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Abstract

Training automated agents to perform complex behaviors in interactive environ-1

ments is challenging: reinforcement learning requires careful hand-engineering of2

reward functions, imitation learning requires specialized infrastructure and access3

to a human expert, and learning from intermediate forms of supervision (like binary4

preferences) is time-consuming and low-bandwidth. Can we overcome these chal-5

lenges by building agents that learn from rich, interactive feedback? We propose a6

new supervision paradigm for interactive learning based on “teachable” decision-7

making systems that learn from structured advice provided by an external teacher.8

We begin by introducing a class of human-in-the-loop decision making problems in9

which different forms of human provided advice signals are available to the agent10

to guide learning. We then describe a simple policy learning algorithm that first11

learns to interpret advice, then learns from advice how to autonomously complete12

a target task. In a set of puzzle-solving, navigation, and locomotion domains, we13

show that agents that learn from advice can acquire new skills with significantly14

less advice supervision than ordinary reinforcement or imitation learning.15

1 Introduction16

Reinforcement learning (RL) provides a promising paradigm for building agents that can learn17

complex behaviors from autonomous interaction and minimal human effort. In practice, however,18

significant human effort is required to design and compute the reward functions that enable successful19

RL [43]: the reward functions underlying some of the most prominent success stories in RL20

involve significant domain expertise and elaborate instrumentation of the agent and environment21

[32, 33, 38, 24, 15]. Despite this complexity, reward functions provide relatively little information to22

learners: as rewards are simply scalars indicating how good a particular state is relative to others, they23

provide limited information about how to perform tasks. Reward-driven RL agents must perform24

significant exploration and experimentation within an environment to learn effectively. A number of25

alternative paradigms for interactively learning policies have emerged as alternatives, such as imitation26

learning [35, 18, 44], dataset aggregation [37], and preference learning [10, 6] that can learn in the27

absence of rewards. However, existing methods are either impractically low bandwidth [23, 26, 10]28

or require costly data collection [38, 21].29

Human learners, by contrast, are not confined to scalar evaluations of behavior when learning new30

tasks. Instead, they are able to leverage numerous, richer forms of supervision: joint attention [30],31

physical nudges [5] and natural language instruction [9]. For human teachers, this kind of coaching32

is often no more costly to provide than scalar measures of success, but significantly more informative33

for learners. In this way, human learners use high-bandwidth, low-effort communication as a means34

to flexibly acquire new concepts or skills [40, 29]. Importantly, the interpretation of some of these35

feedback signals (like language), is itself learned, but can be bootstrapped from other forms of36
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communication: for example, the function of gesture and attention can be learned from intrinsic37

rewards [34]; these in turn play a key role in language learning [27].38

Figure 1: Example in the BabyAI [8] domain, in-
troducing the CAMDP problem setting. The agent is
provided with an instruction qualifying which task has
to be solved, and is also provided with various forms of
advice as shown here - action advice, waypoints and lan-
guage subgoals. The agent can use the advice c0, c1, c2

to quickly accomplish new tasks.

This paper proposes a framework for training39

automated agents using similarly rich interactive40

supervision. For instance, given an agent learn-41

ing a navigation policy in the BabyAI frame-42

work [8] (Fig 1), we enable training the agent43

interactively using not just reward signals but44

action advice (“move left”), waypoints (“move45

towards (1, 2)") and sub-goals (“pick up the yel-46

low ball"). To do so, we formalize a novel prob-47

lem setting and supervision paradigm for inter-48

active learning, Coaching Augmented Markov49

Decision Processes (CAMDPs), in which aux-50

iliary advice signals are available to the agent51

to guide learning. We then describe an algo-52

rithmic framework for learning in CAMDPs via53

sequencing grounding and distillation. During54

the grounding phase, agents learn association be-55

tween teacher-provided advice and high-value56

actions in the environment; during distillation,57

agents collect trajectories with grounded models58

and interactive advice, then transfer information from these trajectories to fully autonomous policies59

that operate without coaching. This procedure can be extended to enable bootstrapping of grounded60

models that use increasingly sparse and abstract advice types. In our experimental evaluation, we61

show that this procedure can allow for grounding of various different forms of advice, and this can62

then be used to guide the learning of new tasks up to 18x more efficiently and with less human63

effort needed than naïve methods for RL across puzzle-solving [8], navigation [14], and locomotion64

domains [8].65

In summary, this paper describes: (1) a general framework (CAMDPs) for teacher-in-the-loop RL66

with rich interactive advice; (2) an algorithm for learning in CAMDPs with a single form of advice; (3)67

an extension of this algorithm that enables bootstrapped learning of multiple advice types; and finally68

(4) a set of empirical evaluations on discrete and continuous control problems in the BabyAI [8] and69

