
Understanding the Failure of Batch Normalization for
Transformers in NLP

Anonymous Author(s)
Affiliation
Address
email

Abstract

Batch Normalization (BN) is a core and prevalent technique in accelerating the1

training of deep neural networks and improving the generalization on Computer2

Vision (CV) tasks. However, it fails to defend its position in Natural Language3

Processing (NLP), which is dominated by Layer Normalization (LN). In this paper,4

we are trying to answer why BN usually performs worse than LN in NLP tasks5

with Transformer models. We find that the inconsistency between training and6

inference of BN is the leading cause that results in the failure of BN in NLP.7

We define Training Inference Discrepancy (TID) to quantitatively measure this8

inconsistency and reveal that TID can indicate BN’s performance, supported by9

extensive experiments, including image classification, neural machine translation,10

language modeling, sequence labeling, and text classification tasks. We find that11

BN can obtain much better test performance than LN when TID keeps small through12

training. To suppress the explosion of TID, we propose Regularized BN (RBN) that13

adds a simple regularization term to narrow the gap between batch statistics and14

population statistics of BN. RBN improves the performance of BN consistently and15

outperforms or is on par with LN on 17 out of 20 settings, involving ten datasets16

and two common variants of Transformer.17

1 Introduction18

Deep learning [19] has revolutionized Computer Vision (CV) [18] and Natural Language Processing19

(NLP) [39]. Normalization layers are key components to stabilize and accelerate the training in20

Deep Neural Networks (DNNs). In CV, Batch Normalization (BN) [15] is the default normalization21

technique and reveals superior performance over other normalization techniques in image recognition22

tasks by enforcing the input of a neuron to have zero mean and unit variance within a mini-batch23

data. Furthermore, a growing number of theoretical works analyze the excellent properties of BN24

in benefiting optimization [15, 34, 4, 12, 7, 8]. While BN almost dominates in CV with empirical25

success and theoretical properties, Layer Normalization (LN) is the leading normalization technique26

in NLP, especially for Transformer models that achieve the state-of-the-art performance on extensive27

tasks, including machine translation [39], natural language understanding [9], text generation [32],28

few shot learning[5], to name a few. As a direct substitute of LN, BN performs poorly in Transformer29

for neural machine translation [36]. It remains elusive to explain the failure of BN in NLP community.30

In this work, we are trying to take a step forward. Our contributions are summarized as follows:31

• We find that the inconsistency between training and inference leads to the failure of BN32

in NLP, supported by our extensive experiments, including image classification, neural33

machine translation, language modeling, sequence labeling, and text classification tasks.34

• We define Training Inference Discrepancy (TID) to quantitatively measure this inconsistency35

and show that TID can serve as an indicator of BN’s performance. In particular, BN reaches36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



much better test performance than LN when TID keeps small through training, e.g., in image37

recognition and language modeling tasks.38

• We propose Regularized BN (RBN) that adds a regularization term in BN to penalize and39

reduce the TID when the TID of BN is large. We reveal the optimization advantages of RBN40

over LN by exploring the layer-wise training dynamics of Transformer.41

• We empirically show that RBN can exceed or match the performance of LN, sometimes with42

a large margin, on 17 out of 20 settings, involving ten datasets and two common variants of43

Transformer. Besides, RBN introduces no extra computation at inference compared to LN.44

2 Related Work45

Analyses of BN’s Success As BN becomes an indispensable component in deep neural networks46

deployed in CV tasks, a bunch of works explore the theoretical reasons behind its success. From47

the view of optimization, the original BN paper[15] argues that BN can reduce internal covariate48

shift and thus stabilize the training, while Santurkar et al. [34] debate that BN could smooth the49

loss landscape and thus enable training of neural network with larger learning rate[4]. Daneshmand50

et al. [7, 8] prove that a stack of randomized linear layers and BN layers will endow the intermediate51

features of neural network with sufficient numerical rank as depth increases, which is beneficial for52

optimization and learning discriminative hierarchical features. Huang et al. [12] show that BN could53

improve the layer-wise conditioning of the neural network optimization by exploring the spectrum of54

Hessian matrix with block diagonal approximation[26]. From the view of generalization, Ioffe and55

Szegedy [15], Luo et al. [23], Li et al. [20], Wu and Johnson [41] argue that BN serves as regularizer56

which reduces over-fitting when its stochasticity is small and may have detrimental effect when it is57

large[41]. Huang et al. [11] further propose Stochastic Normalization Disturbance (SND) to measure58

such stochasticity and shows that large SND will hinder the training of neural networks.59

Training Inference Inconsistency of BN Normalizing along the batch dimension usually intro-60

duces training inference inconsistency since mini-batch data is neither necessary nor desirable during61

inference. BN uses population statistics, estimated by running average over mini-batch statistics,62

for inference. The training inference inconsistency usually harms the performance of BN for small-63

batch-size training since the estimation of population statistics could be inaccurate [40]. One way64

to reduce the inconsistency between training and inference is to exploit the estimated population65

statistics for normalization during training [14, 6, 44, 47, 46]. These works may outperform BN66

when the batch size is small, where inaccurate estimation may be the main issue[15, 16], but they67

usually work inferior to BN under moderate batch-size training [22]. Another way to reduce the68

inconsistency is estimating corrected normalization statistics during inference only, either for domain69

adaptation [21], corruption robustness [35, 29, 2], or small-batch-size training [37, 38]. We note that70

a recent work [13] investigates the estimation shift problem of BN. Unlike this work that addresses71

the accumulated estimation shift due to the stack of BNs for CNNs in CV tasks, our work pays more72

attention to how the training inference inconsistency of BN correlates with its performances for73

