Paper at ICLR 2023

3.1 URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2023 Tiny Papers Track. In this work, Yueying Li meets this criteria.

REFERENCES
Handling overload. URL https://ferd.ca/handling-overload.htmll

Amazon. Amazon: Using load shedding to avoid overload. URL https://aws.amazon.com/
builders—-library/using-load-shedding-to-avoid-overload.

Michael Bain and Claude Sommut. A framework for behavioural cloning. Machine Intelligence,
1999.

Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. Tcp vegas: New techniques for
congestion detection and avoidance. In Proceedings of the conference on Communications archi-
tectures, protocols and applications, pp. 24-35, 1994.

Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and Timothy Zhu. Metastable failures in
distributed systems. In Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS
21, pp. 221-227, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450384384. doi: 10.1145/3458336.3465286. URL https://doi.org/10.1145/
3458336.3465286.

Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control: Measuring bottleneck bandwidth and round-trip propaga-
tion time. Queue, 14(5):20-53, 2016.

Jonathan D. Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mit-
igating covariate shift in imitation learning via offline data without great coverage. CoRR,
abs/2106.03207, 2021. URL https://arxiv.org/abs/2106.03207.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling, 2021.

Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and Michael
Schapira. Pcc vivace: Online-learning congestion control. In /5th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18), pp. 343-356, 2018.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning,
2021.

Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmarking batch
deep reinforcement learning algorithms, 2019a.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052-2062. PMLR, 2019b.

R. Gail and L. Kleinrock. An invariant property of computer network power. In Proceedings of the
International Conference on Communications, pp. 63.1.1-63.1.5, Denver, Colorado, June 14-18,
1981.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno,
Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett
Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo
Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, Christina Delimitrou, Y Zhang, D Cheng,
A Shetty, P Rathi, N Katarki, A Bruno, J Hu, B Ritchken, B Jackson, K Hu, M Pancholi,
Y He, B Clancy, C Colen, F Wen, C Leung, S Wang, L Zaruvinsky, M Espinosa, R Lin,
Z Liu, J Padilla, and C Delimitrou. An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems. a. doi: 10.1145/3297858.3304013.
URL https://doi.org/10.1145/3297858.3304013.

https://ferd.ca/handling-overload.html
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload
https://doi.org/10.1145/3458336.3465286
https://doi.org/10.1145/3458336.3465286
https://arxiv.org/abs/2106.03207
https://doi.org/10.1145/3297858.3304013

Published as a Tiny Paper at ICLR 2023

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and Christina Delim-
itrou. Seer: Leveraging big data to navigate the complexity of performance debugging in cloud
microservices. b. doi: 10.1145/3297858.3304004. URL https://doi.org/10.1145/
3297858.3304004.

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. Sage: Practical and
scalable ml-driven performance debugging in microservices. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 21, pp. 135-151, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383172. doi: 10.1145/3445814.3446700.

Alfred Giessler, J. D. Haenle, Andreas Konig, and E. Pade. Free buffer allocation - an investigation
by simulation. Comput. Networks, 2:191-208, 1978.

Google. Google optimize. URL https://marketingplatform.google.com/about/
optimize/l

Mor Harchol-Balter. Performance modeling and design of computer systems: Queueing theory in
action. URL www.cs.cmu.edu/~harchol/PerformanceModeling/book.html.

Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikrishna, Salman Estyak, Rebecca
Isaacs, Abutalib Aghayev, Timothy Zhu, and Aleksey Charapko. Metastable failures in the wild.
In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), pp.
73-90, Carlsbad, CA, July 2022. USENIX Association. ISBN 978-1-939133-28-1. URL https:
//www.usenix.orqg/conference/osdi22/presentation/huang-lexiang.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization, 2019.

Nathan Jay, Noga H Rotman, P Brighten Godfrey, Michael Schapira, and Aviv Tamar. A deep
reinforcement learning perspective on internet congestion control. URL https://github.
com/PCCproject/PCC—RL.

Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktischel, Edward Grefen-
stette, and Yuandong Tian. Efficient planning in a compact latent action space, 2022.

Pierre-Alexandre Kamienny, Stéphane d’ Ascoli, Guillaume Lample, and Frangois Charton. End-to-
end symbolic regression with transformers. arXiv preprint arXiv:2204.10532, 2022.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning, 2020.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774-5783. PMLR, 2021a.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. CoRR, abs/2110.06169, 2021b. URL https://arxiv.org/abs/2110.061609.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning, 2020.

Vikas Kumar. Load shedding with nginx using adap-
tive concurrency control. URL https://tech.olx.com/
load-shedding-with-nginx-using—-adaptive—-concurrency-control-part-1-e59c7dacaocdf.

Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting
time series outlier detection: Definitions and benchmarks. In Thirty-fifth conference on neural
information processing systems datasets and benchmarks track (round 1).

Kwei-Herng Lai, Daochen Zha, Guanchu Wang, Junjie Xu, Yue Zhao, Devesh Kumar, Yile Chen,
Purav Zumkhawaka, Minyang Wan, Diego Martinez, et al. Tods: An automated time series outlier
detection system. In Proceedings of the aaai conference on artificial intelligence, volume 35, pp.
16060-16062, 2021.

https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3297858.3304004
https://marketingplatform.google.com/about/optimize/
https://marketingplatform.google.com/about/optimize/
www.cs.cmu.edu/~harchol/PerformanceModeling/book.html
https://www.usenix.org/conference/osdi22/presentation/huang-lexiang
https://www.usenix.org/conference/osdi22/presentation/huang-lexiang
https://github.com/PCCproject/PCC-RL
https://github.com/PCCproject/PCC-RL
https://arxiv.org/abs/2110.06169
https://tech.olx.com/load-shedding-with-nginx-using-adaptive-concurrency-control-part-1-e59c7da6a6df
https://tech.olx.com/load-shedding-with-nginx-using-adaptive-concurrency-control-part-1-e59c7da6a6df

Published as a Tiny Paper at ICLR 2023

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems, 2020.

Yuening Li, Daochen Zha, Praveen Venugopal, Na Zou, and Xia Hu. Pyodds: An end-to-end out-
lier detection system with automated machine learning. In Companion Proceedings of the Web
Conference 2020, pp. 153-157, 2020.

Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, and Xia
Hu. Automated anomaly detection via curiosity-guided search and self-imitation learning. /IEEE
Transactions on Neural Networks and Learning Systems, 33(6):2365-2377, 2021a.

Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, and Xia
Hu. Autood: Neural architecture search for outlier detection. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pp. 2117-2122. IEEE, 2021b.

Radhika Mittal, Terry Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David Zats. Timely: Rtt-based congestion control
for the datacenter. In Sigcomm ’15, 2015.

Netflix. Concurrency limiter’s heuristic algorithm. URL https://github.com/Netflix/
concurrency—-limits/blob/master/concurrency—-limits—-core/src/main/
java/com/netflix/concurrency/limits/limit/Gradient2Limit. java#
L76-184.

Brenden K. Petersen, Mikel Landajuela, T. Nathan Mundhenk, Claudio P. Santiago, Soo K. Kim,
and Joanne T. Kim. Deep symbolic regression: Recovering mathematical expressions from data
via risk-seeking policy gradients, 2019.

S P Sharan, Wenqing Zheng, Kuo-Feng Hsu, Jiarong Xing, Ang Chen, and Zhangyang Wang. Sym-
bolic distillation for learned tcp congestion control. ArXiv, abs/2210.16987, 2022.

Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg. D2rl: Deep dense
architectures in reinforcement learning. arXiv preprint arXiv:2010.09163, 2020.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression, 2020.

Keith Winstein and Hari Balakrishnan. Tcp ex machina: Computer-generated congestion control.
ACM SIGCOMM Computer Communication Review, 43(4):123-134, 2013.