D4RL [14] environments demonstrating that when training on a new task with a given advice budget,70

our method allows agents to converge to a higher average performance with 18x less supervision than71

standard RL.72

2 Related Work73

The learning problem studied in this paper belongs to a more general class of human-in-the-loop RL74

problems [1, 23, 26, 41, 12]. Existing frameworks like TAMER [23, 39] and COACH [26, 4] also75

use interactive feedback to train policies, but are restricted to scalar or binary rewards. In contrast,76

our work formalizes the problem of learning from arbitrarily complex feedback signals. A distinct77

line of work looks to learn how to perform tasks from binary feedback with human preferences,78

indicating which of two trajectory snippets a human might prefer [10, 19, 41]. These techniques are79

only receiving a single bit of information with every human interaction, which can make the human80

supervision process time-consuming and tedious. In contrast, the learning algorithm we describe uses81

higher-bandwidth feedback signals like language subgoals or directional nudges, provided sparsely,82

to reduce the required effort from a supervisor.83

Learning from feedback, especially provided in the form of natural language, is closely related to84

the instruction following in natural language processing [7, 3, 28, 36]. In instruction following85

problems, the goal is to produce an instruction-conditional policy that can generalize to new natural86

language specifications of behavior (at the level of either goals or action sequences [22] and held-out87

environments. Here, our goal is to produce an unconditional policy that achieves good task success88

autonomously—we use instruction following models to interpret interactive feedback and scaffold89

the learning of these autonomous policies.90
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The use of language at training time to scaffold learning of language-unconditional behaviors has91

been studied in several more specific settings [25]: Co-Reyes et al. [11] describe a procedure for92

learning to execute fixed target trajectories via interactive corrections, Andreas et al. [2] use language93

to produce policy representations useful for reinforcement learning, while Jiang et al. [20] and94

Hu et al. [17] use language to guide the learning of hierarchical policies. Eisenstein et al. [13]95

and Narasimhan et al. [31] use side information from language to communicate information about96

environment dynamics rather than high-value action sequences.97

3 Coaching Augmented Markov Decision Processes98

We start by introducing our coaching-augmented MDP framework, which formalizes our approach99

to human-in-the-loop reinforcement learning with coaching based advice. CAMDPs build on the100

framework of multi-task RL and Markov decision processes (MDP), augmenting them with advice101

provided by a teacher in the loop through an arbitrary channel of communication. To situate this102

problem more intuitively, consider the navigation and object repositioning environment depicted103

in Fig 1 [8]. Tasks in this environment specify particular specific desired goal states; e.g. “place104

the yellow ball in the green box and the blue key in the green box" or “open all doors in the blue105

room". In multi-task RL, a learner’s objective is produce a policy π(at|st, τ) that maximizes reward106

in expectation over tasks τ .107

More formally, multi-task MDP is defined by a 7-tupleM≡ (S,A, T ,R, ρ(s0), γ, p(τ)). Here, S108

denotes the state space, A denotes the action space, p : S ×A× S 7→ R≥0 denotes the transition109

dynamics, r : S ×A× τ 7→ R denotes the reward function, ρ : S 7→ R≥0 denotes the initial state110

distribution, γ ∈ [0, 1] denotes the discount factor and p(τ) denotes the distribution over tasks. The111

objective in a multi-task MDP is to learn a policy πθ that maximizes the expected sum of discounted112

returns in expectation over tasks: maxθ JE(πθ, p(τ)) = Eat∼πθ(·|st,τ)
τ∼p(τ)

[
∑∞
t=0 γ

tr(st, at, τ)].113

Why might additional supervision beyond the reward signal be useful for solving this optimization114

problem? Suppose the agent in Fig 1 is in the (low-value) state shown in the figure, but could reach a115

high-value state by going “left and up". This fact is difficult to communicate through a scalar reward116

(which cannot convey information about alternative actions) or through a state observation (since we117

ultimately wish to produce an agent that can act on its own, without hints in the observation space).118

A side channel for training-time information would be greatly beneficial.119

We formalize this as follows: in addition to the standard multi-task MDP formulation, in a coaching-120

augmented MDP (CAMDP), training-time information, which we refer to as advice (or alternatively121

coaching, is provided by a teacher in the loop. We denote a teacher by C = {C1, C2, · · · , Ci}, where122

Cj are different coaching functions each generating a different form of advice that a teacher could123

provide, and a teacher is simply a collection of all these coaching functions. While the teacher could124

be a human supervisor, in our empirical evaluation we used a scripted teacher for ease of evaluation.125

In every state, the teacher chooses which coaching functions (if any) to apply in a given state, then126

provides advice cj ∼ Cj(s, a) to the agent.1 As shown in Figure 1, advice can take many forms:127

action advice (c0), waypoints (c1), language sub-goals (c2), or any other local information relevant to128

task completion. Advice may be provided densely (in every state) or only infrequently.2129

As in ordinary MDP learning, the goal in a CAMDP is to learn a policy πθ(· | st, τ) that chooses130

an action based on Markovian state st and high level task information τ without interacting with131

cj . However, we allow learning algorithms to use the coaching signal cj to train this policy more132

efficiently. For instance, the agent in Fig 1 can leverage hints “go left" or “move towards the blue133

square" to guide its exploration process but it eventually must learn how to perform the task without134

any coaching required.135

4 Leveraging Advice via Distillation136

We start by formalizing the training setup we use to solve CAMDPs, and then we describe a practical137

algorithm to actually be able to ground and leverage advice for solving new tasks.138

1When only a single form of advice is available to the agent, we omit the superscript for clarity.
2While design of optimal coaching strategies and explicit modeling of coaches are important research topics

[16], this paper assumes that the coach is fixed and not explicitly modeled.
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4.1 Training Setup for Learning in CAMDPs139