Transformers in NLP tasks. Besides, the estimation shift of BN defined in [13], which addresses the74

differences between the estimated population statistics and the expected statistics, differs from our75

TID of BN that addresses the differences between the mini-batch statistics and populations statistics.76

Exploring the Failure of BN in Transformer Similar to our work, PowerNorm[36] also inves-77

tigates the reason behind the failure of BN in Transformers. Our work significantly differs from78

PowerNorm[36] in the following facets. PowerNorm attributes the failure of BN to the unstable79

training of BN incurred by fluctuated forward and backward batch statistics with outlier values, while80

we observe that the training of BN is as good as LN and the inconsistency between training and81

inference of BN matters more. Based on our observation, we propose a regularization term to reduce82

the TID of BN. Compared with PowerNorm, which incorporates a layer-scale layer[48], our method83

introduces no extra computation at inference. Besides, we use a more reasonable index to measure84

inconsistency which is invariant to the scale of data. Furthermore, we show that our RBN can improve85

the layer-wise training dynamics of LN, which reveals the optimization advantages of RBN.86

3 Analyses of Training Inference Inconsistency in TransformerBN87

3.1 Preliminary88

Batch Normalization (BN) [15] is typically used to stabilize and accelerate DNN’s training. Let89

x ∈ Rd denote the d-dimensional input to a neural network layer. During training, BN standardizes90

2



0 5 10 15 20 25 30
2
3
4
5
6
7
8

train_nll_loss
BN
LN

0 5 10 15 20 25 30

3
4
5
6
7
8

valid_nll_loss
BN
LN

0 5 10 15 20 25 30
0
5

10
15
20
25
30
35

valid_bleu

BN
LN

Figure 1: Train loss, validation loss/BLEU of Transformer trained on IWSLT14 with BN and LN.
The training of TransformerBN is better than TransformerLN while the validation loss/BLEU of
TransformerBN underperforms that of TransformerLN after 8 epoch. At the end of the training,
TransformerBN falls behind TransformerLN with large BLEU scores. Lower loss and higher BLEU
scores indicate better performance. Based on the inconsistency of training and validation perfor-
mance of BN, we hypothesize that the training inference discrepancy of BN causes its performance
degradation.

each neuron/channel within m mini-batch data by191

x̂j = BNtrain(xj) =
xj − µB,j√

σ2
B,j

, j = 1, 2, ..., d, (1)

where µB,j = 1
m

∑m
i=1 x

(i)
j and σ2

B,j = 1
m

∑m
i=1(x

(i)
j − µB,j)

2 are the mini-batch mean and92

variance for each neuron, respectively. Note that an extra small number ε is usually added to the93

variance in practice to prevent numerical instability. During inference, the population mean µ and94

variance σ2 of the layer input are required for BN to make a deterministic prediction [15] as:95

x̂j = BNinf (xj) =
xj − µj√

σ2
j

, j = 1, 2, ..., d. (2)

These population statistics {µ, σ2} are usually calculated as the running average of mini-batch96

statistics over different training iteration t with an update factor α as follows:97 {
µ(t) = (1− α)µ(t−1) + αµ

(t)
B ,

(σ2)(t) = (1− α)(σ2)(t−1) + α(σ2
B)

(t).
(3)

The discrepancy of BN for normalization during training (using Eqn. 1) and inference (using Eqn. 2)98

can produce stochasticity, since the population statistics of BN are estimated from the mini-batch99

statistics that depend on the sampled mini-batch inputs. This discrepancy is believed to benefit the100

generalization [15, 11] if the stochasticity is well controlled. However, this discrepancy usually harms101

the performance of small-batch-size training [40] since the estimation of population statistics can102

be inaccurate. To address this problem, a bunch of batch-free normalizations are proposed that use103

consistent operations during training and inference, e.g., Layer Normalization (LN) [1].104

Basic Observations To analyze the failure of BN in NLP tasks, we first plot the training loss and105

validation loss/BLEU[31] of BN and LN on IWSLT14 (De-En) dataset with the original Transformer106

model (see Figure 1). We observe that the training of TransformerBN is faster than TransformerLN .107

The training nll_loss of BN is even smaller than that of LN, especially at the beginning. However, val-108

idation loss/BLEU of BN is worse than that of LN after around the seventh epoch. This phenomenon109

can not be attributed to over-fitting since BN introduces more stochasticity than LN in the training110

phase. The inconsistency between training and inference of BN may play a role.111

Since BN in ResNet18 also involves training inference inconsistency, we guess the degree of such112

inconsistency has a difference between ResNet18 and TransformerBN . Therefore, we plot the113

deviation of batch statistics to population statistics of BN in ResNet18 and TransformerBN in114

Figure 2 (top) to make a comparison. ResNet18 is trained on CIFAR-10[17] and accuracy will drop 2115

percent if we replace BN with LN. We find that at the end of the training, TransformerBN has a much116

bigger mean and variance deviation than ResNet18. Besides, the last several BN layers that are close117

1BN usually uses extra learnable scale and shift parameters [15] to recover the potentially reduced represen-
tation capacity, and we omit them since they are not relevant to our discussion.