Runzhe Wu, Yufeng Zhang, Zhuoran Yang, and Zhaoran Wang. Offline constrained multi-objective
reinforcement learning via pessimistic dual value iteration. Advances in Neural Information Pro-
cessing Systems, 34:25439-25451, 2021.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization, 2021.

Daochen Zha, Kwei-Herng Lai, Mingyang Wan, and Xia Hu. Meta-aad: Active anomaly detec-
tion with deep reinforcement learning. In 2020 IEEE International Conference on Data Mining
(ICDM), pp. 771-780. IEEE, 2020.

Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary, Jade Nie, Yuandong Tian, Jay
Chae, Yinbin Ma, Arun Kejariwal, and Xia Hu. Autoshard: Automated embedding table sharding
for recommender systems. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4461-4471, 2022a.

https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/Gradient2Limit.java#L76-L84
https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/Gradient2Limit.java#L76-L84
https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/Gradient2Limit.java#L76-L84
https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/Gradient2Limit.java#L76-L84

Published as a Tiny Paper at ICLR 2023

Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-Herng Lai, Bhargav Bhushanam, Yuandong
Tian, Arun Kejariwal, and Xia Hu. Dreamshard: Generalizable embedding table placement for
recommender systems. In Advances in Neural Information Processing Systems, 2022b.

Yangqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou. Sinan:
Ml-based and qos-aware resource management for cloud microservices. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 21, pp. 167-181, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450383172. doi: 10.1145/3445814.3446693. URL https:
//dl.acm.orqg/doi/10.1145/3445814.3446693.

https://dl.acm.org/doi/10.1145/3445814.3446693
https://dl.acm.org/doi/10.1145/3445814.3446693

Published as a Tiny Paper at ICLR 2023

A APPENDIX

A.1 RELATED WORK
A.1.1 OFFLINE RL

In offline RL, a policy is learned from logged data, collected from an environment over a period of
time, interaction with the environment is not required. The policy used affects the data distribution
collected from an environment. When a policy is learned using an offline dataset, the data distribu-
tion when the learned policy is in use differs from the logged data, resulting in a data distribution
shift. This remains the fundamental problem with offline RL and several different approaches have
been proposed to tackle it.

Offline RL methods can be grouped into two categories in terms of learning and utilizing a model
of the environment. Model-based offline RL methods (Janner et al., 2019; [Kidambi et al., [2020; | Yu
et al., [2020; [2021}; Jiang et al., 2022} [Zha et al., 2022bza) train a model of the environment using
state-action transitions from the logged data. These methods utilize the learned model to generate
synthetic episodes, controlled by the policy being trained. The policy parameters are updated using
a combination of real episodes (from the logged data) and synthetic ones until convergence. On
the other hand, model-free methods (Fujimoto et al., [2019ajb; [Kumar et al., [2020; |Wang et al.,
2020; |[Kostrikov et al.l |2021a) learn a policy that maps states to actions to maximize returns directly.
Our methods directly leverage IQL but change the action partition and normalization to be able to
generalize to different contexts.

A.1.2 PERFORMANCE DEBUGGING, ANOMALY DETECTION, AND ROOT CAUSE ANALYSIS

Anomaly detection has been widely studied in machine learning |Zha et al.|(2020); Lai et al.| (2021);
Lai et al.; |Li et al.| (2021a:bj, 2020). Recently, anomaly detection has been applied to performance
debugging in cloud services (Gan et al., 2021} b; |[Zhang et al., 2021). Sage uses unsupervised
learning and Causal Bayesian Networks for modeling causal relationships among microservices and
uses counterfactuals to detect root causes (services and resources) of latency service-level objective
(SLO) violation. 93% accuracy in correctly identifying the root cause of QoS violations.