In order to effectively leverage advice in CAMDPs, we divide the training and evaluation process140

of an agent into three different phases: (1) a grounding phase, (2) an improvement phase and (3) an141

evaluation phase.142

In the grounding phase, agents learn how to interpret advice. The result of the grounding phase is a143

surrogate policy q(at | st, τ, c) that can effectively condition on advice when it is provided in the144

training loop. As we discuss in Section 4.2, this phase can also make use of a bootstrapping process145

in which more complex forms of feedback are learned using signals from simpler ones.146

During the improvement phase, agents use the ability to interpret advice to learn new skills. Specifi-147

cally, in an instance of the improvement phase, the learner is presented with a novel task τtest that148

was not provided during the grounding phase, and must learn to perform this task using only a small149

amount of interaction in which advice is provided. This advice, combined with the learned surrogate150

policy q(at|st, τ, c), is used to learn an advice-independent policy π(at|st, τ), which can perform151

tasks without requiring any coaching.152

Finally, in the evaluation phase, agent performance is evaluated on the task τtest by executing the153

advice-independent, instruction conditional policy π(at|st, τtest)in the environment.154

Figure 2: Figure illustrating the three phases of learning a coachable system - (1) grounding (2) improvement
and (3) evaluation. During the grounding phase, the goal is to learn a surrogate policy q(a|s, τ, c) that can
interpret advice c. During the improvement phase, the goal is to use the surrogate policy and a coach to quickly
learn new tasks and enable an advice-independent policy π(a|s, τ) to solve the task. During the evaluation
phase, the advice-independent policy π(a|s, τ) is executed to accomplish a task.

4.2 Grounding Phase: Grounding Advice155

The goal of the grounding phase is to learn a mapping from advice to contextually appropriate156

actions, so that advice can be used for quickly learning new tasks. In this phase, learning algorithms157

leverage interaction with the environment using reinforcement learning, using access to the ground158

truth reward function r(s, a, τ), as well as the advice c(s, a) to learn a surrogate policy q(a|s, τ, c).159

Note that the grounding process uses privileged access to the true reward function r(s, a, τ) to learn160

policies q(a|s, τ, c) that can interpret advice c(s, a).161

Grounding can be formulated as an ordinary multitask RL problem with a distribution of training162

tasks p(τ). Since the function of these training environments is purely to ground communication, the163

tasks the agent is given during training can be much simpler than those which the agent will see at test164

time. In order to actually perform the grounding, we can simply run standard reinforcement learning165

but using an advice-conditioned policy qφ(a|s, τ, c) which has access to the advice signal c(s, a)166

provided in the loop, trying to maximize the reward function r(s, a, τ). In the example from Fig 1,167

this means running RL with a policy which has access to advice forms like action advice, waypoints,168

or language sub-goals, and using the reward feedback to learn how to interpret these forms of advice.169

During this grounding process, the agent optimizes the following objective to learn how to interpret170

advice:171

max
φ

J(θ) = E τ∼p(τ)
at∼qφ(at|st,τ,c)

[∑
t

r(st, at, τ)

]
, (1)
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While this framework should learn to interpret advice in principle, there are a number of practical172

considerations that are important in training the algorithm to generalize appropriately - appropri-173

ately chosen advice representations, regularization with dropout and mutual information based174

regularization. We describe these in the Appendix.175

Figure 3: Illustration of the procedure of advice distillation (left) and bootstrap distillation (right). During
advice distillation, the advice-conditional surrogate model q(a|s, τ, c) is coached by the teacher to get optimal
trajectories. These trajectories are then distilled into an unconditional model π(a|s, τ) using supervised learning.
During bootstrap distillation a similar process is followed, but the distillation is from one form of advice cl to
another ch to learn a surrogate policy q(a|s, τ, ch)

Bootstrapping Multi-Level Advice Up until now, our formalism has largely assumed the coach176

only provides a single form of advice c. In practice, a coach might find it useful to use multiple177

forms of advice - for instance high-level language sub-goals for easy stages of the task and low-level178

action advice for more challenging parts of the task. While high level advice can be very informative179

for guiding the learning of new tasks in the improvement phase, it can often be quite difficult to180

ground advice forms like language sub-goals by purely doing exploration with RL. Instead of simply181

relying on RL to perform grounding directly from rewards r to advice cj , we can instead bootstrap182

the process of grounding one form of advice ch from a policy q(a|s, τ, cl) that is able to interpret183

a different form of advice cl. We can use a surrogate policy which already understands low-level184

advice q(a|s, τ, cl) to bootstrap training of a surrogate policy which understands higher-level advice185

q(a|s, τ, ch) by leveraging a knowledge distillation process we refer to as “bootstrap distillation".186

For instance, in Fig 1, the agent can use its understanding of action advice to then bootstrap it’s187

understanding of language sub-goals.188

Intuitively, the key idea we leverage is to use a supervisor in the loop to guide a advice-conditional189

policy that can interpret a low level form of advice qφ1
(a|s, τ, cl) to perform a training task, obtain-190

ing optimal trajectories D = {(s0, a0, cl0, ch0 ), (s1, a1, cl1, ch1 ) · · · , (sH , aH , clH , chH)}Nj=1 and then191

distilling this optimal behavior via supervised learning into a policy qφ2(a|s, τ, ch) that can interpret192

higher level advice to perform this new task without requiring the low level advice any longer.193

