
KSD Aggregated Goodness-of-fit Test

Anonymous Author(s)

Affiliation
Address
email

Abstract

We investigate properties of goodness-of-fit tests based on the Kernel Stein Dis-1

crepancy (KSD). We introduce a strategy to construct a test, called KSDAGG,2

which aggregates multiple tests with different kernels. KSDAGG avoids splitting3

the data to perform kernel selection (which leads to a loss in test power), and4

rather maximises the test power over a collection of kernels. We provide theo-5

retical guarantees on the power of KSDAGG: we show it achieves the smallest6

uniform separation rate of the collection, up to a logarithmic term. KSDAGG can7

be computed exactly in practice as it relies either on a parametric bootstrap or on a8

wild bootstrap to estimate the quantiles and the level corrections. In particular, for9

the crucial choice of bandwidth of a fixed kernel, it avoids resorting to arbitrary10

heuristics (such as median or standard deviation) or to data splitting. We find on11

both synthetic and real-world data that KSDAGG outperforms other state-of-the-art12

adaptive KSD-based goodness-of-fit testing procedures.13

1 Introduction14

Kernel selection remains a fundamental question in kernel-based nonparametric hypothesis testing,15

as it significantly impacts the test power. Kernel selection has attracted a significant interest in16

the literature, and a number of methods have been proposed in different settings, such as in the17

two-sample, independence and goodness-of-fit testing frameworks. Those methods include using18

heuristics (Gretton et al., 2012a), relying on data splitting (Gretton et al., 2012b; Sutherland et al.,19

2017; Kübler et al., 2022), learning deep kernels (Grathwohl et al., 2020; Liu et al., 2020), working20

in the post-selection inference framework (Yamada et al., 2019; Lim et al., 2019, 2020; Kübler et al.,21

2020; Freidling et al., 2021), to name but a few.22

In this work, we focus on aggregated tests, which have been investigated for the two-sample problem23

by Fromont et al. (2013), Kim et al. (2022) and Schrab et al. (2021) using the Maximum Mean24

Discrepancy (MMD, Gretton et al., 2012a), and for the independence problem by Albert et al. (2022)25

and Kim et al. (2022) using the Hilbert Schmidt Independence Criterion (HSIC, Gretton et al., 2005).26

We extend the use of aggregated tests to the goodness-of-fit setting, where we are given a model27

and some samples, and we are interested in deciding whether the samples have been drawn from28

the model. We employ the Kernel Stein Discrepancy (KSD, Chwialkowski et al., 2016; Liu et al.,29

2016) as our test statistic, which is an ideal measure of distance for this setting: it admits an estimator30

which can be computed without requiring samples from the model, and does not require the model to31

be normalised. To the best of our knowledge, ours represents the first aggregation procedure for the32

KSD test in the literature.33

Related work. Fromont et al. (2012, 2013) introduced non-asymptotic aggregated tests for the34

two-sample problem with the equal sample sizes following a Poisson process, using as test statistic an35

unscaled version of the MMD. They also provided theoretical results in terms of uniform separation36

rates using a wild bootstrap. Albert et al. (2022) then proposed an aggregated test for the independence37
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problem using the HSIC, with guarantees using a theoretical quantile, but relying on permutations to38

obtain the test threshold in practice. Kim et al. (2022) then extended those results to also hold for39

the estimated quantile, and generalised the two-sample results to hold for the MMD estimator with40

different sample sizes using a wild bootstrap. All those aforementioned results were proved for the41

Gaussian kernel only. Schrab et al. (2021) generalised the two-sample results to hold for a wide range42

of kernels using either a wild bootstrap or a permutation-based procedure, and provided optimality43

results which hold with fewer restrictions on the class of functions. Our work builds and extends on44

the above results: we consider the goodness-of-fit framework, where we have samples from only45

one of the two densities. The main challenges arise from working with the Stein kernel that defines46

the KSD test statistic: for example, we lose the transition invariant property of the kernel which is47

crucial to work in the Fourier domain. We also point out the very relevant work of Balasubramanian48

et al. (2021) who considered adaptive MMD-based goodness-of-fit tests and studied their uniform49

separation rates over Sobolev balls in the asymptotic regime. More generally, Li and Yuan (2019)50

studied asymptotic adaptive kernel-based tests for the three testing frameworks. Finally, Key et al.51