Our problem of mitigating metastable failure is related to but different from performance debugging
or mitigating SLO violation. They are related because learning-based methods have great poten-
tial to improve the reliability of distributed systems by learning through history logs/traces/metrics.
Instead of coding hard-wired mapping of predefined signals/events for an anomaly to mitigation
actions (like restarting servers, rebooting, or adding more resources through auto-scaling), the adap-
tation of anomaly detection and mitigation to new contexts can become an automatic procedure done
by machines in a few days with retraining.

They are also different. Performance debugging for SLO violations can be caused by the contention
of resources and can be mitigated by resource isolation or auto-scaling. For a metastability failure, it
is characterized by a sustaining effect loop either by capacity degradation or workload amplification,
which complicates the mitigation strategies.

A.2 BACKGROUND

We first discussed how we arrive at the right formulation and abstraction. Our problem boils down
to setting the right rate or concurrency limit for a service, according to the observed service status
(latency, queue size, etc.) When enabled, our limiter will reject excess RPS (request per second)
to allow instances to run at a safe and stable state. Our goal is to maximize the throughput and
minimize the tail latency of the service and prevent metastable failures from happening when the
system enters a vulnerable stateﬂ

In order to find the right limit of cloud service at the application level, traditionally, people draw
wisdom from queuing theory (Harchol-Balter) and manually configured fixed concurrency limits
measured via a process of performance testing and profiling. While this provided an accurate value at

3Extended discussion on how metastable state and vulnerable state are defined can be found in[Huang et al.
(2022).

Published as a Tiny Paper at ICLR 2023

that moment in time, the measured limit would quickly become stale as a system’s topology changes
due to partial outages, auto-scaling, or from code push that impact latency characteristics (url).

Adaptive rule-based approach: A natural solution is to use an adaptive rate limiter, or equiv-
alently, a concurrency limiter. An industry example of an adaptive concurrency limiter is from
Netflix (Netflix), which draws inspiration from TCP congestion control algorithms (Cardwell et al.,
2016; [Brakmo et al.L|1994; Winstein & Balakrishnan,2013]), that seek to determine how many pack-
ets may be transmitted at a time without incurring timeouts or increased latency. These algorithms,
when deployed on the server side, are based on the assumption that latencies are good proxies for
queuing. However, when the system is going under a metastable state - each request in the queue
could take longer to execute; and moreover, the latency distributions of services could be drastically
different. Hence these methods are neither accurate enough to capture system state changes nor
generalizable enough to unseen system conditions to prevent or to mitigate metastable failures.

Adaptive online learning/reinforcement learning: Similarly, people can use online learning to dy-
namically adjust the load based on real-time feedback, according to a learned policy (Jay et al.). As
an example, using multi-armed bandit or implementing more sophisticated RL-based adaptive online
learning to take more states into account has shown promising performance in network congestion
control problem (Dong et al., 2018} |[Mittal et al.,|2015). Online learning has shown some promise
in other applications too (Google), however, to implement fully online learning algorithms in the
real world, it is necessary to collect responses and update configurations in near real-time, which
poses significant challenges to the infrastructure. Non-Bayesian online algorithms tend to explore
extensively in the initial rounds. This can have a major impact on user experience and lead to SLO
violation before the algorithm converges. Furthermore, since the environment is non-stationary, the
algorithm may be consistently in the exploration phase, which may cause convergence issues.

Offline (un-/semi-/supervised) learning: The third option is to learn a policy from logging data
without expensive online exploration with a supervised learning approach like behavior cloning
(BC) (Bain & Sommut] [1999). Supervised learning is suitable if we can learn a mapping from the
state of the system, load shedding action to the utility function of predicted latency and throughput
of the service. It is used in congestion control literature. However, this is untenable due to the large
state space across different services. Furthermore, inaccurate predictions can cause a feedback cycle
known as cascading errors in the long term (Chang et al., 2021). In our problem setup, if we have
a slight prediction error that predicts a sub-optimal action, errors can be compounded and lead to
more unstable failures.