More specifically, we make use of the input remapping trick, seen in Levine et al. [24], where the194

policy conditioned on advice cl is used to generate optimal action labels, which are then remapped195

to observations with a different form of advice ch as input. To bootstrap the understanding of an196

abstract form of advice ch from a more low level one cl, the agent optimizes the following objective197

to bootstrap the agent’s understanding of one advice type from another:198

D ={(s0, a0, cl0, ch0 ), (s1, a1, cl1, ch1 ), · · · , (sH , aH , clH , chH)}Nj=1

s0 ∼ p(s0), at ∼ qφ1
(at|st, τ, cl), st+1 ∼ p(st+1|st, at)

max
φ2

E(st,at,cht ,τ)∼D
[
log qφ2(at|st, τ, cht )

]
4.3 Improvement Phase: Learning New Tasks Efficiently with Advice199

At the end of the grounding phase, we have a well-trained advice-following agent qφ(a|s, τ, c) that can200

interpret various forms of advice. During the improvement phase, the coach introduces the agent to a201

new test task τtest and provides advice to coach it through solving the new task. Ultimately, we want to202

use this advice to train a policy π(a|s, τ) which is able to succeed at performing the new test task τtest,203
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without requiring advice at evaluation time. To achieve this, we can make use of a very similar idea204

to the one described above for bootstrap distillation. In the improvement phase, we can leverage a205

supervisor in the loop to guide a advice-conditional surrogate policy qφ(a|s, τ, c) to perform the new206

task τtest, obtaining optimal trajectories D = {s0, a0, c0, s1, a1, c1, · · · , sH , aH , cH}Nj=1 and then207

distilling this optimal behavior into a advice-independent policy πθ(a|s, τ) via supervised learning208

to perform this new task without requiring teacher in the loop advice. In the example from Fig 1,209

this improvement process would involve a teacher in the loop providing action advice or language210

sub-goals to the agent during learning to coach it towards successfully accomplishing a task, and then211

distilling this knowledge into a policy that can operate without seeing action advice or sub-goals at212

execution time. More formally, during the improvement phase, the agent is optimizing the following213

objective:214

D = {s0, a0, c0, s1, a1, c1, · · · , sH , aH , cH}Nj=1

s0 ∼ p(s0), at ∼ qφ(at|st, τ, ct), st+1 ∼ p(st+1|st, at)
max
θ

E(st,at,i)∼D [log πθ(at|st, τ)]
This improvement process, that we call advice distillation, can easily be understand in Fig 3. This215

distillation process is preferable over directly providing demonstrations because the advice provided216

can be more convenient than providing an entire demonstration (for instance, compare the difficulty217

of producing a demo by navigating an agent through an entire maze to providing a few waypoints).218

Interestingly, even if the new tasks being solved τtest are quite different from the training distribution219

of tasks p(τ), since advice c (for instance waypoints) is provided locally and is largely invariant to220

this distribution shift, the agent’s understanding of advice generalizes well.221

4.4 Evaluation Phase: Executing tasks Without a Supervisor222

In the evaluation phase, the agent simply needs to be able to perform the test tasks τtest without223

actually requiring a supervisor in the loop. The agent’s performance can be evaluated via expected224

return obtained by the advice-independent agent learned in the improvement phase, π(a|s, τ) on the225

test task τtest according to JE(πθ, p(τ)) = E τ∼p(τ)
at∼π(·|st,τ)

[
∑∞
t=0 γ

tr(st, at, τ)]226

5 Experimental Evaluation227

We aim to answer the following questions through our experimental evaluation (1) Can advice be228

grounded through interaction with the environment via supervisor in the loop RL? (2) Can the229

learned grounding allow agents to learn new tasks more efficiently than standard RL? (3) Can230

agents bootstrap the grounding of one form of advice from another? Further details can be found at231

https://sites.google.com/view/bootstrappedcoach/home232

Figure 4: Evaluation Domains. (Left) BabyAI (Middle) Point Navigation (Right) Ant Navigation. Each domain
can have multiple different tasks to train and evaluate on. The associated task instructions are shown, as well as
the different types of advice that are available for each domain.

Evaluation Domains In our work, we consider evaluation on 3 different domains.233
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BabyAI: The first domain, which we refer to as BabyAI, is based on the open-source visual navigation234

and object manipulation domain introduced by Chevalier-Boisvert et al. [8]. This environment235

involves picking up objects with different characteristics, and then placing them at different positions.236

The family of tasks in BabyAI involves various navigation, pick and place, door-opening and multi-237

step manipulation tasks identified by an instruction. We provide three types of advice:238

1. Action Advice: the coach tells the agent the next action to take239

2. OffsetWaypoint Advice: the coach gives the agent a tuple (x, y, b), where (x, y) is the240

position it should visit along its path, represented as an offset from the agent’s current241

position, and b is a boolean telling the agent whether to interact with an object at that242

coordinate.243

3. Subgoal Advice: The coach gives semantic subgoals, such as “Find the blue key."244

2-D Maze Navigation (PM): The second domain we consider is an open-source 2 dimensional245

maze navigation problem [14]. This task involves navigating a complex maze with a 2 dimensional246

point robot, where the start positions, the goal positions and the maze configuration are randomly247

varied across tasks. The agent is provided with access to its own position, the target position and a248

representation of the maze configuration. We provide the agent different types of advice:249