(2021) addressed the complementary task of Stein test design for a family of models, rather than for a52

single model.53

Contributions. We propose a solution to the fundamental kernel selection problem for the widely-54

used KSD goodness-of-fit tests: we construct an adaptive test KSDAGG which aggregates multiple55

tests with different kernels. Our contribution is in showing, both theoretically and experimentally, that56

the aggregation procedure works in this novel setting in which it has never been considered before.57

We consider the kernel selection framework; this general setting has many applications including58

the one of kernel bandwidth selection. Our aggregated test allows for two numerical methods for59

estimating the test thresholds: the wild bootstrap and the parametric bootstrap (a procedure unique60

to the goodness-of-fit framework). We conduct a theoretical analysis: we provide a lower bound61

on the uniform separation rate (Baraud, 2002) of KSDAGG, a condition which guarantees test62

power. We discuss the implementation of KSDAGG and experimentally validate our proposed63

approach on benchmark problems, not only on datasets classically used in the literature but also64

on original data obtained using state-of-the-art generative models (i.e. Normalizing Flows). We65

observe, both on synthetic and real-world data, that KSDAGG obtains higher power than other66

KSD-based adaptive state-of-the-art tests. Contributing to the real-world applications of these67

goodness-of-fit tests, we provide publicly available code to allow practitioners to employ our method:68

https://anonymous.4open.science/r/ksdagg-DBF7/README.md.69

Outline. Section 2 presents our framework and our notation. Section 3 introduces our algorithm70

KSDAGG (in Algorithm 1) and contains our main theoretical results. Section 4 presents numerical71

experiments to support KSDAGG. We close the paper with avenues for future research in Section 5.72

2 Notation73

We consider the goodness-of-fit problem where given access to a known probability density p (model)74

and to some i.i.d. d-dimensional samples XN := (Xi)Ni=1 drawn from an unknown density q, we75

want to decide whether p 6= q holds. This can be expressed as a statistical hypothesis testing problem76

with null hypothesis H0 : p = q and alternative Ha : p 6= q.77

As a measure of distance between p and q, we use the Kernel Stein Discrepancy (KSD) introduced by78

Chwialkowski et al. (2016) and Liu et al. (2016). For a kernel k, the KSD is defined as the Maximum79

Mean Discrepancy (MMD, Gretton et al., 2012a) between p and q using the Stein kernel associated80

to k, that is81

KSD2
p,k(q) := MMD2

hp,k
(p, q) := Eq,q[hp,k(X,Y )]� 2Ep,q[hp,k(X,Y )] + Ep,p[hp,k(X,Y )]

= Eq,q[hp,k(X,Y )]

where the Stein kernel hp,k : Rd ⇥ Rd ! R is defined as82

hp,k(x, y) :=
�
r log p(x)>r log p(y)

�
k(x, y) +r log p(y)>rxk(x, y)

+r log p(x)>ryk(x, y) +
dX

i=1

@

@xi@yi
k(x, y)
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and satisfies the Stein identity Ep[hp,k(X, ·)] = 0. A quadratic-time KSD estimator can be computed83

as the U -statistic (Hoeffding, 1992)84

[KSD
2

p,k(XN ) :=
1

N(N � 1)

X

1i 6=jN

hp,k(Xi, Xj). (1)

In this work, the model density p is always known, we do not always explicitly write the dependence85

of p for all variables (as we do for KSD2
p,k and hp,k). We assume that the kernel k is such that86