3



0 10 20 30 40 50
epoch

5

10

15

20

25

30

B
(%

)

Mean Deviation of BN layers

IWSLT14
CIFAR10

0 10 20 30 40 50
epoch

4
5
6
7
8
9

10

2 B
2

2
(%

)

Variance Deviation of BN layers

IWSLT14
CIFAR10

2 4 6 8 10 12
#layer

0
5

10
15
20
25

2 B
2

2
(%

)

Variance Deviation over BN layers
IWSLT14

#epoch
0 5 1015202530

#layer 2
4681012

2 B
2

2
(%

)

5
10
15
20
25
30

IWSLT14
Variance Deviation

Figure 2: Top: The average deviation of batch mean µB (left figure) and batch variance σ2
B (right

figure) to population mean µ and population variance σ2 of all BN layers through training in
ResNet18 and TransformerBN . There are 21 BN layers in ResNet18 and 12 BN layers in the encoder
of TransformerBN . At the end of training, ResNet18 has mean/variance deviation of around 4%/4%
and those in TransformerBN are around 11%/13%. Large deviation of statistics hurts the performance
of TransformerBN . Bottom: Variance deviation of BN layers with different depths (left) at the end of
training and variance deviation over depth and training progress (right).

to the output in TransformerBN have large variance deviation (Figure 2 (bottom)), which negatively118

impact the model output. Furthermore, the performance degradation of TransformerBN coincides119

with the increase of variance deviation by comparing Figure 1 (right) and Figure 2 (bottom right).120

Based on these observations, we hypothesize that the inconsistency between training and inference of121

BN causes BN’s performance degradation in neural machine translation. We first mathematically122

define the training inference discrepancy of BN in the next subsection.123

3.2 Training Inference Discrepancy124

By observing Eqns. 1 and 2, the normalized output during training can be calculated as:125

xj − µB,j
σB,j

=

(
xj − µj
σj

+
µj − µB,j

σj

)
σj
σB,j

, j = 1, 2, ..., d, (4)

where σB,j > 0 and σj > 0 are the standard deviation for the j-th dimension. We can see µj−µB,j

σj
126

and σj

σB,j
can be viewed as random variables. Their magnitude can characterize the diversity of127

mini-batch examples during training and indicate how hard the estimation of population statistics128

is. We thus define the training inference discrepancy to quantitatively measure the inconsistency as129

follows.130

Definition 1 (Training Inference Discrepancy (TID)). Let pB be the distribution of batch data. Given131

a mini-batch data X sampled from pB , we define the TID of its mean and variance (with respect to132

4



Table 1: Results for performance and TID of last BN layer with Post-Norm (top) and Pre-Norm
(bottom) Transformers on four tasks containing ten datasets. We use BLEU scores (%)/perplexity/F1
score (%)/accuracy (%) to measure the model performance on neural machine translation/language
modeling/named entity recognition/text classification. "+" ("-") means the bigger (smaller) the
better. Post-LN means the Post-Norm Transformer with LN. Performance gap is the subtraction
of performance of BN and LN. Positive (Negative) Performance gap indicates BN performs better
(worse) than LN.

Task NMT (+) LM (-) NER (+) TextCls (+)

Datasets IWSLT14 WMT16 PTB WT103 Resume CoNLL IMDB Sogou DBPedia Yelp

Post-LN 35.5 27.3 53.2 20.9 94.8 91.3 84.1 94.6 97.5 93.3
Post-BN 34.0 25.0 45.9 17.2 94.5 90.9 84.0 94.3 97.5 93.3

Performance Gap -1.5 -2.3 7.3 3.7 -0.3 -0.4 -0.1 -0.3 0 0
Mean TID of BNlast 1.5% 4.2% 0.9% 1.8% 1.7% 4.2% 1.8% 1.8% 2.2% 3.1%
Var TID of BNlast 10.6% 17.9% 1.1% 2.0% 3.7% 9.5% 3.9% 4.3% 3.5% 4.0%

Pre-LN 35.5 27.3 54.5 24.6 94.0 91.0 84.1 94.5 97.5 93.3
Pre-BN 34.8 25.2 45.9 17.8 93.2 89.9 84.0 94.3 97.5 93.3

Performance Gap -0.7 -2.1 8.6 6.8 -0.8 -1.1 -0.1 -0.2 0 0
Mean TID of BNlast 3.4% 7.9% 1.6% 2.4% 9.6% 10.0% 2.9% 7.5% 3.9% 12.1%
Var TID of BNlast 4.6% 30.1% 1.7% 2.5% 6.5% 6.4% 6.2% 7.1% 3.3% 8.6%

model parameter θ) as:133

Mean TID = EX∼pB
‖µB − µ‖2
‖σ‖2

Variance TID = EX∼pB
‖σB − σ‖2
‖σ‖2

(5)

In terms of computing the TID in practice, we add a small positive constant in the denominator to134

avoid numerical instability. We save the checkpoint at the end of each epoch and before training. We135

first estimate the population statistics by running forward propagation one epoch and then compute136

mean and variance TID by another epoch.137

We omit θ when it can be inferred from context without confusion. We compute the average mean and138

variance TID of all BN layers in ResNet18 trained on CIFAR10 and that of TransformerBN trained139

on IWSLT14 throughout training. At the end of the training, the average mean/variance TID of BN140

in ResNet18 is approximately 0.8%/0.9%, while that in Transformer is around 2.8%/4.1%. TID in141

Transformer is much larger than that in ResNet18. The trends are the same as basic observations in142

