
Distributionally Adaptive Meta Reinforcement
Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Meta-reinforcement learning algorithms provide a data-driven way to acquire poli-1

cies that quickly adapt to many tasks with varying rewards or dynamics functions.2

However, learned meta-policies are often effective only on the exact task distribu-3

tion on which they were trained and struggle in the presence of distribution shift4

of test-time rewards or transition dynamics. In this work, we develop a frame-5

work for meta-RL algorithms that are able to behave appropriately under test-time6

distribution shifts in the space of tasks. Our framework centers on an adaptive7

approach to distributional robustness that trains a population of meta-policies to8

be robust to varying levels of distribution shift. When evaluated on a potentially9

shifted test-time distribution of tasks, this allows us to choose the meta-policy with10

the most appropriate level of robustness, and use it to perform fast adaptation. We11

formally show how our framework allows for improved regret under distribution12

shift, and empirically show its efficacy on simulated robotics problems under a13

wide range of distribution shifts.14

1 Introduction15

The diversity and dynamism of the real world require reinforcement learning (RL) agents that16

can quickly adapt and learn new behaviors when placed in novel situations. Meta reinforcement17

learning provides a framework for conferring this ability to RL agents, by learning a “meta-policy”18

trained to adapt as quickly as possible to tasks from a provided training distribution [35, 9, 30, 43].19

Unfortunately, meta-RL agents are prone to overfitting to the distribution of tasks they are trained20

on, and have been shown to behave erratically when asked to adapt to tasks beyond the training21

distribution [4, 7]. As an example of this negative transfer, consider using meta-learning to teach22

a robot to navigate to goals quickly (illustrated in Figure 1). The resulting meta-policy learns to23

quickly adapt and walk to any target location specified in the training distribution, but explores poorly24

and fails to adapt to any location not in that distribution. Overfitting is particularly problematic25

for the meta-learning setting, since the scenarios where we need the ability to learn quickly are26

usually exactly those where the agent experiences distribution shift. This type of meta-distribution27

shift afflicts a number of real-world problems including autonomous vehicle driving [8], in-hand28

manipulation [14, 1], and quadruped locomotion [21, 19, 15], where the test-time task distribution29

may not be well represented during training.30

In this work, we study meta-RL algorithms that learn meta-policies resilient to task distribution shift31

at test time. One approach to enable this resiliency is to leverage the framework of distributional32

robustness [33], training meta-policies that prepare for distribution shifts by optimizing the worst-case33

empirical risk against a set of task distributions which lie within a bounded distance from the original34

training task distribution (often referred to as an uncertainty set)). This allows meta-policies to35

deal with potential test-time task distribution shift, bounding their worst-case test-time regret for36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

distributional shifts within the chosen uncertainty set. However, choosing an appropriate uncertainty37

set can be quite challenging without further information about the test environment, significantly38

impacting the test-time performance of algorithms under distribution shift. Large uncertainty sets39

allow resiliency to a wider range of distribution shifts, but the resulting meta-policy adapts very slowly40

at test time; smaller uncertainty sets enable faster test-time adaptation, but leave the meta-policy41

brittle to task distribution shifts. Can we get the best of both worlds?42

+1

+1 +1

M
et

a
Tr

ai
n

M
et

a
Te

st

+1

Episode 1 Episode 2

⇡meta
<latexit sha1_base64="04ZwISNQzfwUIERNw0RDchdyb+M=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KkkV9Fj04rGC/YA2hM120i7dfLA7UUvMT/HiQRGv/hJv/hu3bQ7a+mDg8d4MM/P8RHCFtv1trKyurW9slrbK2zu7e/tm5aCt4lQyaLFYxLLrUwWCR9BCjgK6iQQa+gI6/vh66nfuQSoeR3c4ScAN6TDiAWcUteSZlX7CvayP8IhZCEjz3DOrds2ewVomTkGqpEDTM7/6g5ilIUTIBFWq59gJuhmVyJmAvNxPFSSUjekQeppGNATlZrPTc+tEKwMriKWuCK2Z+nsio6FSk9DXnSHFkVr0puJ/Xi/F4NLNeJSkCBGbLwpSYWFsTXOwBlwCQzHRhDLJ9a0WG1FJGeq0yjoEZ/HlZdKu15yzWv32vNq4KuIokSNyTE6JQy5Ig9yQJmkRRh7IM3klb8aT8WK8Gx/z1hWjmDkkf2B8/gBBmJSl</latexit>

