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Abstract

Batch Normalization (BN) is a core and prevalent technique in accelerating the1

training of deep neural networks and improving the generalization on Computer2

Vision (CV) tasks. However, it fails to defend its position in Natural Language3

Processing (NLP), which is dominated by Layer Normalization (LN). In this paper,4

we are trying to answer why BN usually performs worse than LN in NLP tasks5

with Transformer models. We find that the inconsistency between training and6

inference of BN is the leading cause that results in the failure of BN in NLP.7

We define Training Inference Discrepancy (TID) to quantitatively measure this8

inconsistency and reveal that TID can indicate BN’s performance, supported by9

extensive experiments, including image classification, neural machine translation,10

language modeling, sequence labeling, and text classification tasks. We find that11

BN can obtain much better test performance than LN when TID keeps small through12

training. To suppress the explosion of TID, we propose Regularized BN (RBN) that13

adds a simple regularization term to narrow the gap between batch statistics and14

population statistics of BN. RBN improves the performance of BN consistently and15

outperforms or is on par with LN on 17 out of 20 settings, involving ten datasets16

and two common variants of Transformer.17

1 Introduction18

Deep learning [19] has revolutionized Computer Vision (CV) [18] and Natural Language Processing19

(NLP) [39]. Normalization layers are key components to stabilize and accelerate the training in20

Deep Neural Networks (DNNs). In CV, Batch Normalization (BN) [15] is the default normalization21

technique and reveals superior performance over other normalization techniques in image recognition22

tasks by enforcing the input of a neuron to have zero mean and unit variance within a mini-batch23

data. Furthermore, a growing number of theoretical works analyze the excellent properties of BN24

in benefiting optimization [15, 34, 4, 12, 7, 8]. While BN almost dominates in CV with empirical25

success and theoretical properties, Layer Normalization (LN) is the leading normalization technique26

in NLP, especially for Transformer models that achieve the state-of-the-art performance on extensive27

tasks, including machine translation [39], natural language understanding [9], text generation [32],28

few shot learning[5], to name a few. As a direct substitute of LN, BN performs poorly in Transformer29

for neural machine translation [36]. It remains elusive to explain the failure of BN in NLP community.30

In this work, we are trying to take a step forward. Our contributions are summarized as follows:31

• We find that the inconsistency between training and inference leads to the failure of BN32

in NLP, supported by our extensive experiments, including image classification, neural33

machine translation, language modeling, sequence labeling, and text classification tasks.34

• We define Training Inference Discrepancy (TID) to quantitatively measure this inconsistency35

and show that TID can serve as an indicator of BN’s performance. In particular, BN reaches36
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much better test performance than LN when TID keeps small through training, e.g., in image37

recognition and language modeling tasks.38

• We propose Regularized BN (RBN) that adds a regularization term in BN to penalize and39

reduce the TID when the TID of BN is large. We reveal the optimization advantages of RBN40

over LN by exploring the layer-wise training dynamics of Transformer.41

• We empirically show that RBN can exceed or match the performance of LN, sometimes with42

a large margin, on 17 out of 20 settings, involving ten datasets and two common variants of43

Transformer. Besides, RBN introduces no extra computation at inference compared to LN.44

2 Related Work45

Analyses of BN’s Success As BN becomes an indispensable component in deep neural networks46

deployed in CV tasks, a bunch of works explore the theoretical reasons behind its success. From47

the view of optimization, the original BN paper[15] argues that BN can reduce internal covariate48

shift and thus stabilize the training, while Santurkar et al. [34] debate that BN could smooth the49

loss landscape and thus enable training of neural network with larger learning rate[4]. Daneshmand50

et al. [7, 8] prove that a stack of randomized linear layers and BN layers will endow the intermediate51

features of neural network with sufficient numerical rank as depth increases, which is beneficial for52

optimization and learning discriminative hierarchical features. Huang et al. [12] show that BN could53

improve the layer-wise conditioning of the neural network optimization by exploring the spectrum of54

Hessian matrix with block diagonal approximation[26]. From the view of generalization, Ioffe and55

Szegedy [15], Luo et al. [23], Li et al. [20], Wu and Johnson [41] argue that BN serves as regularizer56

which reduces over-fitting when its stochasticity is small and may have detrimental effect when it is57

large[41]. Huang et al. [11] further propose Stochastic Normalization Disturbance (SND) to measure58

such stochasticity and shows that large SND will hinder the training of neural networks.59