Section 3.1. We will use Equation (5) to compute TID in the subsequent analysis due to its better143

theoretical formulation (Equation (4)).144

3.3 Comprehensive Validation145

To further verify our hypothesis that large inconsistency between training and inference of BN146

causes BN’s degraded performance, we conduct experiments on Neural Machine Translation (NMT),147

Language Modeling (LM), Named Entity Recognition (NER), and Text Classification (TextCls) tasks.148

We test both Post-Norm[39] and Pre-Norm[42] Transformers.149

Experimental Setup We first illustrate the experimental settings. More detailed description can150

be found in supplementary materials. For neural machine translation, we use IWSLT14 German-to-151

English (De-En) and WMT16 English-to-German (En-De) datasets, following the settings in Shen152

et al. [36]. Our code is based on fairseq[30]2. For language modeling, we conduct experiments153

on PTB[28] and WikiText-103 (WT103)[27]. We follow the experimental settings in Shen et al.154

[36], Ma et al. [24]. For named entity recognition, we choose CoNLL2003 (English)[33] and Resume155

(Chinese)[49] datasets. We mainly follow the experimental settings in Yan et al. [43]. For text156

classification, we select one small scale dataset (IMDB)[25] and three large scale datasets (Yelp,157

DBPedia, Sogou News). We use the code3 and most configurations in Bhardwaj et al. [3].158

Performance Result We first verify the inefficiency of BN compared to LN on four natural159

language tasks. Results for Post-Norm and Pre-Norm Transformers are listed in Table 1. BN160

2https://github.com/pytorch/fairseq. MIT license.
3https://github.com/declare-lab/identifiable-transformers. Apache-2.0 license.

5



4 5 6 7 8 9 10
TID (%)

1.4

1.2

1.0

0.8

0.6

0.4

G
ap

 (B
LE

U
)

Performance Gap vs TID

0 5 10 15 20 25 30
epochs

6

7

8

9

10

Va
ria

nc
e 

TI
D

(%
)

TID vs Gap Through Training

0.4

0.2

0.0

0.2

va
lid

 lo
ss

 g
ap

Figure 3: Left: Variance TID and BLEU gap between TransformerBN and TransformerLN when
replacing different numbers of LN layers with BN. Right: Variance TID and valid loss gap of
Post-Norm Transformer through training.

performs much worse than LN on NMT, slightly worse on NER and TextCls tasks, but performs161

much better on LM. Although BN performs worse in most cases, it has remarkable improvement over162

LN on LM, raising the question: what contributes to the failure or success of BN?163

Analyzing the Statistics of BN We compute the TID of the last BN layer in Table 1 and leave the164

average TID of all BN layers in supplementary materials. The last BN layer, which is close to the165

output, significantly impacts the model prediction. We observe that TID is highly correlated with166

the performance gap between BN and LN. When TID is large, e.g., on WMT16, BN performs much167

worse than LN. However, when the TID of BN is negligible, e.g., on PTB and WT103, BN performs168

better than LN with a large margin. We select one dataset from each task with Pre-Norm Transformer169

and define the total TID as the sum of mean and variance TID. At the end of the training, the total170

TID of the last BN layer for WMT16/CoNLL/IMDB/WT103 is around 38%/16%/9%/5%, and the171

performance gap is -2.1 BLEU scores/-1.1 F1 score/-0.1% accuracy/6.8 perplexity (PPL). Larger TID172

tends to hurt BN’s performance.173

To explore the quantitative relation between TID and performance gap, we substitute L = 3 ∼ 6174

LN layers with BN layers from the bottom in the Post-Norm Transformer encoder on IWSLT14. As175

L increases, the variance TID of the last BN layer grows, and the BLEU scores of TransformerBN176

drops off. We plot the variance TID and BLEU gap between TransformerBN and TransformerLN in177

Figure 3 (left). We can see that the two quantities are highly correlated.178

In Figure 3 (right), we plot the variance TID of the last BN layer and the validation loss gap179

between TransformerBN and TransformerLN on IWSLT14 through training. The validation loss gap180

is calculated by subtracting loss of TransformerBN and TransformerLN . At the beginning of training,181

BN performs better than LN. When the TID begins to explode, BN’s performance starts to degrade.182

Based on the results in Table 1 and observations in Figure 3, we argue that TID serves as an indicator183

of BN’s performance in Transformers. Large TID hurts BN’s performance, while BN with small184

TID performs better than LN due to its more efficient optimization (see experimental validation in185

Section 4.3).186

4 Suppressing High TID by RBN187

In this section, we are devoted to reducing the TID of BN when it is large. If TID is suppressed, the188

performance of BN will be improved and may exceed LN due to the training efficiency of BN.189

4.1 Regularized Batch Normalization190

Assume there are L layers of BN in a neural network. We denote the batch statistics and running191

statistics of each layer by µiB , σiB , and µi, σi, i = 1 . . . , L. Assume the Cross-Entropy (CE) loss192

with respect to the neural network parameters θ is denoted by L(θ). To avoid undesirable training193

inference discrepancy, we pose the optimization as a constrained problem:194

min
θ

L(θ)

s.t. EpBdµ(µiB , µi) ≤ εi, i = 1, . . . , L

EpBdσ(σiB , σi) ≤ ηi, i = 1, . . . , L

(6)

6



Table 2: Results for the performance of Post-Norm (top) and Pre-Norm (bottom) Transformers with
LN/BN/RBN. RBN consistently improves BN and could match or exceed LN on 17 out of 20 settings.