⇡meta
<latexit sha1_base64="04ZwISNQzfwUIERNw0RDchdyb+M=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KkkV9Fj04rGC/YA2hM120i7dfLA7UUvMT/HiQRGv/hJv/hu3bQ7a+mDg8d4MM/P8RHCFtv1trKyurW9slrbK2zu7e/tm5aCt4lQyaLFYxLLrUwWCR9BCjgK6iQQa+gI6/vh66nfuQSoeR3c4ScAN6TDiAWcUteSZlX7CvayP8IhZCEjz3DOrds2ewVomTkGqpEDTM7/6g5ilIUTIBFWq59gJuhmVyJmAvNxPFSSUjekQeppGNATlZrPTc+tEKwMriKWuCK2Z+nsio6FSk9DXnSHFkVr0puJ/Xi/F4NLNeJSkCBGbLwpSYWFsTXOwBlwCQzHRhDLJ9a0WG1FJGeq0yjoEZ/HlZdKu15yzWv32vNq4KuIokSNyTE6JQy5Ig9yQJmkRRh7IM3klb8aT8WK8Gx/z1hWjmDkkf2B8/gBBmJSl</latexit>

Figure 1: Failure of Typical Meta-RL.
On meta-training tasks, πmeta explores effec-
tively and quickly learns the optimal behav-
ior (top row). When test tasks come from a
slightly larger task distribution, exploration
fails catastrophically, resulting in poor adap-
tation behavior (bottom row).

Our key insight is that we can prepare for a variety of43

potential test-time distribution shifts by constructing and44

training against different uncertainty sets at training time.45

By preparing for adaptation against each of these uncer-46

tainty sets, an agent is able to adapt to a variety of poten-47

tial test-time distribution shifts by adaptively choosing the48

most appropriate level of distributional robustness for the49

test distribution at hand. We introduce a conceptual frame-50

work called distributionally adaptive meta reinforcement51

learning formalizing this idea. At train time, the agent52

learns robust meta-policies with widening uncertainty sets,53

preemptively accounting for different levels of test-time54

distribution shift that may be encountered. At test time,55

the agent infers the level of distribution shift it is faced56

with, and then uses the corresponding meta-policy to adapt57

to the new task. In doing so, the agent is able to adaptively58

choose the best level of robustness for the test-time task59

distribution, preserving the fast adaptation benefits of meta60

RL, while also ensuring good asymptotic performance under distribution shift. We instantiate a61

practical algorithm in this framework (DiAMetR), using learned generative models to imagine new62

task distributions close to the provided training tasks that can be used to train robust meta-policies.63

The contribution of this paper is to propose a framework for making meta-reinforcement learning64

resilient to a variety of task distribution shifts, and DiAMetR, a practical algorithm instantiating65

the framework. DiAMetR trains a population of meta-policies to be robust to different degrees of66

distribution shifts and then adaptively chooses a meta-policy to deploy based on the inferred test-time67

distribution shift. Our experiments verify the utility of adaptive distributional robustness under68

test-time task distribution shift in a number of simulated robotics domains.69

2 Related Work70

Meta-reinforcement learning algorithms aim to leverage a distribution of training tasks to “learn a71

reinforcement learning algorithm", that is able to learn as quickly on new tasks drawn from the same72

distribution. A variety of algorithms have been proposed for meta-RL, including memory-based73

[6, 22], gradient-based [9, 32, 11] and latent-variable based [30, 43, 42] schemes. These algorithms74

show the ability to generalize to new tasks drawn from the same distribution, and have been applied75

to problems ranging from robotics [24, 42, 15] to computer science education [39]. This line of76

work has been extended to operate in scenarios without requiring any pre-specified task distribution77

[10, 13] or in offline settings [5, 25, 23] making them more broadly applicable to a wider class of78

problems. However, most meta-RL algorithms assume source and target tasks are drawn from the79

same distribution, an assumption rarely met in practice. Our work shows how the machinery of80

meta-RL can be made compatible with distribution shift at test time, using ideas from distributional81

robustness. Some recent work shows that model based meta-reinforcement learning can be made to82

be robust to a particular level distribution shift [20, 17] by learning a shared dynamics model against83

adversarially chosen task distributions. We show that we can build model-free meta-reinforcement84

learning algorithms, which are not just robust to a particular level of distribution shift, but can adapt85

to various levels of shift.86

Distributional robustness methods have been studied in the context of building supervised learning87

systems that are robust to the test distribution being different than the training one. The key idea88

is to train a model to not just minimize empirical risk, but instead learn a model that has the89

lowest worst-case empirical risk among an “uncertainty-set" of distributions that are boundedly close90

to the empirical training distribution [33, 18, 2, 12]. If the uncertainty set and optimization are91

chosen carefully, these methods have been shown to obtain models that are robust to small amounts92