A.3 PRELIMINARIES FOR OFFLINE RL

The RL problem is formulated in the context of a Markov decision process (MDP)
(S, A, po(s),p(s|s,a),r(s,a),7), where S is a state space, A is an action space, po(s) is a dis-
tribution of initial states, p(s’|s, a) is the environment dynamics, (s, a) is a reward function, and
is a discount factor. The agent interacts with the MDP according to a policy 7(a|s). The goal is to
obtain a policy that maximizes the cumulative discounted returns:

(o]
7 = argmax E, thr(st, at)|so ~ po(+),ar ~ mw(:|st), sex1 ~ p(*|S¢, ar)
T t=0
Off-policy RL methods based on approximate dynamic programming typically utilize a state-action
value function (Q-function), referred to as Q(s,a), which corresponds to the discounted returns
obtained by starting from the state s and action a, and then following the policy 7.

Offline reinforcement learning with implicit Q-learning. In contrast to online (on-policy or off-
policy) RL methods, offline RL uses previously collected data without any additional data collec-
tion. Like many recent offline RL methods, our work builds on approximate dynamic programming
methods that minimize temporal difference error, according to the following loss:

LTD(Q) = E(S’a’S/)ND[(T(S, a) + ’YIIZE}X Qé(sl, a/) _ QQ(S’ a))Q]7 (1)

where D is the dataset, Qy(s,a) is a parameterized Q-function, Q,(s, a) is a target network (e.g.,
with soft parameters updates defined via Polyak averaging), and the policy is defined as w(s) =

arg max, Qo(s,a).

Published as a Tiny Paper at ICLR 2023

There are three functions to train in IQL:

Ly (¥) = E(s,ay~D[L3(Qo(s,a) — Vis(s))]

where L} (u) = |7 — 1(u < 0)]u?.

The Q-function is trained with the state-value function to avoid querying the actions.
Lq(0) = Es,a,nan~nl(r +7Vi(s) = Qo(s,a))?]

Finally, the policy function is trained by using advantage-weighted regression.

Lx(9)

A.4 EXPERIMENTS

= E(s,a)~p[exp(8(Qo — Vi (s))) log e (als)]

Table 1: Rewards of PolicyShedder and the baselines with different average execution times.

Method In-distribution Out-of-distribution Metastability
80ms | 100 ms [120 ms 60 ms [140 ms all

Best heuristic | 41.17 £ 0.87 | 24.99 £0.71 | 1047 +0.84 | 31.00 £3.41 | -21.44 £0.92 1/5

BC 19.91 £ 12.87|-129.69 + 34.56|-442.12 4 34.23|-184.36 + 28.38|-573.23 +41.23 4/5

IQL 50.47 £1.60| 30.20 £1.65 | 1359+ 1.27 | 41.06 £ 1.57 | -1.68 &+ 1.41 2/5

TD3+BC 3220+ 1.65| 12.34+324 | -43.56 £-6.94 | -6.12+6.34 942 +2.83 2/5

DT 2499 +£0.71| 2348 +3.71 | 1336 £9.97 | -39.12+89 19.34 £ 1.70 1/5

CQL 1359 +1.27| -418£0.21 | -450+234 | -1.36 £0.97 9.19 £ 2.78 3/5

Online RL 398 £1.39 | -12.18 £9.51 | -45.05 +2.34 | -32.67 £9.69 |-59.91 & 24.45 5/5

PolicyShedder| 53.05 + 1.50 | 29.14 +2.13 | 16.59 £ 0.29 | 4520 +1.22 | 32.45 + 3.21 0/5

We train PolicyShedder on the log data collected from java application environments with different
average execution times and heap sizes, where the execution time of these applications ranges from
{80, 100, 120} (ms), and the heap size is in {192, 256, 512} (MB). The logging policy is a heuristic
policy based on TIMELY algorithm (Mittal et al.| 2015), which is widely used in datacenter.