Training Inference Inconsistency of BN Normalizing along the batch dimension usually intro-60

duces training inference inconsistency since mini-batch data is neither necessary nor desirable during61

inference. BN uses population statistics, estimated by running average over mini-batch statistics,62

for inference. The training inference inconsistency usually harms the performance of BN for small-63

batch-size training since the estimation of population statistics could be inaccurate [40]. One way64

to reduce the inconsistency between training and inference is to exploit the estimated population65

statistics for normalization during training [14, 6, 44, 47, 46]. These works may outperform BN66

when the batch size is small, where inaccurate estimation may be the main issue[15, 16], but they67

usually work inferior to BN under moderate batch-size training [22]. Another way to reduce the68

inconsistency is estimating corrected normalization statistics during inference only, either for domain69

adaptation [21], corruption robustness [35, 29, 2], or small-batch-size training [37, 38]. We note that70

a recent work [13] investigates the estimation shift problem of BN. Unlike this work that addresses71

the accumulated estimation shift due to the stack of BNs for CNNs in CV tasks, our work pays more72

attention to how the training inference inconsistency of BN correlates with its performances for73

Transformers in NLP tasks. Besides, the estimation shift of BN defined in [13], which addresses the74

differences between the estimated population statistics and the expected statistics, differs from our75

TID of BN that addresses the differences between the mini-batch statistics and populations statistics.76

Exploring the Failure of BN in Transformer Similar to our work, PowerNorm[36] also inves-77

tigates the reason behind the failure of BN in Transformers. Our work significantly differs from78

PowerNorm[36] in the following facets. PowerNorm attributes the failure of BN to the unstable79

training of BN incurred by fluctuated forward and backward batch statistics with outlier values, while80

we observe that the training of BN is as good as LN and the inconsistency between training and81

inference of BN matters more. Based on our observation, we propose a regularization term to reduce82

the TID of BN. Compared with PowerNorm, which incorporates a layer-scale layer[48], our method83

introduces no extra computation at inference. Besides, we use a more reasonable index to measure84

inconsistency which is invariant to the scale of data. Furthermore, we show that our RBN can improve85

the layer-wise training dynamics of LN, which reveals the optimization advantages of RBN.86

3 Analyses of Training Inference Inconsistency in TransformerBN87

3.1 Preliminary88

Batch Normalization (BN) [15] is typically used to stabilize and accelerate DNN’s training. Let89

x ∈ Rd denote the d-dimensional input to a neural network layer. During training, BN standardizes90
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Figure 1: Train loss, validation loss/BLEU of Transformer trained on IWSLT14 with BN and LN.
The training of TransformerBN is better than TransformerLN while the validation loss/BLEU of
TransformerBN underperforms that of TransformerLN after 8 epoch. At the end of the training,
TransformerBN falls behind TransformerLN with large BLEU scores. Lower loss and higher BLEU
scores indicate better performance. Based on the inconsistency of training and validation perfor-
mance of BN, we hypothesize that the training inference discrepancy of BN causes its performance
degradation.

each neuron/channel within m mini-batch data by191

x̂j = BNtrain(xj) =
xj − µB,j√

σ2
B,j

, j = 1, 2, ..., d, (1)

where µB,j = 1
m

∑m
i=1 x

(i)
j and σ2

B,j = 1
m

∑m
i=1(x

(i)
j − µB,j)

2 are the mini-batch mean and92

variance for each neuron, respectively. Note that an extra small number ε is usually added to the93

variance in practice to prevent numerical instability. During inference, the population mean µ and94

variance σ2 of the layer input are required for BN to make a deterministic prediction [15] as:95

x̂j = BNinf (xj) =
xj − µj√

σ2
j

, j = 1, 2, ..., d. (2)

These population statistics {µ, σ2} are usually calculated as the running average of mini-batch96

statistics over different training iteration t with an update factor α as follows:97 {
µ(t) = (1− α)µ(t−1) + αµ

(t)
B ,

(σ2)(t) = (1− α)(σ2)(t−1) + α(σ2
B)

(t).
(3)