1. Direction Advice: The vector direction the agent should head in.250

2. Cardinal Advice: Which of the cardinal directions (N, S, E, W) the agent should head in.251

3. Waypoint Advice: The (x,y) position of a coordinate along the agent’s route.252

4. OffsetWaypoint Advice: The (x,y) difference between a waypoint along the agent’s route253

and the agent’s current position.254

Ant-Maze Navigation (Ant): The third domain we consider involves scaling up to higher dimen-255

sional state and action spaces and solving a more challenging control problem. In the ant-maze256

navigation domain (from open source [14]), the goal is to navigate around a complex maze as shown257

in Fig 4, but with the agent controlling a quadrupedal “ant” robot, rather than a point. The forms of258

advice are exactly the same as the ones described above for the point navigation domains.259

While this feedback could be provided by a human in all of these domains, in our work we make260

use of a scripted teacher to generate all the advice as a proxy to be able to run computational studies261

more efficiently. The details of each scripted teacher are provided in the Appendix.262

5.1 Experimental Setup263

For the environments listed above, we evaluate the ability of the agent to perform grounding efficiently264

on a set of training tasks, to learn new test tasks quickly via advice distillation and to leverage one265

form of advice to bootstrap another. The details of the exact set of training tasks for grounding advice266

in Fig 5 and the set of testing tasks to learn quickly in Fig 7, as well as model classes, particular267

choice of RL algorithm and success metrics and hyperparameters are provided in the Appendix.268

We evaluate all the environments in terms of the metric of advice efficiency rather than sample269

efficiency. By advice efficiency, we are evaluating the number of instances of teacher in the loop270

feedback that are needed in order to learn a task. In real-world learning tasks, this teacher is typically271

a human, and the cost of training largely comes from the provision of supervision (rather than time272

the agent spends interacting with the environment). This metric more accurately reflects the ability of273

an agent to learn a task efficiently in terms of teacher feedback. For simplicity, we consider every274

time a supervisor provides any supervision, such as a piece of advice or a scalar reward, to constitute275

one advice unit and we measure efficiency in terms of how many advice units are needed to learn a276

task. We also include plots indicating traditional sample efficiency in the appendix.277

We compare our proposed framework to an RL baseline that is provided with a task instruction278

but no advice. We also compare with behavioral cloning (imitation learning) from an expert for279

environments where it is feasible to construct an oracle. Inspired by [42], we also consider a baseline280

where rather than conditioning on advice the agent’s model is trained to predict the advice as an281

auxiliary loss.282
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Figure 5: Performance of grounding phase as described in Section 4.2 across three domains - (left) Point Mass
(PM) navigation (center) ant navigation (right) BabyAI. All curves are trained with RL using a dense reward
unless otherwise specified and are both trained and evaluated on a procedurally generated set of environment
configurations. We compare the performance of an agent which conditions on various hint forms (colored runs)
to various baselines (gray). We see that the advice efficiency of our method typically outperforms baseline
methods. However, there are a few abstract advice types where RL training is slow or converges to a sub-optimal
policy without bootstrapping (shown in Figure 6).

5.2 Grounding Prescriptive Advice during Training283

Fig 5 shows the results of the Grounding Phase, where the agent is learning an advice-conditioned284

policy. The agent is able to learn more quickly when provided with advice than when it is not,285

showing that advice actually is enabling the agent to learn faster than it does on its own by providing286

it more directed and localized guidance about how to perform tasks. Note that the learning process287

here is both grounding the interpretation of advice and implicitly using this interpretation to learn288

the training tasks more efficiently. However, we also see that some more abstract forms of advice,289

such as Waypoint Advice in the ant environment, cannot easily be grounded through RL as they are290

more abstract and require more directed exploration to be grounded. This motivates the need for a291

bootstrapping approach to learning abstract feedback, as discussed in Section 4.2.292

5.3 Bootstrapping Multi-Level Feedback293

Figure 6: Performance of bootstrapping distillation procedure described in Section 4.2. Bootstrapping is able to
quickly and effectively use existing grounded forms of advice (OffsetWaypoint for point navigation and Ant
envs, Action for BabyAI) to help with the grounding process of additional forms of advice which are harder to
learn. We see that learning a new advice form through distillation is more efficient than using RL in many cases.

Secondly, we consider the ability of our method to bootstrap multiple different forms of advice off of294

each other We first ground a single form of advice cl on the training tasks, then use the bootstrap295

distillation scheme from Section 4.2 to ground an additional form of advice on the training tasks ch.296

As can be seen from Fig 6, bootstrap distillation is able to ground new forms of advice significantly297

more efficiently than if we start grounding things from scratch with naïve RL. It performs exception-298

ally well even for advice forms where naïve RL does not succeed at all, while providing additional299
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speed up for environments where it does. This suggests that advice is not just a tool to solve new300

tasks, but also a tool for grounding more complex forms of communication for the agent.301

5.4 Learning New Tasks with Grounded Prescriptive Advice302

Figure 7: Learning new tasks through distillation. The agent uses an already-grounded advice channel to
perform the distillation process from Section 4.2 to train an advice-free agent. Plots show the success rate of the
advice-free new agent. We show that distillation is more advice efficient than training with RL, and that more
abstract advice forms (waypoints, subgoals, etc.) are more advice-efficient than than lower-level advice.