The initial version of PolicyShedder is trained with implicit Q-learning (IQL) (Kostrikov et al.,
2021b). We used around 500 trajectories with the reward (o = 0.25), and each trajectory contains
around 4 minutes of logging data with monitoring interval as 1 sec. To adapt to sporadic traffic, we
choose AT = min{1, time with at least 3 consecutive requests}. However, we found this vanilla
offline RL approach is not able to reason about the performance well under distribution shift in
transition dynamics (which is the key characteristic of Metastable system, compared to traditional
congestion control). Hence, we proposed to use feature normalization and advantage weighted
reweighting for our datasets.

To evaluate the generalizability of PolicyShedder, we test in both in-distribution and out-of-
distribution environments. The former uses the same ranges of execution times and the heap sizes,
while for the latter, the execution time is selected from {60, 140} and only the heap size is selected
in the same range. We compare PolicyShedder with several different baselines: 1) Heuristic: It
uses heuristic strategies (Netflix) to control the rate limit in a certain range. E] We adopt grid-search
for the heuristics and report the best result. 2) Behavior cloning (BC) and Offline RL: BC is
an imitation learning algorithm; it uses supervised learning losses to train the policy to imitate the
behavioral policies recorded in the log. We include it as it is a common baseline in offline RL re-
search (Kostrikov et al., [2021b; Kumar et al., [2020). We also choose the mostly widely used offline
RL methods, including one-step, pessimistic, and conservative algorithms. Specifically, we imple-
ment Conservative Q-learning (CQL) (Kumar et al., 2020), Implicit Q-learning (IQL) (Kostrikov
et al.,[2021b), TD3+BC (Fujimoto & Gu, [2021)), Decision transformer (DT) (Chen et al.,|2021)))

*Originally, we use the load-shedder baseline simply as the one in (Netflix). Note that the concurrency limit
can be translated to the rate limit because we know the system queue lengths at each time stamp. However, we
found that the heuristic is not able to fully prevent the metastable failure from happening due to the delayed
nature of load-shedding actions, and requires some prior knowledge of service concurrency limit. Hence, we
improve upon the baseline with a stronger version of concurrency control (Mittal et al., [2015)).

Published as a Tiny Paper at ICLR 2023

Table [7| summarizes the results. Observation 1: PolicyShedder significantly outperforms the best
heuristic, showing the promise of handling metastable failures with offline RL. Observation 2:
Behavior cloning delivers unsatisfactory performance. This is because the log contains both good
and bad behaviors. The supervised policy may have learned undesirable behaviors from the log.

A.5 HYPERPARAMETERS

Table 2: Hyperparameter of Behavior Cloning (BC).

Hyperparameter | Value

Batch size 100
Regularization factor | 0.5

Table 3: Hyperparameter of Implicit Q-Learning (IQL).

Hyperparameter \ Value
Actor learning rate 3x 1074
Critic learning rate 3x 1074
Actor optimizer Adam
Critic optimizer Adam
Batch size 256
N-step TD calculation 1
Discount factor 0.99
Target network synchronization coefficiency 0.005
The number of Q functions for ensemble 2

The expectile value for value function training | 0.7
Inverse temperature value 3.0

The maximum advantage weight value to clip | 100.0

Table 4: Hyperparameter of TD3+BC.

Hyperparameter \ Value
Actor learning rate 3x 1074
Critic learning rate 3x 1074
Batch size 256
N-step TD calculation 1
Discount factor 0.99
Target network synchronization coefficiency | 0.005
The number of Q functions for ensemble 2
Standard deviation for target noise 0.2
Clipping range for target noise 0.5
Alpha 2.5
Interval to update policy function 2

10

Published as a Tiny Paper at ICLR 2023

Table 5: Hyperparameter of Conservative Q-Learning (CQL).