The discrepancy of BN for normalization during training (using Eqn. 1) and inference (using Eqn. 2)98

can produce stochasticity, since the population statistics of BN are estimated from the mini-batch99

statistics that depend on the sampled mini-batch inputs. This discrepancy is believed to benefit the100

generalization [15, 11] if the stochasticity is well controlled. However, this discrepancy usually harms101

the performance of small-batch-size training [40] since the estimation of population statistics can102

be inaccurate. To address this problem, a bunch of batch-free normalizations are proposed that use103

consistent operations during training and inference, e.g., Layer Normalization (LN) [1].104

Basic Observations To analyze the failure of BN in NLP tasks, we first plot the training loss and105

validation loss/BLEU[31] of BN and LN on IWSLT14 (De-En) dataset with the original Transformer106

model (see Figure 1). We observe that the training of TransformerBN is faster than TransformerLN .107

The training nll_loss of BN is even smaller than that of LN, especially at the beginning. However, val-108

idation loss/BLEU of BN is worse than that of LN after around the seventh epoch. This phenomenon109

can not be attributed to over-fitting since BN introduces more stochasticity than LN in the training110

phase. The inconsistency between training and inference of BN may play a role.111

Since BN in ResNet18 also involves training inference inconsistency, we guess the degree of such112

inconsistency has a difference between ResNet18 and TransformerBN . Therefore, we plot the113

deviation of batch statistics to population statistics of BN in ResNet18 and TransformerBN in114

Figure 2 (top) to make a comparison. ResNet18 is trained on CIFAR-10[17] and accuracy will drop 2115

percent if we replace BN with LN. We find that at the end of the training, TransformerBN has a much116

bigger mean and variance deviation than ResNet18. Besides, the last several BN layers that are close117

1BN usually uses extra learnable scale and shift parameters [15] to recover the potentially reduced represen-
tation capacity, and we omit them since they are not relevant to our discussion.
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Figure 2: Top: The average deviation of batch mean µB (left figure) and batch variance σ2
B (right

figure) to population mean µ and population variance σ2 of all BN layers through training in
ResNet18 and TransformerBN . There are 21 BN layers in ResNet18 and 12 BN layers in the encoder
of TransformerBN . At the end of training, ResNet18 has mean/variance deviation of around 4%/4%
and those in TransformerBN are around 11%/13%. Large deviation of statistics hurts the performance
of TransformerBN . Bottom: Variance deviation of BN layers with different depths (left) at the end of
training and variance deviation over depth and training progress (right).

to the output in TransformerBN have large variance deviation (Figure 2 (bottom)), which negatively118

impact the model output. Furthermore, the performance degradation of TransformerBN coincides119

with the increase of variance deviation by comparing Figure 1 (right) and Figure 2 (bottom right).120

Based on these observations, we hypothesize that the inconsistency between training and inference of121

BN causes BN’s performance degradation in neural machine translation. We first mathematically122

define the training inference discrepancy of BN in the next subsection.123

3.2 Training Inference Discrepancy124

By observing Eqns. 1 and 2, the normalized output during training can be calculated as:125

xj − µB,j
σB,j

=

(
xj − µj
σj

+
µj − µB,j

σj

)
σj
σB,j

, j = 1, 2, ..., d, (4)

where σB,j > 0 and σj > 0 are the standard deviation for the j-th dimension. We can see µj−µB,j

σj
126

and σj

σB,j
can be viewed as random variables. Their magnitude can characterize the diversity of127

mini-batch examples during training and indicate how hard the estimation of population statistics128

is. We thus define the training inference discrepancy to quantitatively measure the inconsistency as129

follows.130

Definition 1 (Training Inference Discrepancy (TID)). Let pB be the distribution of batch data. Given131

a mini-batch data X sampled from pB , we define the TID of its mean and variance (with respect to132
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Table 1: Results for performance and TID of last BN layer with Post-Norm (top) and Pre-Norm
(bottom) Transformers on four tasks containing ten datasets. We use BLEU scores (%)/perplexity/F1
score (%)/accuracy (%) to measure the model performance on neural machine translation/language
modeling/named entity recognition/text classification. "+" ("-") means the bigger (smaller) the
better. Post-LN means the Post-Norm Transformer with LN. Performance gap is the subtraction
of performance of BN and LN. Positive (Negative) Performance gap indicates BN performs better
(worse) than LN.