KSD2
p,k(q) = Eq,q[hp,k(X,Y )] < 1 and Ck := Eq,q[hp,k(X,Y )2] < 1. (2)

We now address the requirements for consistency of the Stein test (Chwialkowski et al., 2016,87

Theorem 2.2): we assume that the kernel k is C0-universal (Carmeli et al., 2010, Definition 4.1) and88

that Eq

���r
⇣
log p(X)

q(X)

⌘���
2

2
< 1.89

We use the notations Pp and Pq to denote the probability under the model p and under q, respectively.90

Given a kernel  : Rd ⇥ Rd ! R and a function f : Rd ! R in L2
�
Rd

�
, we consider the integral91

transform T defined as92

(Tf) (y) :=

Z

Rd

(x, y)f(x) dx

for y 2 Rd. When the kernel  is translation invariant, the integral transform corresponds to a93

convolution, however, this is not true of the Stein kernel.94

3 Construction of tests and bounds95

We now introduce the single and aggregated KSD tests. We show that these control the probability of96

type I error as desired, and provide conditions for the control of the probability of type II error.97

3.1 Single test98

We first construct a KSD test for a fixed kernel k as proposed by Chwialkowski et al. (2016) and Liu99

et al. (2016). To estimate the test threshold, we can either use a wild bootstrap (Shao, 2010; Leucht100

and Neumann, 2013; Fromont et al., 2012; Chwialkowski et al., 2014) or a parametric bootstrap101

(Stute et al., 1993). Both methods work by simulating sampling values
�
K̄1

k , . . . , K̄
B1
k

�
from the102

(asymptotic) distribution of [KSD
2

p,k under the null hypothesis and estimating the (1�↵)-quantile103

using a Monte Carlo approximation1104

bq k
1�↵ := inf

⇢
u 2 R : 1� ↵  1

B1

B1X

b=1

�
K̄b

k  u
��

= K̄ •dB1(1�↵)e
k

where K̄•1
k  · · ·  K̄•B1

k are the sorted elements
�
K̄1

k , . . . , K̄
B1
k

�
. The single test is then defined as

�k
↵(XN ) :=

⇣
[KSD

2

p,k(XN ) > bq k
1�↵

⌘
.

For the parametric bootstrap, we directly draw new samples (X 0

i)
N 0

i=1 from the model p and compute105

the KSD106

K̄k :=
1

N 0(N 0 � 1)

X

1i 6=jN 0

hp,k(X
0

i, X
0

j). (3)

For the wild bootstrap, we first generate n i.i.d. Rademacher random variables ✏1, . . . , ✏n taking107

values in {�1, 1}n, and then compute108

K̄k :=
1

N(N � 1)

X

1i 6=jN

✏i✏jhp,k(Xi, Xj). (4)

1We do not write explicitly the dependence of bq k
1�↵ on other variables, but those are implicitly considered

when writing probabilistic statements.
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Both these processes are then repeated B1 times.109

Since it uses samples from the model p, the parametric bootstrap (Stute et al., 1993) results in a110

test with non-asymptotic level ↵. This comes at the cost of being computationally more expensive111

and assuming that we are able to sample from p (which may be out of reach in some settings).112

Conversely, the wild bootstrap has the advantage of not requiring to sample from p, which makes it113

computationally more efficient as only one kernel matrix needs to be computed, but it only achieves114

the desired level ↵ asymptotically (Shao, 2010; Leucht and Neumann, 2013; Chwialkowski et al.,115

2014, 2016). Note that we cannot obtain a non-asymptotic level for the wild bootstrap by relying on116

the result of Romano and Wolf (2005, Lemma 1) as done in the two-sample framework by Fromont117

et al. (2013) and Schrab et al. (2021). This is because in our case K̄k and [KSD
2

p,k(XN ) are not118

exchangeable variables under the null hypothesis, due to the asymmetry of the KSD statistic with119

respect to p and q.120

Having discussed control of the probability of type I error of the single test �k
↵, we now provide121

a condition on kp� qk2 which ensures that the probability of type II error is controlled by some122