2

of distribution shift at test time [33, 18, 2, 12], finding applications in problems like federated93

learning [12] and image classification [18]. This has been extended to the min-max robustness94

setting for specific algorithms like model-agnostic meta-learning [3], but are critically dependent on95

correct specification of the appropriate uncertainty set and applicable primarily in supervised learning96

settings. Alternatively, several RL techniques aim to directly tackle the robustness problem, aiming97

to learn policies robust to adversarial perturbations [37, 41, 29, 28]. [40] conditions the policy on98

uncertainty sets to make it robust to different perturbation sets. While these methods are able to99

learn conservative, robust policies, they are unable to adapt to new tasks as DiAMetR does in the100

meta-reinforcement learning setting. In our work, rather than choosing a single uncertainty set, we101

learn many meta-policies for widening uncertainty sets, thereby accounting for different levels of102

test-time distribution shift.103

3 Preliminaries104

Meta-Reinforcement Learning aims to learn a fast reinforcement learning algorithm or a “meta-105

policy" that can quickly maximize performance on tasks T from some distribution p(T). Formally,106

each task T is a Markov decision process (MDP) M = (S,A,P,R, γ, µ0); the goal is to exploit107

regularities in the structure of rewards and environment dynamics across tasks in p(T) to acquire108

effective exploration and adaptation mechanisms that enable learning on new tasks much faster than109

learning the task naively from scratch. A meta-policy (or fast learning algorithm) πmeta maps a history110

of environment experience h ∈ (S ×A×R)∗ in a new task to an action a, and is trained to acquire111

optimal behaviors on tasks from p(T) within k episodes:112

min
πmeta

ET ∼p(T) [Regret(πmeta, T)] ,

Regret(πmeta, T) = J(π∗
T)− E

a
(i)
t ∼πmeta(·|h(i)

t),T

[
1

k

k∑
i=1

T∑
t=1

r
(i)
t

]
,

where h
(i)
t = (s

(i)
1:t, r

(i)
1:t, a

(i)
1:t−1) ∪ (s

(j)
1:T , r

(j)
1:T , a

(j)
1:T)

i−1
j=1. (1)

Intuitively, the meta-policy has two components: an exploration mechanism that ensures that appro-113

priate reward signal is found for all tasks in the training distribution, and an adaptation mechanism114

that uses the collected exploratory data to generate optimal actions for the current task. In practice,115

the meta-policy may be represented explicitly as an exploration policy conjoined with a policy116

update[9, 30], or implicitly as a black-box RNN [6, 43]. We use the terminology “meta-policies"117

interchangeably with that of “fast-adaptation" algorithms, since our practical implementation builds118

on [27] (which represents the adaptation mechanism using a black-box RNN). Our work focuses119

on the setting where there is potential drift between ptrain(T), the task distribution we have access to120

during training, and ptest(T), the task distribution of interest during evaluation.121

Distributional robustness [33] learns models that do not minimize empirical risk against the training122

distribution, but instead prepare for distribution shift by optimizing the worst-case empirical risk123

against a set of data distributions close to the training distribution (called an uncertainty set):124

min
θ

max
ϕ

Ex∼qϕ(x)[l(x; θ)] s.t. D(ptrain(x)||qϕ(x)) ≤ ϵ (2)

This optimization finds the model parameters θ that minimizes worst case risk l over distributions125

qϕ(x) in an ϵ-ball (measured by an f -divergence) from the training distribution ptrain(x).126

4 Distributionally Adaptive Meta-Reinforcement Learning127

In this section, we develop a framework for learning meta-policies, that given access to a training128

distribution of tasks ptrain(T), is still able to adapt to tasks from a test-time distribution ptest(T) that129

is similar but not identical to the training distribution. We introduce a framework for distributionally130

adaptive meta-RL below and instantiate it as a practical method in Section 5.131

4.1 Known Level of Test-Time Distribution Shift132

We begin by studying a simplified problem where we can exactly quantify the degree to which133

the test distribution deviates from the training distribution. Suppose we know that ptest satisfies134