Task NMT (+) LM (-) NER (+) TextCls (+)

Datasets IWSLT14 WMT16 PTB WT103 Resume CoNLL IMDB Sogou DBPedia Yelp

Post-LN 35.5 27.3 53.2 20.9 94.8 91.3 84.1 94.6 97.5 93.3
Post-BN 34.0 25.0 45.9 17.2 94.5 90.9 84.0 94.3 97.5 93.3

Post-RBN 35.5 26.5 44.6 17.1 94.8 91.4 84.5 94.7 97.6 93.6

Pre-LN 35.5 27.3 54.5 24.6 94.0 91.0 84.1 94.5 97.5 93.3
Pre-BN 34.8 25.2 45.9 17.8 93.2 89.9 84.0 94.3 97.5 93.3

Pre-RBN 35.6 26.2 43.2 17.1 94.0 90.6 84.4 94.7 97.5 93.5

where dµ and dσ measure the inconsistency of mean and variance. This is equivalent to195

min
θ

L(θ) +
L∑
i=1

λiEdµ(µiB , µi) + νiEdσ(σiB , σi) (7)

To simplify the problem, we set λi = λ, νi = ν, for i = 1, . . . ,H .196

When handling batch data, we apply gradient-based optimization to the following loss (LB(θ) is the197

batch CE loss):198

LB(θ) +
H∑
i=1

λdµ(µ
i
B , µ

i) + νdσ(σ
i
B , σ

i)

In particular, we choose dµ (µB , µ) = ‖µB − µ‖22 and dσ (σB , σ) = ‖σB − σ‖22. The sensitivity199

analysis of hyperparameter is given in Section 4.3. Since back propagating through the running200

statistics µ and σ would trace back to the first batch of data which is impractical, we simply stop the201

gradient of µ and σ in back propagation.202

4.2 Experimental Result for RBN203

We choose λ, ν both from {0, 0.01, 0.1, 1} by validation loss. Results are shown in Table 2. The204

optimal hyperparameters are listed in supplementary materials.205

Neural Machine Translation On IWSLT14 datasets, we see that RBN significantly improves BN206

and can exceed LN with 0.1 BLEU scores with Pre-Norm Transformer and match LN with Post-Norm207

Transformer. On WMT16 dataset, although RBN still falls behind LN, it could improve 1.5/1.0 BLEU208

scores over BN in Post-Norm/Pre-Norm setting. The reason is that even though RBN can suppress a209

large amount of TID, the remaining is still large since the original TID is huge. We speculate that the210

high data diversity in WMT16 contributes to the explosive TID of BN, which is hard to remove. We211

leave the verification as future work.212

Language Modeling On Post-Norm Transformer, BN could boost the testing PPL of LN from213

53.2 to 45.9 on PTB and from 20.9 to 17.2 on WikiText-103. Furthermore, substituting RBN for BN214

improves the testing PPL to 44.6 on PTB and 17.1 on WikiText-103. On Pre-Norm Transformer, BN215

elevates the testing PPL of LN from 54.5 to 45.9 on PTB and from 24.6 to 17.8 on WikiText-103.216

Moreover, replacing BN with RBN improves the testing PPL to 43.2 on PTB and 17.1 on WikiText-217

103. Overall, RBN exceeds LN with 8.6/3.8 testing PPL with Post-Norm Transformer and 11.3/7.5218

testing PPL with Pre-Norm Transformer on PTB/WikiText-103.219

Named Entity Recognition BN performs worse than LN on both Resume and CoNLL2003220

datasets, especially for Pre-Norm Transformer. RBN improves BN in all settings, matches or exceeds221

LN in three out of four settings. By taking the better performance of Post-Norm and Pre-Norm, RBN222

matches the performance of LN on Resume and exceeds LN on CoNLL2003.223

Text Classification We find that BN performs similar to/worse than LN on 4/4 settings. RBN224

improves the performance of BN consistently and can match/exceed LN on 1/7 settings. RBN225

improves BN with 0.3% accuracy on average, which shows the benefit of our regularization. We do226

not intend to achieve the state-of-the-art performance but to verify the efficacy of RBN.227

7



0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

1

3

5

7

9

TI
D

(%
)

Mean TID of BN layers(WMT16)

BN
RBN

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

5

7

9

11

13

TI
D

(%
)

Mean TID of BN layers(CoNLL)

BN
RBN

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

0.5

1.5

2.5

3.5

TI
D

(%
)

Mean TID of BN layers(IMDB)
BN
RBN

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

1

3

5

7

TI
D

(%
)

Mean TID of BN layers(WT103)
BN
RBN

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

3
5
7
9

11
13

TI
D

(%
)

Variance TID of BN layers(WMT16)
BN
RBN

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

5

6

7

8

9

TI
D

(%
)

Variance TID of BN layers(CoNLL)
BN
RBN

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

1.5

2.0

2.5

3.0

3.5

TI
D

(%
)

Variance TID of BN layers(IMDB)
BN
RBN

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

1

2

3

4

5

TI
D

(%
)

Variance TID of BN layers(WT103)
BN
RBN

Figure 4: Average Mean and Variance TID on WMT16/CoNLL/IMDB/WT103 for Pre-Norm Trans-
former with BN and RBN. RBN reduces the Mean and Variance TID of BN at the end of the training
and leads to better performance.