� 2 (0, 1). The smallest such value of kp� qk2, provided that p � q lies in some given class of123

functions, is called the uniform separation rate (Baraud, 2002).124

Theorem 3.1. Let  := p� q and assume that max(kpk
1
, kqk

1
)  M . Consider Ck as defined in

Equation (2), ↵ 2 (0, e�1), � 2 (0, 1) and B1 2 N satisfying B1 � 3
↵2

�
ln
�
8
�

�
+ ↵(1� ↵)

�
. There

exists a positive constant C such that the condition

k k22 �
�� � Thp,k 

��2
2
+ C log

✓
1

↵

◆p
Ck

�N

guarantees control over the probability of type II error, such that Pq

�
�k

↵(XN ) = 0
�
 �.125

Theorem 3.1, which is proved in Appendix A, provides a power guaranteeing condition consisting of126

two terms. The first term k � Thp,k k22 indicates the size of the effect of the Stein operator on the127

difference in densities  := p� q, and is a measure of distance from the null (where this quantity is128

zero). The second term log
�
1/↵

�
(�N)�1

p
Ck is obtained from upper bounding the variance of the129

KSD U -statistic, it depends on the expectation of the squared Stein kernel Ck := Eq,q[hp,k(X,Y )2].130

This second term also controls the quantile of the test.131

3.2 Aggregated test132

We can now introduce our aggregated test, which is motivated by the earlier works of Fromont et al.133

(2012, 2013), Albert et al. (2022), and Schrab et al. (2021) for different testing frameworks.134

We compute eK1
k , . . . ,

eKB2
k further simulated KSD values from the null hypothesis obtained using135

either a parametric bootstrap or a wild bootstrap as in Equations (3) or (4), respectively. Consider136

a finite collection of kernels K satisfying the properties presented in Section 2. We construct an137

aggregated test �K

↵ , called KSDAGG, which rejects the null hypothesis if one of the single tests138 �
�k

u↵wk

�
k2K

rejects it, that is139

�K

↵ (XN ) :=
�
�k

u↵wk
(XN ) = 1 for some k 2 K

�
.

The levels of the single tests are adjusted to ensure the aggregated test has the prescribed level ↵.140

This adjustment is performed by introducing positive weights (wk)k2K satisfying
P

k2K
wk  1 and141

some correction142

u↵ := sup

⇢
u 2

⇣
0,min

k2K

w�1
k

⌘
: bPu  ↵

�
(5)

where

bPu :=
1

B2

B2X

b=1

✓
max
k2K

⇣
eKb
k � K̄ •dB1(1�uwk)e

k

⌘
> 0

◆

is a Monte Carlo approximation of the probability of type I error of our aggregated test with correction
u

Pu := Pp

✓
max
k2K

⇣
[KSD

2

p,k(XN )� bq k
1�uwk

⌘
> 0

◆
.
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Algorithm 1 KSDAGG

Inputs: samples XN = (xi)Ni=1, density p or score function r log p(·), finite kernel collection K,
weights (wk)k2K, level ↵ 2 (0, e�1), estimation parameters B1, B2, B3 2 N, parametric or wild
bootstrap
Output: 0 (fail to reject H0) or 1 (reject H0)
Algorithm:

for k 2 K do

Compute
�
K̄b

k

�
1bB1

as in Equations (3) or (4)
Sort in ascending order to obtain

�
K̄•b

k

�
1bB1

Compute
� eKb

k

�
1bB2

as in Equations (3) or (4)
umin = 0, umax = min

k2K

w�1
k

for t = 1, . . . , B3 do

u = 1
2 (umin + umax), bPu =

1

B2

B2X

b=1

✓
max
k2K

⇣
eKb
k � K̄ •dB1(1�uwk)e

k

⌘
> 0

◆

if bPu  ↵ then umin = u else umax = u
u↵ = umin

if max
k2K

⇣
[KSD

2

p,k(XN )� K̄ •dB1(1�u↵wk)e
k

⌘
> 0 then return 1 else return 0

Time complexity: O
�
N2(B1 +B2) |⇤|

�

To compute u↵, we estimate the supremum in Equation (5) by performing B3 steps of the bisection143