3

Meta-train on train-task distribution

Replay
Buffer

Reward Distribution
r!(s, a, z)

<latexit sha1_base64="k9A0siND554MKFM42ftZXWmp14c=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAIEULYjYIeg148RjAPSJZldjKbDJnHMjMrJCFf4sWDIl79FG/+jZNkD5pY0FBUddPdFSWMauN5305uY3Nreye/W9jbPzgsukfHLS1ThUkTSyZVJ0KaMCpI01DDSCdRBPGIkXY0upv77SeiNJXi0YwTEnA0EDSmGBkrhW5RhT3JyQCVdQVVJhehW/Kq3gJwnfgZKYEMjdD96vUlTjkRBjOkddf3EhNMkTIUMzIr9FJNEoRHaEC6lgrEiQ6mi8Nn8NwqfRhLZUsYuFB/T0wR13rMI9vJkRnqVW8u/ud1UxPfBFMqktQQgZeL4pRBI+E8BdinimDDxpYgrKi9FeIhUggbm1XBhuCvvrxOWrWqf1mtPVyV6rdZHHlwCs5AGfjgGtTBPWiAJsAgBc/gFbw5E+fFeXc+lq05J5s5AX/gfP4ArvqScg==</latexit>

Meta-train on imagined test-task distributions

⇡✏1meta
<latexit sha1_base64="n+bVNreQLNlfUNa5pkmZnAWkjfI=">AAACB3icbVBNS8NAEN3Ur1q/oh4FCRbBU0mqoMeiF48V7Ac0sWy203bp5oPdiVhCbl78K148KOLVv+DNf+O2zUFbHww83pthZp4fC67Qtr+NwtLyyupacb20sbm1vWPu7jVVlEgGDRaJSLZ9qkDwEBrIUUA7lkADX0DLH11N/NY9SMWj8BbHMXgBHYS8zxlFLXXNQzfm3dRFeMA0AKRZdpe6ECsutOtkXbNsV+wprEXi5KRMctS75pfbi1gSQIhMUKU6jh2jl1KJnAnISm6iIKZsRAfQ0TSkASgvnf6RWcda6Vn9SOoK0ZqqvydSGig1DnzdGVAcqnlvIv7ndRLsX3gpD+MEIWSzRf1EWBhZk1CsHpfAUIw1oUxyfavFhlRShjq6kg7BmX95kTSrFee0Ur05K9cu8ziK5IAckRPikHNSI9ekThqEkUfyTF7Jm/FkvBjvxsestWDkM/vkD4zPH5NfmmM=</latexit>

⇡✏2meta
<latexit sha1_base64="xBA8UM1oEeMILSyNGU8PfQW+A5o=">AAACB3icbVBNS8NAEN3Ur1q/oh4FCRbBU0mqoMeiF48V7Ac0sWy203bp5oPdiVhCbl78K148KOLVv+DNf+O2zUFbHww83pthZp4fC67Qtr+NwtLyyupacb20sbm1vWPu7jVVlEgGDRaJSLZ9qkDwEBrIUUA7lkADX0DLH11N/NY9SMWj8BbHMXgBHYS8zxlFLXXNQzfm3dRFeMA0AKRZdpe6ECsutFvNumbZrthTWIvEyUmZ5Kh3zS+3F7EkgBCZoEp1HDtGL6USOROQldxEQUzZiA6go2lIA1BeOv0js4610rP6kdQVojVVf0+kNFBqHPi6M6A4VPPeRPzP6yTYv/BSHsYJQshmi/qJsDCyJqFYPS6BoRhrQpnk+laLDamkDHV0JR2CM//yImlWK85ppXpzVq5d5nEUyQE5IifEIeekRq5JnTQII4/kmbySN+PJeDHejY9Za8HIZ/bJHxifP5TkmmQ=</latexit> ⇡