Finally, we evaluate the ability of grounded advice to provide a more effective medium towards303

guiding the agent in learning new tasks, as compared to demonstrations or rewards. As we can see in304

Fig 7, for new tasks in all domains, agents which are trained through distillation from an abstract305

teacher on average train with 18 times less advice than RL agents while simultaneously achieving an306

improvement in average asymptotic performance. What is particularly impressive here is that many307

of the new tasks are more challenging than training tasks (more complex navigation and manipulation308

problems), as shown from an illustration in the Appendix, and as seen from Fig 7 are hard to learn309

with RL.310

It’s important to note here that in domains like the Ant, where standard RL fails on harder tasks (seen311

in Fig 4.3), and demonstrations can be difficult to provide, grounded advice provides a practical312

means of teaching the agent complex tasks. Interestingly, we see that as the feedback forms get more313

abstract, the efficiency of the agents’ learning process keeps getting better. This suggests that higher314

bandwidth, lower effort communication (like subgoals/waypoints) can often be extremely effective.315

6 Discussion316

In this work, we introduced a new paradigm for teacher in the loop RL, which we refer to as coaching317

augmented MDPs. We show that CAMPDs cover a wide range of realistic scenarios and introduce a318

novel framework to learn how to interpret and utilize advice in CAMDPs. We show that doing so has319

the dual benefits of being able to learn new tasks more efficiently in terms of human effort and being320

able to bootstrap one form of advice off of another for more efficient grounding.321

While the current work is a start towards formalizing the broader class of interactive teaching322

problems, it is restricted to prescriptive coaching. Generalizing this to feedback provided after the323

fact would be an interesting avenue of future research. Additionally evaluating our approach with324

human teachers in the loop would test the real world applicability of this work. This would require325

improvements in efficiency and perhaps the incorporation of more efficient off-policy RL algorithms.326

Limitations: This work is limited by the fact has been done in simulation with a scripted teacher327

rather than real humans. The fact that the agent uses supervised learning to learn behaviors makes it328

subject to the challenges of supervised learning such as compounding error. Additionally, the advice329

provided is assumed to be optimal, but going forward a noisy model of human feedback needs to be330

incorporated.331

Societal impacts: As human in the loop systems such as the one described here are scaled up332

to real homes, privacy becomes a major concern. If we have learning systems operating around333

humans, sharing data and incorporating human feedback into their learning processes, they need to be334

careful about not divulging private information. Moreover, human in the loop systems are constantly335

operating around humans and need to be especially safe. However this work is quite far from real336

world deployment so we will work towards addressing these challenges before deployment.337

9



References338

[1] D. Abel, J. Salvatier, A. Stuhlmüller, and O. Evans. Agent-agnostic human-in-the-loop reinforce-339

ment learning. CoRR, abs/1701.04079, 2017. URL http://arxiv.org/abs/1701.04079.340

[2] J. Andreas, D. Klein, and S. Levine. Learning with latent language. In M. A. Walker, H. Ji, and341

A. Stent, editors, NAACL, 2018.342

[3] Y. Artzi and L. Zettlemoyer. Weakly supervised learning of semantic parsers for mapping343

instructions to actions. Trans. Assoc. Comput. Linguistics, 1:49–62, 2013. URL https:344

//tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27.345

[4] D. Arumugam, J. K. Lee, S. Saskin, and M. L. Littman. Deep reinforcement learning from346

policy-dependent human feedback. CoRR, abs/1902.04257, 2019. URL http://arxiv.org/347

abs/1902.04257.348

[5] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dragan. Learning robot objectives from349

physical human interaction. In Conference on Robot Learning (CoRL), 2017.350

[6] D. S. Brown, W. Goo, and S. Niekum. Better-than-demonstrator imitation learning via351

automatically-ranked demonstrations. In Conference on Robot Learning (CoRL), 2019.352

[7] D. L. Chen and R. J. Mooney. Learning to interpret natural language navigation instructions353

from observations. In W. Burgard and D. Roth, editors, AAAI, 2011.354

[8] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and355

Y. Bengio. Babyai: A platform to study the sample efficiency of grounded language learning.356

In ICLR, 2019.357

[9] S. Chopra, M. H. Tessler, and N. D. Goodman. The first crank of the cultural ratchet: Learning358

and transmitting concepts through language. In A. K. Goel, C. M. Seifert, and C. Freksa, editors,359

CogSci, 2019.360

[10] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement361

learning from human preferences. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,362

R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, NeurIPS, 2017.363

[11] J. D. Co-Reyes, A. Gupta, S. Sanjeev, N. Altieri, J. Andreas, J. DeNero, P. Abbeel, and S. Levine.364

Guiding policies with language via meta-learning. In ICLR, 2019.365

[12] C. A. Cruz and T. Igarashi. A survey on interactive reinforcement learning: Design principles366

and open challenges. In R. Wakkary, K. Andersen, W. Odom, A. Desjardins, and M. G.367

Petersen, editors, DIS ’20: Designing Interactive Systems Conference 2020, Eindhoven, The368

Netherlands, July 6-10, 2020, pages 1195–1209. ACM, 2020. doi: 10.1145/3357236.3395525.369