method. Detailed pseudocode for KSDAGG is provided in Algorithm 1.144

We verify in the next proposition that performing this correction indeed ensures that our aggregated145

test �K

↵ has the prescribed level ↵.146

Proposition 3.2. For ↵ 2 (0, 1) and a collection of kernels K, the aggregated test �K

↵ satisfies

Pp

�
�K

↵ (XN ) = 1
�
 ↵

non-asymptotically using a parametric bootstrap and asymptotically using a wild bootstrap.147

The proof of Proposition 3.2 is presented in Appendix B. We now provide guarantees for the power148

of our aggregated test KSDAGG in terms of its uniform separation rate.149

Theorem 3.3. Let  := p � q denote the difference in densities and assume that kpk
1

 M and
kqk

1
 M . Consider the aggregated test �K

↵ with a collection of kernels K and associated positive
weights (wk)k2K satisfying

P
k2K

wk  1, and with parameters ↵ 2 (0, e�1) and B1, B2, B3 2 N
satisfying B1 � 3

↵2

�
ln
�
8
�

�
+ ↵(1 � ↵)

�
, B2 � 8

↵2 ln
�
2
�

�
and B3 � log2

�
4
↵ min

k2K

w�1
k

�
. Consider

some � 2 (0, 1) and Ck as defined in Equation (2). There exists a positive constant C such that if

k k22 � min
k2K

✓�� � Thp,k 
��2
2
+ C log

✓
1

↵wk

◆p
Ck

�N

◆

then the probability of type II error of �K

↵ is controlled by �, that is, Pq

�
�K

↵ (XN ) = 0
�
 �.150

We prove Theorem 3.3 in Appendix C. We observe that the aggregation procedure allows to achieve151

the smallest uniform separation rate of the single tests
�
�k

↵

�
k2K

up to some logarithmic weighting152

term log(1/wk).153

3.3 Bandwidth selection154

A specific application of the setting we have considered is the problem of bandwidth selection for a
fixed kernel. Given a kernel k : Rd ⇥ Rd ! R, the function

k�(x, y) := k
⇣x
�
,
y

�

⌘

5



is also a kernel for any bandwidth � > 0. A common example is the Gaussian kernel, for which155

we have k(x, y) = exp(�kx� yk22) and k�(x, y) = exp
�
� kx� yk22

�
�2
�
. As shown by Gorham156

and Mackey (2017), a more appropriate kernel for goodness-of-fit testing using the KSD is the157

IMQ (inverse multiquadric) kernel, which is defined with k(x, y) =
⇣
1 + kx� yk22

⌘��k

for a fixed158

parameter �k 2 (0, 1) as159

k�(x, y) =

 
1 +

kx� yk22
�2

!��k

= �2�k

⇣
�2 + kx� yk22

⌘��k

/
⇣
�2 + kx� yk22

⌘��k

(6)

which is the well-known form of the IMQ kernel with parameters � > 0 and �k 2 (0, 1). Note that it160

is justified to consider the kernel up to a multiplicative constant because our single and aggregated161

tests are invariant under this kernel transformation.162

In practice, as suggested by Gretton et al. (2012a), the bandwidth is often set to a heuristic such as the163

median or the standard deviation of the L2-distances between the samples (Xi)Ni=1, however, these164

are arbitrary choices with no theoretical guarantees. Another common approach proposed by Gretton165

et al. (2012b) for the linear-time setting, and extended to the quadratic-time setting by Liu et al.166

(2020), is to resort to data splitting in order to select a bandwidth on held-out data, by maximising for167

a proxy for asymptotic power (see Section 4.1 for details). Both methods were originally proposed168

for the two-sample problem, but extend straightforwardly to the goodness-of-fit setting.169

By considering a kernel collection K⇤ = {k� : � 2 ⇤} for a collection of bandwidths ⇤, we can use
our aggregated test KSDAGG to test multiple bandwidths using all the data and without resorting to
arbitrary heuristics. We now obtain an expression for the uniform separation rate of �K⇤

↵ in terms of
the bandwidths � 2 ⇤.