Table 3: TID of the last BN/RBN layer in Post-Norm and Pre-Norm Transformers on various NLP
tasks. RBN reduces the TID of BN effectively.

Task NMT LM NER TextCls

Datasets IWSLT14 WMT16 PTB WT103 Resume CoNLL IMDB Sogou DBPedia Yelp

Post-Norm Transformer

Mean TID of BNlast 1.5% 4.2% 0.9% 1.8% 1.7% 4.2% 1.8% 1.8% 2.2% 3.1%
Mean TID of RBNlast 0.8% 2.3% 0.9% 1.8% 1.4% 1.9% 0.2% 0.2% 0.3% 0.2%

Var TID of BNlast 10.6% 17.9% 1.1% 2.0% 3.7% 9.5% 3.9% 4.3% 3.5% 4.0%
Var TID of RBNlast 6.7% 7.7% 1.1% 1.7% 3.0% 5.0% 1.2% 0.2% 0.3% 0.1%

Pre-Norm Transformer

Mean TID of BNlast 3.4% 7.9% 1.6% 2.4% 9.6% 10.0% 2.9% 7.5% 3.9% 12.1%
Mean TID of RBNlast 3.2% 1.3% 1.6% 2.4% 4.5% 4.0% 0.7% 1.0% 1.1% 1.0%

Var TID of BNlast 4.6% 30.1% 1.7% 2.5% 6.5% 6.4% 6.2% 7.1% 3.3% 8.6%
Var TID of RBNlast 1.5% 12.1% 1.7% 2.4% 6.3% 5.6% 4.7% 0.4% 0.5% 0.5%

4.3 Analysis228

0 0.01 0.1 1

0
0.

01
0.

1
1

34.8 35.3 35.5 35.5

35.3 35.6 35.6 35.6

35.3 35.2 35.4 35.5

34.5 34.7 34.8 35.0

BLEU scores

34.6

34.8

35.0

35.2

35.4

35.6

Figure 5: The BLEU scores on IWSLT14
with different mean (λ) and variance (ν)
discrepancy penalty of RBN.

Training Inference Inconsistency We compute the229

TID of the last BN layer (BNlast) in Table 3 and plot230

the average TID of BN and RBN on WMT16, WT103,231

CoNLL2003, and IMDB datasets for Pre-Norm Trans-232

formers through training in Figure 4. Figures of TID233

for other datasets and Post-Norm Transformer can be234

found in supplementary materials. We can see that RBN235

reduces BN’s mean and variance TID at the end of train-236

ing. On neural machine translation and named entity237

recognition tasks, the original TID is large. RBN sig-238

nificantly decreases the TID of BN and improves BN’s239

performance by a clear margin. For language model-240

ing and text classification tasks, RBN also reduces the241

moderate TID of BN and gets better PPL or accuracy.242

Sensitity to Hyperparameters We test different243

penalty coefficients for RBN on neural machine transla-244

tion with Pre-Norm Transformer. The results are shown245

in Figure 5. Penalizing the mean and variance discrepancy can both improve the performace of BN.246

Combining them with moderate coefficients achieves the best performance.247

Training dynamics To show the optimization advantages of RBN over LN, we explore the layer-248

wise training dynamics of LN and RBN in Pre-Norm Transformer on IWSLT14. We refer the249

reader to Huang et al. [12] for detailed analysis about the correlation between optimization of neural250

network and layer-wise training dynamics. We empirically observe that replacing LN with RBN251

significantly improves the layer-wise conditioning[12] of Transformer. We denote the intermediate252

embedding in Transformer by X̃ ∈ RB×T×d, each X̃i,j,: ∈ Rd is a word vector. We reshape253

8



0 20 40 60
epoch

101

102

C50% layer 2

LN
RBN

0 20 40 60
epoch

102

103

C50% layer 4

LN
RBN

0 20 40 60
epoch

102

103

104
C50% layer 6

LN
RBN

0 20 40 60
epoch

102

103
C80% layer 2

LN
RBN

0 20 40 60
epoch

103

104

C80% layer 4

LN
RBN

0 20 40 60
epoch

103

104

C80% layer 6

LN
RBN

Figure 6: C50% (top), and C80% (bottom) of input features of Transformer encoder layer 2/4/6. RBN
improves the C50% and C80% of LN, especially for deep layers (2 orders of magnitude at layer 6).

0 20 40 60
epoch

102

103

Cmax layer 2

LN
RBN

0 20 40 60
epoch

103

104

105
Cmax layer 4

LN
RBN

0 20 40 60
epoch

103

104

105

Cmax layer 6

LN
RBN

Figure 7: Cmax of input features of Transformer encoder layer 2/4/6 through training.