Task NMT (+) LM (-) NER (+) TextCls (+)

Datasets IWSLT14 WMT16 PTB WT103 Resume CoNLL IMDB Sogou DBPedia Yelp

Post-LN 35.5 27.3 53.2 20.9 94.8 91.3 84.1 94.6 97.5 93.3
Post-BN 34.0 25.0 45.9 17.2 94.5 90.9 84.0 94.3 97.5 93.3

Performance Gap -1.5 -2.3 7.3 3.7 -0.3 -0.4 -0.1 -0.3 0 0
Mean TID of BNlast 1.5% 4.2% 0.9% 1.8% 1.7% 4.2% 1.8% 1.8% 2.2% 3.1%
Var TID of BNlast 10.6% 17.9% 1.1% 2.0% 3.7% 9.5% 3.9% 4.3% 3.5% 4.0%

Pre-LN 35.5 27.3 54.5 24.6 94.0 91.0 84.1 94.5 97.5 93.3
Pre-BN 34.8 25.2 45.9 17.8 93.2 89.9 84.0 94.3 97.5 93.3

Performance Gap -0.7 -2.1 8.6 6.8 -0.8 -1.1 -0.1 -0.2 0 0
Mean TID of BNlast 3.4% 7.9% 1.6% 2.4% 9.6% 10.0% 2.9% 7.5% 3.9% 12.1%
Var TID of BNlast 4.6% 30.1% 1.7% 2.5% 6.5% 6.4% 6.2% 7.1% 3.3% 8.6%

model parameter θ) as:133

Mean TID = EX∼pB
‖µB − µ‖2
‖σ‖2

Variance TID = EX∼pB
‖σB − σ‖2
‖σ‖2

(5)

In terms of computing the TID in practice, we add a small positive constant in the denominator to134

avoid numerical instability. We save the checkpoint at the end of each epoch and before training. We135

first estimate the population statistics by running forward propagation one epoch and then compute136

mean and variance TID by another epoch.137

We omit θ when it can be inferred from context without confusion. We compute the average mean and138

variance TID of all BN layers in ResNet18 trained on CIFAR10 and that of TransformerBN trained139

on IWSLT14 throughout training. At the end of the training, the average mean/variance TID of BN140

in ResNet18 is approximately 0.8%/0.9%, while that in Transformer is around 2.8%/4.1%. TID in141

Transformer is much larger than that in ResNet18. The trends are the same as basic observations in142

Section 3.1. We will use Equation (5) to compute TID in the subsequent analysis due to its better143

theoretical formulation (Equation (4)).144

3.3 Comprehensive Validation145

To further verify our hypothesis that large inconsistency between training and inference of BN146

causes BN’s degraded performance, we conduct experiments on Neural Machine Translation (NMT),147

Language Modeling (LM), Named Entity Recognition (NER), and Text Classification (TextCls) tasks.148

We test both Post-Norm[39] and Pre-Norm[42] Transformers.149

Experimental Setup We first illustrate the experimental settings. More detailed description can150

be found in supplementary materials. For neural machine translation, we use IWSLT14 German-to-151

English (De-En) and WMT16 English-to-German (En-De) datasets, following the settings in Shen152

et al. [36]. Our code is based on fairseq[30]2. For language modeling, we conduct experiments153

on PTB[28] and WikiText-103 (WT103)[27]. We follow the experimental settings in Shen et al.154

[36], Ma et al. [24]. For named entity recognition, we choose CoNLL2003 (English)[33] and Resume155

(Chinese)[49] datasets. We mainly follow the experimental settings in Yan et al. [43]. For text156

classification, we select one small scale dataset (IMDB)[25] and three large scale datasets (Yelp,157

DBPedia, Sogou News). We use the code3 and most configurations in Bhardwaj et al. [3].158

Performance Result We first verify the inefficiency of BN compared to LN on four natural159

language tasks. Results for Post-Norm and Pre-Norm Transformers are listed in Table 1. BN160

2https://github.com/pytorch/fairseq. MIT license.
3https://github.com/declare-lab/identifiable-transformers. Apache-2.0 license.
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Figure 3: Left: Variance TID and BLEU gap between TransformerBN and TransformerLN when
replacing different numbers of LN layers with BN. Right: Variance TID and valid loss gap of
Post-Norm Transformer through training.

performs much worse than LN on NMT, slightly worse on NER and TextCls tasks, but performs161

much better on LM. Although BN performs worse in most cases, it has remarkable improvement over162

LN on LM, raising the question: what contributes to the failure or success of BN?163