URL https://doi.org/10.1145/3357236.3395525.370

[13] J. Eisenstein, J. Clarke, D. Goldwasser, and D. Roth. Reading to learn: Constructing features371

from semantic abstracts. In EMNL, 2009.372

[14] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: datasets for deep data-driven373

reinforcement learning. CoRR, abs/2004.07219, 2020. URL https://arxiv.org/abs/2004.374

07219.375

[15] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-free376

reinforcement learning via multi-task learning: Learning dexterous manipulation behaviors377

without human intervention. arXiv preprint arXiv:2104.11203, 2021.378

[16] D. Hadfield-Menell, A. Dragan, P. Abbeel, and S. Russell. Cooperative inverse reinforcement379

learning. arXiv preprint arXiv:1606.03137, 2016.380

[17] H. Hu, D. Yarats, Q. Gong, Y. Tian, and M. Lewis. Hierarchical decision making by generating381

and following natural language instructions. In H. M. Wallach, H. Larochelle, A. Beygelzimer,382

F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, NeurIPS, 2019.383

[18] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning384

methods. ACM Comput. Surv., 50(2):21:1–21:35, 2017. doi: 10.1145/3054912. URL https:385

//doi.org/10.1145/3054912.386

[19] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei. Reward learning from387

human preferences and demonstrations in atari. In S. Bengio, H. M. Wallach, H. Larochelle,388

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, NeurIPS, 2018.389

10

http://arxiv.org/abs/1701.04079
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
http://arxiv.org/abs/1902.04257
http://arxiv.org/abs/1902.04257
http://arxiv.org/abs/1902.04257
https://doi.org/10.1145/3357236.3395525
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219
https://doi.org/10.1145/3054912
https://doi.org/10.1145/3054912
https://doi.org/10.1145/3054912


[20] Y. Jiang, S. Gu, K. Murphy, and C. Finn. Language as an abstraction for hierarchical deep390

reinforcement learning. In NeurIPS, 2019.391

[21] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,392

M. Kalakrishnan, V. Vanhoucke, and S. Levine. Qt-opt: Scalable deep reinforcement learn-393

ing for vision-based robotic manipulation. CoRR, abs/1806.10293, 2018. URL http:394

//arxiv.org/abs/1806.10293.395

[22] S. Karamcheti, E. C. Williams, D. Arumugam, M. Rhee, N. Gopalan, L. L. S. Wong, and396

S. Tellex. A tale of two draggns: A hybrid approach for interpreting action-oriented and397

goal-oriented instructions. In M. Bansal, C. Matuszek, J. Andreas, Y. Artzi, and Y. Bisk, editors,398

RoboNLP@ACL, 2017.399

[23] W. B. Knox and P. Stone. TAMER: Training an Agent Manually via Evaluative Reinforcement.400

In IEEE 7th International Conference on Development and Learning, August 2008.401

[24] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.402

The Journal of Machine Learning Research, 17(1):1334–1373, 2016.403

[25] J. Luketina, N. Nardelli, G. Farquhar, J. N. Foerster, J. Andreas, E. Grefenstette, S. Whiteson,404

and T. Rocktäschel. A survey of reinforcement learning informed by natural language. In IJCAI,405

2019.406

[26] J. MacGlashan, M. K. Ho, R. T. Loftin, B. Peng, G. Wang, D. L. Roberts, M. E. Taylor, and407

M. L. Littman. Interactive learning from policy-dependent human feedback. In ICML, 2017.408

[27] N. M. McNeil, M. W. Alibali, and J. L. Evans. The role of gesture in children’s comprehension409

of spoken language:now they need it, now they don’t. Journal of Nonverbal Behavior, 24410

(2):131–150, 2000. doi: 10.1023/A:1006657929803. URL https://doi.org/10.1023/A:411

1006657929803.412

[28] H. Mei, M. Bansal, and M. R. Walter. Listen, attend, and walk: Neural mapping of navigational413

instructions to action sequences. In D. Schuurmans and M. P. Wellman, editors, AAAI, 2016.414

[29] T. J. H. Morgan, N. T. Uomini, L. E. Rendell, L. Chouinard-Thuly, S. E. Street, H. M. Lewis, C. P.415

Cross, C. Evans, R. Kearney, I. de la Torre, A. Whiten, and K. N. Laland. Experimental evidence416

for the co-evolution of hominin tool-making teaching and language. Nature Communications, 6417

(1):6029, 2015. doi: 10.1038/ncomms7029. URL https://doi.org/10.1038/ncomms7029.418

[30] P. Mundy and W. Jarrold. Infant joint attention, neural networks and social cognition. Neural419

Networks, 23(8-9):985–997, 2010. doi: 10.1016/j.neunet.2010.08.009. URL https://doi.420

org/10.1016/j.neunet.2010.08.009.421

[31] K. Narasimhan, R. Barzilay, and T. S. Jaakkola. Deep transfer in reinforcement learning by422

language grounding. CoRR, abs/1708.00133, 2017. URL http://arxiv.org/abs/1708.423