X̃ to a sequence of word vectors to X = [x1,x2, . . . ,xBT ] ∈ RBT×d. We assume BT > d254

which is satisfied in our experiments. We define the general condition number with respect to the255

percentage as Cp(X) = σ1

σdpde
, 0 < p ≤ 1. dae is the smallest integer that is larger than or equal to a.256

Lower Cp(X) is usually associated with faster convergence of training. We plot C50%, and C80%257

of input features of transformer encoder layer 2/4/6 in Figure 6. We can see that RBN significantly258

reduces the C50% and C80% of LN, usually with orders of magnitude. We also plot the layer-wise259

Cmax(X) = λmax((X
TX)

1
2 ) in Figure 7. Smaller Cmax usually permits higher learning rates260

which leads to faster training and better generalization[10]. RBN has much smaller Cmax than LN.261

5 Conclusion and Limitation262

In this paper, we defined Training Inference Discrepancy (TID) and showed that TID is a good263

indicator of BN’s performance for Transformers, supported by comprehensive experiments. We264

observed BN performs much better than LN when TID is negligible and proposed Regularized BN265

(RBN) to alleviate TID when TID is large. Our RBN has theoretical advantages in optimization and266

works empirically better by controlling the TID of BN when compared with LN. We hope our work267

will facilitate a better understanding and application of BN in NLP.268

Limitation. Our analyses on TID are almost empirical studies without theoretical guarantee. It269

is better to further model the geometric distribution of word embedding, evolving along with the270

training dynamics and information propagation, with theoretical derivation under mild assumptions.271

Besides, our proposed RBN cannot entirely suppress huge TID in training large-scale datasets with272

high diversity, leading to degraded performance. One possible direction is to combine RBN and LN273

for both better optimization properties and small TID, as explored in [13, 45] for CV tasks.274

9



References275

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.276

[2] Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Revisiting batch normalization277

for improving corruption robustness. In WACV, 2021.278

[3] Rishabh Bhardwaj, Navonil Majumder, Soujanya Poria, and Eduard Hovy. More identifiable279

yet equally performant transformers for text classification. In Proceedings of the 59th Annual280

Meeting of the Association for Computational Linguistics and the 11th International Joint281

Conference on Natural Language Processing (Volume 1: Long Papers), pages 1172–1182.282

Association for Computational Linguistics, 2021.283

[4] Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch284

normalization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and285

R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran286

Associates, Inc., 2018.287

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,288

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel289

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,290

Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott291

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya292

Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural293

Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.294

[6] Vitaliy Chiley, Ilya Sharapov, Atli Kosson, Urs Koster, Ryan Reece, Sofia Samaniego de la295

Fuente, Vishal Subbiah, and Michael James. Online normalization for training neural networks.296

In NeurIPS, 2019.297

[7] Hadi Daneshmand, Jonas Moritz Kohler, Francis R. Bach, Thomas Hofmann, and Aurélien298

Lucchi. Batch normalization provably avoids ranks collapse for randomly initialised deep299

networks. In NeurIPS, 2020.300

[8] Hadi Daneshmand, Amir Joudaki, and Francis Bach. Batch normalization orthogonalizes301

representations in deep random networks. In Advances in Neural Information Processing302

Systems, 2021.303

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of304

deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-305

ence of the North American Chapter of the Association for Computational Linguistics: Human306

Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186. Association for307

Computational Linguistics, 2019.308

[10] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of309

stochastic gradient descent. ArXiv, abs/1509.01240, 2016.310

[11] Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Iterative normalization: Beyond311

standardization towards efficient whitening. 2019 IEEE/CVF Conference on Computer Vision312

and Pattern Recognition (CVPR), pages 4869–4878, 2019.313

[12] Lei Huang, Jie Qin, Li Liu, Fan Zhu, and Ling Shao. Layer-wise conditioning analysis in314

exploring the learning dynamics of dnns. In Andrea Vedaldi, Horst Bischof, Thomas Brox,315

and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, pages 384–401. Springer316

International Publishing, 2020. ISBN 978-3-030-58536-5.317

[13] Lei Huang, Yi Zhou, Tian Wang, Jie Luo, and Xianglong Liu. Delving into the estimation shift318

of batch normalization in a network. arXiv preprint arXiv:2203.10778, 2022.319

[14] Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-320

normalized models. In NeurIPS, 2017.321

10



[15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training322

by reducing internal covariate shift. In Proceedings of the 32nd International Conference on323

Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 448–456.324

PMLR, 2015.325

[16] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon326

Wilson. Averaging weights leads to wider optima and better generalization. arXiv preprint327

arXiv:1803.05407, 2018.328

[17] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.329

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep330

convolutional neural networks. In NIPS, pages 1106–1114, 2012.331

[19] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,332

2015.333

[20] Xiang Li, Shuo Chen, Xiaolin Hu, and Jian Yang. Understanding the disharmony between334

dropout and batch normalization by variance shift. In Proceedings of the IEEE/CVF Conference335

on Computer Vision and Pattern Recognition (CVPR), June 2019.336

[21] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch337

normalization for practical domain adaptation. arXiv preprint arXiv:1603.04779, 2016.338

[22] Ping Luo, Jiamin Ren, Zhanglin Peng, Ruimao Zhang, and Jingyu Li. Differentiable learning-339

to-normalize via switchable normalization. In ICLR, 2019.340

[23] Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin Peng. Towards understanding regu-341

larization in batch normalization. In International Conference on Learning Representations,342

2019.343

[24] Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, and Dawei Song.344

A tensorized transformer for language modeling. In H. Wallach, H. Larochelle, A. Beygelzimer,345

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing346

Systems, volume 32. Curran Associates, Inc., 2019.347

[25] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher348

Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting349

of the Association for Computational Linguistics: Human Language Technologies, pages350

142–150. Association for Computational Linguistics, 2011.351

[26] James Martens and Roger B. Grosse. Optimizing neural networks with kronecker-factored352

approximate curvature. CoRR, abs/1503.05671, 2015.353

[27] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture354

models. CoRR, abs/1609.07843, 2016.355

[28] Tomas Mikolov, Anoop Deoras, Stefan Kombrink, Lukas Burget, and Jan "Honza" Cernocky.356