170

Corollary 3.4. Consider ↵ 2 (0, e�1), � 2 (0, 1) and B1, B2, B3 2 N satisfying the conditions of
Theorem 3.3 and assume that max(kpk

1
, kqk

1
)  M . Given a collection ⇤ of positive bandwidths

with associated positive weights (w�)�2⇤ satisfying
P

�2⇤ w�  1, we consider K⇤ = {k� : � 2 ⇤}.
There exists a positive constant C such that the condition

k k22 � min
�2⇤

 ��� � Thp,k�
 
���
2

2
+ C log

✓
1

↵w�

◆ p
Ck�

�N

!

ensures control over the probability of type II error of the aggregated test Pq

�
�K⇤

↵ (XN ) = 0
�
 �.171

Corollary 3.4 follows from applying Theorem 3.3 to the collection of kernels K⇤. We do not impose172

any restrictions on  := p � q such as assuming it belongs to a specific regularity class. For this173

reason, our result holds more generally but the dependence on � in the terms k � Thp,k�
 k22 and174

log
�
1/(↵w�)

�
(�N)�1

p
Ck� is not explicit. For a particular regularity class, one can obtain a175

uniform separation rate N�r for some r > 0 by choosing appropriate collections of bandwidths and176

weights (depending on N ) such that the two terms have matching orders of N .177

4 Implementation and experiments178

We consider three different experiments based on a Gamma one-dimensional distribution, a Gaussian-179

Bernoulli Restricted Boltzmann Machine, and a Normalizing Flow for the MNIST dataset. We180

compare our proposed aggregated test KSDAGG against three alternatives: the KSD test which uses181

the median bandwidth, a test which splits the data to select an ‘optimal’ bandwidth according to a182

proxy for asymptotic test power, and a test which uses extra data for bandwidth selection. The ‘extra183

data’ test is designed simply to provide a best case oracle for the bandwidth selection procedure184

which maximises asymptotic test power, it cannot be used in practice (i.e. any extra samples from q185

would normally be incorporated into the sample being tested). In order to ensure that our tests always186

have correct levels for all bandwidth values, dimensions and sample sizes, we use the parametric187

bootstrap in our experiments.188
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4.1 Alternative bandwidth selection approaches189

Gretton et al. (2012a) proposed to use the median heuristic as kernel bandwidth, it consists in the
median of the L2-distances between the samples given by

�med := median{kxi � xjk2 : 0  i < j  N}.

Gretton et al. (2012b) first proposed, for the two-sample problem using a linear-time MMD estimator,190

to split the data and to use half of it to select an ‘optimal’ bandwidth which maximises a proxy for191

asymptotic power. This procedure was extended to quadratic-time estimators and to the goodness-192

of-fit framework by Jitkrittum et al. (2017), Sutherland et al. (2017) and Liu et al. (2020). These193

strategies rely on the asymptotic normality of the test statistic under Ha. In our setting, the asymptotic194

power proxy to maximise is the ratio [KSD
2

p,k(XN ) / b�Hawhere b�2
Ha

is a closed-form regularised195

positive estimator of the asymptotic variance of [KSD
2

p,k under Ha (Liu et al., 2020, Equation 5). In196

our experiments, we also consider a test which has access to N extra samples drawn from q to select197

an ‘optimal’ bandwidth to run the KSD test on the original N samples XN . This test is interesting to198

compare to because it uses an ‘optimal’ bandwidth without being detrimental to power.199