00133.424

[32] OpenAI. Openai five. arxiv, 2018.425

[33] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,426

M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng,427

Q. Yuan, W. Zaremba, and L. Zhang. Solving rubik’s cube with a robot hand. CoRR,428

abs/1910.07113, 2019. URL http://arxiv.org/abs/1910.07113.429

[34] F. Poli, G. Serino, R. B. Mars, and S. Hunnius. Infants tailor their attention to maximize430

learning. Science Advances, 6(39), 2020. doi: 10.1126/sciadv.abb5053. URL https://431

advances.sciencemag.org/content/6/39/eabb5053.432

[35] D. Pomerleau. ALVINN: an autonomous land vehicle in a neural network. In D. S. Touretzky,433

editor, NeurIPS, 1988.434

[36] J. Roh, C. Paxton, A. Pronobis, A. Farhadi, and D. Fox. Conditional driving from natural435

language instructions. In L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, CoRL, 2019.436

[37] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of imitation learning and structured437

prediction to no-regret online learning. In G. J. Gordon, D. B. Dunson, and M. Dudík, editors,438

AISTATS, 2011.439

[38] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz. Trust region policy optimization.440

In ICML, 2015.441

11

http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1806.10293
https://doi.org/10.1023/A:1006657929803
https://doi.org/10.1023/A:1006657929803
https://doi.org/10.1023/A:1006657929803
https://doi.org/10.1038/ncomms7029
https://doi.org/10.1016/j.neunet.2010.08.009
https://doi.org/10.1016/j.neunet.2010.08.009
https://doi.org/10.1016/j.neunet.2010.08.009
http://arxiv.org/abs/1708.00133
http://arxiv.org/abs/1708.00133
http://arxiv.org/abs/1708.00133
http://arxiv.org/abs/1910.07113
https://advances.sciencemag.org/content/6/39/eabb5053
https://advances.sciencemag.org/content/6/39/eabb5053
https://advances.sciencemag.org/content/6/39/eabb5053


[39] G. Warnell, N. R. Waytowich, V. Lawhern, and P. Stone. Deep TAMER: interactive agent442

shaping in high-dimensional state spaces. In AAAI, 2018.443

[40] S. R. Waxman and D. B. Markow. Words as invitations to form categories: evidence from 12-444

to 13-month-old infants. Cogn Psychol, 29(3):257–302, Dec 1995.445

[41] R. Zhang, F. Torabi, L. Guan, D. H. Ballard, and P. Stone. Leveraging human guidance for deep446

reinforcement learning tasks. In S. Kraus, editor, IJCAI, 2019.447

[42] F. Zhu, Y. Zhu, X. Chang, and X. Liang. Vision-language navigation with self-supervised448

auxiliary reasoning tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision449

and Pattern Recognition, pages 10012–10022, 2020.450

[43] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine. The451

ingredients of real world robotic reinforcement learning. In International Conference on452

Learning Representations, 2020.453

[44] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement454

learning. In D. Fox and C. P. Gomes, editors, AAAI, 2008.455

Checklist456

1. For all authors...457

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s458

contributions and scope? [Yes]459

(b) Did you describe the limitations of your work? [Yes] See Section 6460

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See461

Section 6462

(d) Have you read the ethics review guidelines and ensured that your paper conforms to463

them? [Yes] This work does not actually use human subjects, and is largely done in464

simulation. But we have included a discussion in Section 6465

2. If you are including theoretical results...466

(a) Did you state the full set of assumptions of all theoretical results? [N/A] Math is used467

as a theory/formalism, but we don’t make any provable claims about it.468

(b) Did you include complete proofs of all theoretical results? [N/A]469

3. If you ran experiments...470

(a) Did you include the code, data, and instructions needed to reproduce the main experi-471

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix472

A for link to URL and run instructions in the README in the github repo.473

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they474

were chosen)? [Yes] See Appendix A.475

(c) Did you report error bars (e.g., with respect to the random seed after running experi-476

ments multiple times)? [Yes] All plots were created with 3 random seeds with std error477

bars.478

(d) Did you include the total amount of compute and the type of resources used (e.g., type479

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A480

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...481

(a) If your work uses existing assets, did you cite the creators? [Yes] Envs we used are482

cited in section 5483

(b) Did you mention the license of the assets? [Yes] This is in Appendix B484

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]485

We published the code and included all environments and assets as a part of this486

(d) Did you discuss whether and how consent was obtained from people whose data you’re487

using/curating? [Yes] We used three open source domains and collected our own data488

on these domains.489

(e) Did you discuss whether the data you are using/curating contains personally identifiable490

information or offensive content? [N/A]491

12



5. If you used crowdsourcing or conducted research with human subjects...492

(a) Did you include the full text of instructions given to participants and screenshots, if493

applicable? [N/A]494

(b) Did you describe any potential participant risks, with links to Institutional Review495

Board (IRB) approvals, if applicable? [N/A]496

(c) Did you include the estimated hourly wage paid to participants and the total amount497

spent on participant compensation? [N/A]498

13


	Introduction
	Related Work
	Coaching Augmented Markov Decision Processes
	Leveraging Advice via Distillation
	Training Setup for Learning in CAMDPs
	Grounding Phase: Grounding Advice
	Improvement Phase: Learning New Tasks Efficiently with Advice
	Evaluation Phase: Executing tasks Without a Supervisor

	Experimental Evaluation
	Experimental Setup
	Grounding Prescriptive Advice during Training
	Bootstrapping Multi-Level Feedback
	Learning New Tasks with Grounded Prescriptive Advice

	Discussion