Hyperparameter | Value
Actor learning rate 3x107*
Critic learning rate 3x 1074
Learning rate for temperature parameter of SAC | 1 x 1074
Learning rate for alpha 1x107%
Batch size 256
N-step TD calculation 1
Discount factor 0.99
Target network synchronization coefficiency 0.005
The number of Q functions for ensemble 2

Initial temperature value 1.0
Initial alpha value 1.0
Threshold value 10.0
Constant weight to scale conservative loss 5.0

The number of sampled actions to compute 10

A.6 ABLATION STUDIES

Table 6: Model ablation studies.

Dropout Hidden Dense BatchNorm Overhead (s) In-distribution 00D

MLP-1 0.5 [32,32] No Yes 0.0032 34+1.65 385+1.34
MLP-2 05 [16,16] No Yes 0.0031 324+£2.09 3244223
MLP-3 05 [8, 8] No Yes 0.0031 235+£194 -192+234
MLP-4 0.2 [32,32] No No 0.0032 26+ 142 234+122
MLP-5 05 [32,32] No No 0.0031 30.5+0.65 33.3+3.88
MLP-6 0.8 [32,32] No No 0.0031 22+123 332+532
MLP-7 NA [32,32] No No 0.0028 28.25+1.21 31.24+4.20
MLP-8 05 [32,32,32] No Yes 0.0035 355+£1.01 453 +4.39
MLP-9 0.5 [32,32,32,32] No Yes 0.0036 34.75£0.49 43.54+3.23
MLP-10 0.5 [32,32] Yes Yes 0.0033 36 £2.65 4954132
Linear 0.5 [32] No Yes 0.0028 575+192 -35+1.21

We now study how each design choice affects performance. Here we aggregate the score across the
in-distribution and OOD setups.

Feature choices: FDC1: choice of multiple feature inputs including memory and CPU utilization;
FDC2: without normalization; FDC3: without EWMA features. Surprisingly, we find that additional
features like memory and CPU utilization are not helpful in improving the model performance.

Model choices: MDC1: use DNN model; MDC2: use LSTM model. We observed that although
changing the policy network to a more complex LSTM model seems to be able to get us a slightly
higher score, the overhead introduced by the additional complexity overshadows the benefit.

Look-ahead interval: We sweep n = 5,10, 15 for the look-ahead window into the future in the
reward formulation. In essence, a smaller window makes the system less reactive but may be more
sensitive to spurious long requests.

In Table [6] we consider different model architectures, reporting both system overhead and model
performance for in distribution and out-of-distribution experiments under different neural architec-
tures. We can see that the overhead is not sensitive to the shape of hidden layers (MLP - 7-9);
however, the more the number of layers, the more the agent’s performance and sample complexity
deteriorates (Sinha et al.,2020). The model performance is sensitive to the dense connections (MLP
- 10 vs MLP - 1), especially for OOD environment. Moreover, the wider the hidden layers and the
more dropouts, the better the generalizability.

11

Published as a Tiny Paper at ICLR 2023

30 1

20 A

10 1

Mean normalized score

Full FDC1 FDC2 FDC3 MDC1 MDC2 =0 6=2 6=4 6=320 n=5 n=10 n=15

Full Model Feature Choices B Model Choices Bl Temperature Weighting B Lookahead Interval

Figure 2: Ablation studies

A.7 OOD PERFORMANCE

In this section, we focus on PolicyShedder’s performance under the distribution shift. We make the
service have a higher / lower average execution time due to the code upgrade, and report its per-
formance across different system setups. We observe that compared with Behavoir cloning which
simply learns from the heuristics, it is better at reasoning about the right actions under OOD envi-
ronment.

Table 7: Out-of-distribution rewards on different execution times and heap sizes for the best heuristic
(80, 120, 0.75), behavior cloning, and our PolicyShedder. The best reward is highlighted in boldface,
and the second best reward is underlined.