Analyzing the Statistics of BN We compute the TID of the last BN layer in Table 1 and leave the164

average TID of all BN layers in supplementary materials. The last BN layer, which is close to the165

output, significantly impacts the model prediction. We observe that TID is highly correlated with166

the performance gap between BN and LN. When TID is large, e.g., on WMT16, BN performs much167

worse than LN. However, when the TID of BN is negligible, e.g., on PTB and WT103, BN performs168

better than LN with a large margin. We select one dataset from each task with Pre-Norm Transformer169

and define the total TID as the sum of mean and variance TID. At the end of the training, the total170

TID of the last BN layer for WMT16/CoNLL/IMDB/WT103 is around 38%/16%/9%/5%, and the171

performance gap is -2.1 BLEU scores/-1.1 F1 score/-0.1% accuracy/6.8 perplexity (PPL). Larger TID172

tends to hurt BN’s performance.173

To explore the quantitative relation between TID and performance gap, we substitute L = 3 ∼ 6174

LN layers with BN layers from the bottom in the Post-Norm Transformer encoder on IWSLT14. As175

L increases, the variance TID of the last BN layer grows, and the BLEU scores of TransformerBN176

drops off. We plot the variance TID and BLEU gap between TransformerBN and TransformerLN in177

Figure 3 (left). We can see that the two quantities are highly correlated.178

In Figure 3 (right), we plot the variance TID of the last BN layer and the validation loss gap179

between TransformerBN and TransformerLN on IWSLT14 through training. The validation loss gap180

is calculated by subtracting loss of TransformerBN and TransformerLN . At the beginning of training,181

BN performs better than LN. When the TID begins to explode, BN’s performance starts to degrade.182

Based on the results in Table 1 and observations in Figure 3, we argue that TID serves as an indicator183

of BN’s performance in Transformers. Large TID hurts BN’s performance, while BN with small184

TID performs better than LN due to its more efficient optimization (see experimental validation in185

Section 4.3).186

4 Suppressing High TID by RBN187

In this section, we are devoted to reducing the TID of BN when it is large. If TID is suppressed, the188

performance of BN will be improved and may exceed LN due to the training efficiency of BN.189

4.1 Regularized Batch Normalization190

Assume there are L layers of BN in a neural network. We denote the batch statistics and running191

statistics of each layer by µiB , σiB , and µi, σi, i = 1 . . . , L. Assume the Cross-Entropy (CE) loss192

with respect to the neural network parameters θ is denoted by L(θ). To avoid undesirable training193

inference discrepancy, we pose the optimization as a constrained problem:194

min
θ

L(θ)

s.t. EpBdµ(µiB , µi) ≤ εi, i = 1, . . . , L

EpBdσ(σiB , σi) ≤ ηi, i = 1, . . . , L

(6)
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Table 2: Results for the performance of Post-Norm (top) and Pre-Norm (bottom) Transformers with
LN/BN/RBN. RBN consistently improves BN and could match or exceed LN on 17 out of 20 settings.

Task NMT (+) LM (-) NER (+) TextCls (+)

Datasets IWSLT14 WMT16 PTB WT103 Resume CoNLL IMDB Sogou DBPedia Yelp

Post-LN 35.5 27.3 53.2 20.9 94.8 91.3 84.1 94.6 97.5 93.3
Post-BN 34.0 25.0 45.9 17.2 94.5 90.9 84.0 94.3 97.5 93.3

Post-RBN 35.5 26.5 44.6 17.1 94.8 91.4 84.5 94.7 97.6 93.6

Pre-LN 35.5 27.3 54.5 24.6 94.0 91.0 84.1 94.5 97.5 93.3
Pre-BN 34.8 25.2 45.9 17.8 93.2 89.9 84.0 94.3 97.5 93.3

Pre-RBN 35.6 26.2 43.2 17.1 94.0 90.6 84.4 94.7 97.5 93.5

where dµ and dσ measure the inconsistency of mean and variance. This is equivalent to195

min
θ

L(θ) +
L∑
i=1

λiEdµ(µiB , µi) + νiEdσ(σiB , σi) (7)

To simplify the problem, we set λi = λ, νi = ν, for i = 1, . . . ,H .196

When handling batch data, we apply gradient-based optimization to the following loss (LB(θ) is the197

batch CE loss):198

LB(θ) +
H∑
i=1

λdµ(µ
i
B , µ

i) + νdσ(σ
i
B , σ

i)