4.2 Experimental details200

In our experiments, we use collections of bandwidths of the form ⇤(`�, `+) :=
�
2i�med : i =201

`�, . . . , `+
 

for the median bandwidth �med and integers `� < `+ with uniform weights w� :=202

1/(`+ � `� + 1). For the tests which split the data, we select the bandwidth out of the collection203

⇤(`�, `+) which maximises the power proxy discussed in Section 4.1. All our experiments are run204

with level ↵ = 0.05 using the IMQ kernel defined in Equation (6) with parameter �k = 0.5. We use205

a parametric bootstrap with B1 = B2 = 500 simulated KSD values to compute the adjusted test206

thresholds, and B3 = 50 steps of bisection method to estimate the correction u↵ in Equation (5).207

To estimate the probability of rejecting the null hypothesis, we average the test outputs across 200208

repetitions. All experiments have been run on an AMD Ryzen Threadripper 3960X 24 Cores 128Gb209

RAM CPU at 3.8GHz, the runtime is of the order of a couple of hours (significant speedup can210

be obtained by using parallel computing). We have used the implementation of Jitkrittum et al.211

(2017) to sample from a Gaussian-Bernoulli Restricted Boltzmann Machine, and Phillip Lippe’s212

implementation of MNIST Normalizing Flows, both under the MIT license.213

(a) (b)

Figure 1: (a) Gamma distribution experiment. (b) Gaussian-Bernoulli Restricted Boltzmann Machine
experiment.

4.3 Gamma distribution214

For our first experiment, we consider a one-dimensional Gamma distribution with shape parameter 5215

and scale parameter 5 as the model p. We draw 500 samples from a Gamma distribution with the216

7

https://github.com/wittawatj/kernel-gof
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial11/NF_image_modeling.html


same scale parameter 5 and with a shifted shape parameter 5 + s for s 2 {0, 0.1, 0.2, 0.3, 0.4}. We217

consider the collection of bandwidths ⇤(0, 10).218

The results we obtained are presented in Figure 1a. We observe that all tests have the prescribed219

level 0.05 under the null hypothesis, which corresponds to the case s = 0. As the shift parameter220

s increases, the two densities p and q become more different and rejection of the null becomes an221

easier task, thus the test power increases. Our aggregated test KSDAGG achieves the same power as222

the ‘best case’ bound on the performance of the asymptotic power heuristic, yielded by the splitting223

test with extra data. The median test obtains only slightly lower power, this closeness in power224

can be explained by the fact that this one-dimensional problem is a simple one. We note that the225

normal splitting test has significantly lower power: this is because, even though it uses an ‘optimal’226

bandwidth, it is then run on only half the data, which results in a loss of power.227

4.4 Gaussian-Bernoulli Restricted Boltzmann Machine228

As first considered by Liu et al. (2016) for goodness-of-fit testing using the KSD, we consider a
Gaussian-Bernoulli Restricted Boltzmann Machine. It is a graphical model with a binary hidden
variable h 2 {�1, 1}dh and a continuous observable variable x 2 Rd. Those variables have joint
density

p(x, h) =
1

Z
exp

✓
1

2
x>Bh+ b>x+ c>h� 1

2
kxk22

◆

where Z is an unknown normalizing constant. By marginalising over h, we obtain the density p of x

p(x) =
X

h2{�1,1}dh

p(x, h).

We can sample from it using a Gibbs sampler with 2000 burn-in iterations. We use the dimensions
d = 50 and dh = 40 as considered by Jitkrittum et al. (2017) and Grathwohl et al. (2020). Even
though computing p is intractable for large dimension dh, the score function admits a convenient
closed form

r log p(x) = b� x+B
exp

�
2(B>x+ c)

�
� 1

exp(2(B>x+ c)) + 1
.