Method | Execution time 90 | Execution time 140
192 | 256 | 512 | 192 | 26 | 512
(80, 120, 0.75) 29.65 27.66 35.69 -20.20 -21.75 -22.37
Behavior cloning -708.82 -1550.01 -1678.25 -5086.85 -4070.34 -4898.35
PolicyShedder 43.28 39.88 40.03 -1.67 0.05 -3.40

A.8 VISUALIZATION

Figure [3]shows that PolicyShedder achieves a better tradeoff between throughput and latency com-
pared with the heuristics., i.e., higher throughput and lower latency across all system configurations.
The legend tuple shows the average execution time (ms) of the requests in the workload and garbage
collection (GC) heap size (MB) configurations.

12

Published as a Tiny Paper at ICLR 2023

90

80

70

Throughput (req/s)

60

80

70

60

Throughput (req/s)

50

40

60

40

Throughput (req/s)

20

200 400

95% Tail Latency (ms)

100 200 300

95% Tail Latency (ms)

500 1000

95% Tail Latency (ms)

400

Throughput (req/s) Throughput (req/s)

Throughput (req/s)

90

80

70

60

100 200 300

95% Tail Latency (ms)

80

70

60

50

100 200 300

95% Tail Latency (ms)

60

40

20

200

400 600

95% Tail Latency (ms)

Throughput (req/s)

400

Throughput (req/s)

400

Throughput (req/s)

800

90

80

70

60

70

60

50

60

40

20

(¢]
Y
100 200 300 400
95% Tail Latency (ms)
o
-
100 200 300
95% Tail Latency (ms)
S
100 200 300

95% Tail Latency (ms)

400

80,256
80,512

80,192

100,192
100,256
100,512
120,256
120,192
120,512

oooeoo0o0000

Figure 3: Visualization of PolicyShedder against the heuristics, where PolicyShedder is highlighted
as solid selected points.

A9

CASE STUDY
0 100 200

6000

z
5
T
3

4000

Rate Limit

2000

(d) PolicyShedder (execution 100)

0 o

Rate Limit

(b) Heuristic (execution 140)

20k
100

15k

Rate Limit

(e) PolicyShedder (execution 140)

120

100

80|

Rate Limit

0 100

Throughput

200

(c) Heuristic (execution 160)

3000

2000

Rate Limit

1000

0 0

(f) PolicyShedder (execution 160)

Figure 4: Visualization of the misconfigured heuristic policy when the system has a code upgrade
that makes average execution time from 140 ms to 160 ms. The heuristics’ reaction time is longer
compared with PolicyShedder by average 12%. (a) vs (d) shows how our system is more stable.
(b) vs (e) shows a misconfigured heuristic could end up sacrificing the long-term throughput of the
service, while our PolicyShedder is less conservative. (c) vs (f) further demonstrate a much faster
reaction.

13

Published as a Tiny Paper at ICLR 2023

A.10 FUTURE WORK

A.10.1 EXPLAINABILITY

Currently, the rate limit is the decision outcome of a neural network. The network is a simple 2 layer
To facilitate better explainability, we can adopt methods in symbolic regression to offer lightweight
execution and interpretability (Kamienny et al., 2022 |[Petersen et al., 2019). Symbolic regression
closes the gap between the infeasibility of searching directly in the huge symbolic algorithm space
and the differentiable training of uninterpretable neural networks (Sharan et al., 2022).

A.10.2 MULTI-OBJECTIVE RL

The objective (reward) currently is set to strike a balance between latency and throughput, and
prevention of Metastable failures. However, when an application has a different trade-off, we need
to re-parse the logged data and retrain the agent to be deployed online. However, there are some
frameworks in multi-objective RL (Yang et al.,|2019; /Wu et al., 2021) to help reduce the retraining
overhead under different trade-offs that different users prefer.

14

	Introduction
	Method
	Conclusion and Outlook
	URM Statement

	Appendix
	Related Work
	Offline RL
	Performance Debugging, Anomaly Detection, and Root Cause Analysis

	Background
	Preliminaries for Offline RL
	Experiments
	Hyperparameters
	Ablation Studies
	OOD performance
	Visualization
	Case Study
	Future Work
	Explainability
	Multi-objective RL