In particular, we choose dµ (µB , µ) = ‖µB − µ‖22 and dσ (σB , σ) = ‖σB − σ‖22. The sensitivity199

analysis of hyperparameter is given in Section 4.3. Since back propagating through the running200

statistics µ and σ would trace back to the first batch of data which is impractical, we simply stop the201

gradient of µ and σ in back propagation.202

4.2 Experimental Result for RBN203

We choose λ, ν both from {0, 0.01, 0.1, 1} by validation loss. Results are shown in Table 2. The204

optimal hyperparameters are listed in supplementary materials.205

Neural Machine Translation On IWSLT14 datasets, we see that RBN significantly improves BN206

and can exceed LN with 0.1 BLEU scores with Pre-Norm Transformer and match LN with Post-Norm207

Transformer. On WMT16 dataset, although RBN still falls behind LN, it could improve 1.5/1.0 BLEU208

scores over BN in Post-Norm/Pre-Norm setting. The reason is that even though RBN can suppress a209

large amount of TID, the remaining is still large since the original TID is huge. We speculate that the210

high data diversity in WMT16 contributes to the explosive TID of BN, which is hard to remove. We211

leave the verification as future work.212

Language Modeling On Post-Norm Transformer, BN could boost the testing PPL of LN from213

53.2 to 45.9 on PTB and from 20.9 to 17.2 on WikiText-103. Furthermore, substituting RBN for BN214

improves the testing PPL to 44.6 on PTB and 17.1 on WikiText-103. On Pre-Norm Transformer, BN215

elevates the testing PPL of LN from 54.5 to 45.9 on PTB and from 24.6 to 17.8 on WikiText-103.216

Moreover, replacing BN with RBN improves the testing PPL to 43.2 on PTB and 17.1 on WikiText-217

103. Overall, RBN exceeds LN with 8.6/3.8 testing PPL with Post-Norm Transformer and 11.3/7.5218

testing PPL with Pre-Norm Transformer on PTB/WikiText-103.219

Named Entity Recognition BN performs worse than LN on both Resume and CoNLL2003220

datasets, especially for Pre-Norm Transformer. RBN improves BN in all settings, matches or exceeds221

LN in three out of four settings. By taking the better performance of Post-Norm and Pre-Norm, RBN222

matches the performance of LN on Resume and exceeds LN on CoNLL2003.223

Text Classification We find that BN performs similar to/worse than LN on 4/4 settings. RBN224

improves the performance of BN consistently and can match/exceed LN on 1/7 settings. RBN225

improves BN with 0.3% accuracy on average, which shows the benefit of our regularization. We do226

not intend to achieve the state-of-the-art performance but to verify the efficacy of RBN.227
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Figure 4: Average Mean and Variance TID on WMT16/CoNLL/IMDB/WT103 for Pre-Norm Trans-
former with BN and RBN. RBN reduces the Mean and Variance TID of BN at the end of the training
and leads to better performance.

Table 3: TID of the last BN/RBN layer in Post-Norm and Pre-Norm Transformers on various NLP
tasks. RBN reduces the TID of BN effectively.

Task NMT LM NER TextCls

Datasets IWSLT14 WMT16 PTB WT103 Resume CoNLL IMDB Sogou DBPedia Yelp

Post-Norm Transformer

Mean TID of BNlast 1.5% 4.2% 0.9% 1.8% 1.7% 4.2% 1.8% 1.8% 2.2% 3.1%
Mean TID of RBNlast 0.8% 2.3% 0.9% 1.8% 1.4% 1.9% 0.2% 0.2% 0.3% 0.2%

Var TID of BNlast 10.6% 17.9% 1.1% 2.0% 3.7% 9.5% 3.9% 4.3% 3.5% 4.0%
Var TID of RBNlast 6.7% 7.7% 1.1% 1.7% 3.0% 5.0% 1.2% 0.2% 0.3% 0.1%

Pre-Norm Transformer

Mean TID of BNlast 3.4% 7.9% 1.6% 2.4% 9.6% 10.0% 2.9% 7.5% 3.9% 12.1%
Mean TID of RBNlast 3.2% 1.3% 1.6% 2.4% 4.5% 4.0% 0.7% 1.0% 1.1% 1.0%

Var TID of BNlast 4.6% 30.1% 1.7% 2.5% 6.5% 6.4% 6.2% 7.1% 3.3% 8.6%
Var TID of RBNlast 1.5% 12.1% 1.7% 2.4% 6.3% 5.6% 4.7% 0.4% 0.5% 0.5%

4.3 Analysis228
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Figure 5: The BLEU scores on IWSLT14
with different mean (λ) and variance (ν)
discrepancy penalty of RBN.