We draw the components of b and c from Gaussian standard distributions and sample Rademacher229

variables taking values in {�1, 1} for the elements of B for the model p. We draw 1000 samples230

from a distribution q which is constructed in a similar way as p but with the difference that some231

Gaussian noise N (0,�) is injected into the elements of B. We consider the standard deviations of the232

perturbations � 2 {0, 0.01, 0.02, 0.03}. We run our experiments with the collection of bandwidths233

⇤(�20, 0) and provide the results in Figure 1b.234

Again, we observe that our aggregated test KSDAGG matches the power obtained by the test which235

uses extra data to select an ‘optimal’ bandwidth. This means that, in this experiment, KSDAGG236

obtains the same power as the ‘best’ single test. The difference between KSDAGG and the median237

heuristic test is significant on this experiment, and the splitting test obtains lowest power of the four238

tests. Again, all tests have well-calibrated levels (� = 0) and increasing the noise level � results in239

more power for all the tests.240

(a) (b) (c)

Figure 2: (a) Digits from the MNIST dataset. (b, c) Digits sampled from the Normalizing Flow.

4.5 MNIST Normalizing Flow241

Finally, we consider a high-dimensional problem working with images in dimensions 282 = 784. We242

consider a multi-scale Normalizing Flow (Dinh et al., 2017; Kingma and Dhariwal, 2018) which has243

been trained on the MNIST dataset (LeCun et al., 1998, 2010), it is a generative model which has a244
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probability density p. As observed in Figure 2, some samples produced by the model can look exactly245

like MNIST digits, while other do not resemble digits. This Normalizing Flow has been trained to246

‘ideally’ produce samples from the MNIST dataset. We are interested in whether or not we can detect247

the difference in densities. Given some images of digits, are we able to tell if those were sampled248

from the Normalizing Flow model? We consider the case where the images from q are sampled from249

the model (level experiment, confirming performance under H0), and the case where the samples250

from q are drawn from the true MNIST dataset (power experiment). The experiments are run with251

the collection of bandwidths ⇤(�20, 0). The results are displayed in Figure 3a and Figure 3b.252

In Figure 3a, we observe that the four tests have correct levels (around 0.05) for the five different253

sample sizes considered (the small fluctuations about the designed test level can be explained by254

the fact that we are averaging 200 test outputs to estimate these levels). The well-calibrated levels255

obtained in Figure 3a demonstrate the validity of the power results presented in Figure 3b.256

In Figure 3b, we observe that only our aggregated test KSDAGG obtains high power, that is, is able257

to detect that MNIST samples are not drawn from the Normalizing Flow. The power of the other258

tests increases only marginally as the sample size increases. We notice that the test which uses extra259

data to select an ‘optimal’ bandwidth performs poorly when compared to KSDAGG. This could be260

explained by the fact that this test selects the bandwidth using a proxy for the asymptotic power, and261

that in this high-dimensional setting, the asymptotic regime is not attained with sample sizes below262

500.263

(a)

(b)

Figure 3: Normalizing Flow MNIST. (a) Level experiment. (b) Power experiment.

5 Discussion264

We have introduced KSDAGG, an aggregated goodness-of-fit test based on the Kernel Stein Dis-265

crepancy. We have investigated the theoretical properties of this adaptive test. We have shown that266

it achieves the desired level and have provided conditions to guarantee high power by exhibiting a267

lower bound on its uniform separation rate. We have observed in our experiments that KSDAGG268

outperforms alternative state-of-the-art approaches to KSD kernel adaptation for goodness-of-fit269

testing.270

This work covers the problem of KSD adaptivity in the goodness-of-fit framework without requiring271

data splitting. A potential future direction of interest could be to tackle the adaptivity problem of272

the KSD-based linear-time goodness-of-fit test proposed by Jitkrittum et al. (2017). In this setting,273

the data is split to select feature locations (and the kernel bandwidth), the KSD test is then run using274

those adaptive features. A challenging problem would be to obtain those adaptive features using an275

aggregation procedure which avoids splitting the data.276
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