Empirical evaluation and combination of advanced language modeling techniques. In Inter-357

speech. ISCA, August 2011.358

[29] Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and359

Jasper Snoek. Evaluating prediction-time batch normalization for robustness under covariate360

shift. arXiv preprint arXiv:2006.10963, 2020.361

[30] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,362

and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings363

of the 2019 Conference of the North American Chapter of the Association for Computational364

Linguistics (Demonstrations), pages 48–53. Association for Computational Linguistics, 2019.365

[31] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic366

evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for367

Computational Linguistics, ACL ’02, page 311–318. Association for Computational Linguistics,368

2002.369

11



[32] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language370

models are unsupervised multitask learners. 2019.371

[33] Erik Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task:372

Language-independent named entity recognition. In CoNLL, 2003.373

[34] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch374

normalization help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,375

N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,376

volume 31, 2018.377

[35] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias378

Bethge. Improving robustness against common corruptions by covariate shift adaptation. In379

NeurIPS, 2020.380

[36] Sheng Shen, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. Powernorm:381

Rethinking batch normalization in transformers. In ICML, 2020.382

[37] Saurabh Singh and Abhinav Shrivastava. Evalnorm: Estimating batch normalization statistics383

for evaluation. In ICCV, 2019.384

[38] Cecilia Summers and Michael J. Dinneen. Four things everyone should know to improve batch385

normalization. In ICLR, 2020.386

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,387

Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,388

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural389

Information Processing Systems, volume 30. Curran Associates, Inc., 2017.390

[40] Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018.391

[41] Yuxin Wu and Justin Johnson. Rethinking "batch" in batchnorm. CoRR, abs/2105.07576, 2021.392

[42] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai393

Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer394

architecture. In ICML 2020, 2020.395

[43] Hang Yan, Bocao Deng, Xiaonan Li, and Xipeng Qiu. Tener: Adapting transformer encoder for396

named entity recognition, 2019.397

[44] Junjie Yan, Ruosi Wan, Xiangyu Zhang, Wei Zhang, Yichen Wei, and Jian Sun. Towards398

stabilizing batch statistics in backward propagation of batch normalization. In ICLR, 2020.399

[45] Zhuliang Yao, Yue Cao, Yutong Lin, Ze Liu, Zheng Zhang, and Han Hu. Leveraging batch400

normalization for vision transformers. 2021 IEEE/CVF International Conference on Computer401

Vision Workshops (ICCVW), pages 413–422, 2021.402

[46] Zhuliang Yao, Yue Cao, Shuxin Zheng, Gao Huang, and Stephen Lin. Cross-iteration batch403

normalization. In CVPR, 2021.404

[47] Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and Lei Zhang. Gradient centralization: A405

new optimization technique for deep neural networks. In ECCV, 2020.406

[48] Biao Zhang and Rico Sennrich. Root mean square layer normalization. In H. Wallach,407

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in408

Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.409

[49] Yue Zhang and Jie Yang. Chinese ner using lattice lstm. In ACL, 2018.410

12



Checklist411

1. For all authors...412

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s413

contributions and scope? [Yes] We summarize our main contributions in abstract and414

introduction. We state our results within the scope of our experiments.415

(b) Did you describe the limitations of your work? [Yes] See Section 5416

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See417

supplementary materials418

(d) Have you read the ethics review guidelines and ensured that your paper conforms to419

them? [Yes] We have read them carefully and make sure our paper conforms to them.420

2. If you are including theoretical results...421

(a) Did you state the full set of assumptions of all theoretical results? [N/A]422

(b) Did you include complete proofs of all theoretical results? [N/A]423

3. If you ran experiments...424

(a) Did you include the code, data, and instructions needed to reproduce the main experi-425

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-426

tary materials.427

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they428

were chosen)? [Yes] See supplementary materials.429

(c) Did you report error bars (e.g., with respect to the random seed after running exper-430

iments multiple times)? [No] We report the mean metric with at least three random431

seeds for each setting to ensure the standard deviation is relatively small.432

(d) Did you include the total amount of compute and the type of resources used (e.g., type433

of GPUs, internal cluster, or cloud provider)? [Yes] See supplementary materials.434

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...435

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the corresond-436

ing papers.437

(b) Did you mention the license of the assets? [Yes] For code, we mention it in the footnote.438

For data, we use published datasets which permit academic usage. We do not use other439

people’s model.440

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]441

We include code in the supplemental material.442

(d) Did you discuss whether and how consent was obtained from people whose data443

you’re using/curating? [N/A] The data is available without consent to researchers for444

non-commercial use.445

(e) Did you discuss whether the data you are using/curating contains personally identifiable446

information or offensive content? [N/A]447

5. If you used crowdsourcing or conducted research with human subjects...448

(a) Did you include the full text of instructions given to participants and screenshots, if449

applicable? [N/A]450

(b) Did you describe any potential participant risks, with links to Institutional Review451

Board (IRB) approvals, if applicable? [N/A]452

(c) Did you include the estimated hourly wage paid to participants and the total amount453

spent on participant compensation? [N/A]454

13


	Introduction
	Related Work
	Analyses of Training Inference Inconsistency in TransformerBN
	Preliminary
	Training Inference Discrepancy
	Comprehensive Validation

	Suppressing High TID by RBN
	Regularized Batch Normalization
	Experimental Result for RBN
	Analysis

	Conclusion and Limitation