Training Inference Inconsistency We compute the229

TID of the last BN layer (BNlast) in Table 3 and plot230

the average TID of BN and RBN on WMT16, WT103,231

CoNLL2003, and IMDB datasets for Pre-Norm Trans-232

formers through training in Figure 4. Figures of TID233

for other datasets and Post-Norm Transformer can be234

found in supplementary materials. We can see that RBN235

reduces BN’s mean and variance TID at the end of train-236

ing. On neural machine translation and named entity237

recognition tasks, the original TID is large. RBN sig-238

nificantly decreases the TID of BN and improves BN’s239

performance by a clear margin. For language model-240

ing and text classification tasks, RBN also reduces the241

moderate TID of BN and gets better PPL or accuracy.242

Sensitity to Hyperparameters We test different243

penalty coefficients for RBN on neural machine transla-244

tion with Pre-Norm Transformer. The results are shown245

in Figure 5. Penalizing the mean and variance discrepancy can both improve the performace of BN.246

Combining them with moderate coefficients achieves the best performance.247

Training dynamics To show the optimization advantages of RBN over LN, we explore the layer-248

wise training dynamics of LN and RBN in Pre-Norm Transformer on IWSLT14. We refer the249

reader to Huang et al. [12] for detailed analysis about the correlation between optimization of neural250

network and layer-wise training dynamics. We empirically observe that replacing LN with RBN251

significantly improves the layer-wise conditioning[12] of Transformer. We denote the intermediate252

embedding in Transformer by X̃ ∈ RB×T×d, each X̃i,j,: ∈ Rd is a word vector. We reshape253

8



0 20 40 60
epoch

101

102

C50% layer 2

LN
RBN

0 20 40 60
epoch

102

103

C50% layer 4

LN
RBN

0 20 40 60
epoch

102

103

104
C50% layer 6

LN
RBN

0 20 40 60
epoch

102

103
C80% layer 2

LN
RBN

0 20 40 60
epoch

103

104

C80% layer 4

LN
RBN

0 20 40 60
epoch

103

104

C80% layer 6

LN
RBN

Figure 6: C50% (top), and C80% (bottom) of input features of Transformer encoder layer 2/4/6. RBN
improves the C50% and C80% of LN, especially for deep layers (2 orders of magnitude at layer 6).
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Figure 7: Cmax of input features of Transformer encoder layer 2/4/6 through training.

X̃ to a sequence of word vectors to X = [x1,x2, . . . ,xBT ] ∈ RBT×d. We assume BT > d254

which is satisfied in our experiments. We define the general condition number with respect to the255

percentage as Cp(X) = σ1

σdpde
, 0 < p ≤ 1. dae is the smallest integer that is larger than or equal to a.256

Lower Cp(X) is usually associated with faster convergence of training. We plot C50%, and C80%257

of input features of transformer encoder layer 2/4/6 in Figure 6. We can see that RBN significantly258

reduces the C50% and C80% of LN, usually with orders of magnitude. We also plot the layer-wise259

Cmax(X) = λmax((X
TX)

1
2 ) in Figure 7. Smaller Cmax usually permits higher learning rates260

which leads to faster training and better generalization[10]. RBN has much smaller Cmax than LN.261

5 Conclusion and Limitation262

In this paper, we defined Training Inference Discrepancy (TID) and showed that TID is a good263

indicator of BN’s performance for Transformers, supported by comprehensive experiments. We264

observed BN performs much better than LN when TID is negligible and proposed Regularized BN265

(RBN) to alleviate TID when TID is large. Our RBN has theoretical advantages in optimization and266

works empirically better by controlling the TID of BN when compared with LN. We hope our work267

will facilitate a better understanding and application of BN in NLP.268

Limitation. Our analyses on TID are almost empirical studies without theoretical guarantee. It269

is better to further model the geometric distribution of word embedding, evolving along with the270

training dynamics and information propagation, with theoretical derivation under mild assumptions.271

Besides, our proposed RBN cannot entirely suppress huge TID in training large-scale datasets with272

high diversity, leading to degraded performance. One possible direction is to combine RBN and LN273

for both better optimization properties and small TID, as explored in [13, 45] for CV tasks.274
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