✏M�1

meta
<latexit sha1_base64="QwcfAk19J3QtH7ZtayrGpjw5RA4=">AAACC3icbVDJSgNBEO2JW4xb1KOXIUHwYpiJgh6DXrwIEcwCmXHo6VSSJj0L3TViGObuxV/x4kERr/6AN//GznLQxAcFj/eqqKrnx4IrtKxvI7e0vLK6ll8vbGxube8Ud/eaKkokgwaLRCTbPlUgeAgN5CigHUuggS+g5Q8vx37rHqTiUXiLoxjcgPZD3uOMopa8YsmJuZc6CA+YBoA0y+5SB2LFhXbT62M7y7xi2apYE5iLxJ6RMpmh7hW/nG7EkgBCZIIq1bGtGN2USuRMQFZwEgUxZUPah46mIQ1Auenkl8w81ErX7EVSV4jmRP09kdJAqVHg686A4kDNe2PxP6+TYO/cTXkYJwghmy7qJcLEyBwHY3a5BIZipAllkutbTTagkjLU8RV0CPb8y4ukWa3YJ5XqzWm5djGLI08OSIkcEZuckRq5InXSIIw8kmfySt6MJ+PFeDc+pq05YzazT/7A+PwBjYyb/Q==</latexit>

⇡✏Mmeta
<latexit sha1_base64="TbROBDvTKP/TFnexB/mBsprek58=">AAACB3icbVBNS8NAEN34WetX1KMgwSJ4KkkV9Fj04kWoYD+giWWznbZLNx/sTsQScvPiX/HiQRGv/gVv/hu3bQ7a+mDg8d4MM/P8WHCFtv1tLCwuLa+sFtaK6xubW9vmzm5DRYlkUGeRiGTLpwoED6GOHAW0Ygk08AU0/eHl2G/eg1Q8Cm9xFIMX0H7Ie5xR1FLHPHBj3kldhAdMA0CaZXepC7HiQrvXWccs2WV7AmueODkpkRy1jvnldiOWBBAiE1SptmPH6KVUImcCsqKbKIgpG9I+tDUNaQDKSyd/ZNaRVrpWL5K6QrQm6u+JlAZKjQJfdwYUB2rWG4v/ee0Ee+deysM4QQjZdFEvERZG1jgUq8slMBQjTSiTXN9qsQGVlKGOrqhDcGZfnieNStk5KVduTkvVizyOAtknh+SYOOSMVMkVqZE6YeSRPJNX8mY8GS/Gu/ExbV0w8pk98gfG5w+965p/</latexit>

Figure 2: DiAMetR first learns a meta-policy πϵ1
meta and reward distribution rω(s, a, z) on train task distribution.

Then, it uses the reward distribution to imagine different shifted test task distributions (orange dots) on which it
learns different meta-policies {πϵi

meta}Mi=2, each corresponding to a different level of robustness .

D(ptest(T)||ptrain(T)) < ϵ for some ϵ > 0, where D(·∥·) is a probability divergence on the set of task135

distributions (e.g. an f -divergence [31] or a Wasserstein distance [36]). A natural learning objective136

to learn a meta-policy under this assumption is to minimize the worst-case test-time regret across any137

test task distribution q(T) that is within some ϵ divergence of the train distribution:138

min
πmeta

R(πmeta, ptrain(T), ϵ),

R(πmeta, ptrain(T), ϵ) = max
q(T)

ET ∼q(T) [Regret(πmeta, T)] s.t. D(ptrain(T)∥q(T)) ≤ ϵ (3)

Solving this optimization problem results in a meta-policy that has been trained to adapt to tasks139

from a wider task distribution than the original training distribution. It is worthwhile distinguishing140

this robust meta-objective, which incentivizes a robust adaptation mechanism to a wider set of tasks,141

from robust objectives in standard RL, which produce base policies robust to a wider set of dynamics142

conditions. The objective in Eq 3 incentivizes an agent to explore and adapt more broadly, not act143

more conservatively as standard robust RL methods [29] would encourage. Naturally, the quality of144

the robust meta-policy depends on the size of the uncertainty set. If ϵ is large, or the geometry of the145

divergence poorly reflect natural task variations, then the robust policy will have to adapt to an overly146

large set of tasks, potentially degrading the speed of adaptation.147

4.2 Handling Arbitrary Levels of Distribution Shift148

In practice, it is not known how the test distribution ptest deviates from the training distribution, and149

consequently it is challenging to determine what ϵ to use in the meta-robustness objective. We propose150

to overcome this via an adaptive strategy: to train meta-policies for varying degrees of distribution151

shift, and at test-time, inferring which distribution shift is most appropriate through experience.152

We train a population of meta-policies {π(i)
meta}Mi=1, each solving the distributionally robust meta-RL153

objective (eq 3) for a different level of robustness ϵi:154 {
πϵimeta := argmin

πmeta
R(πmeta, ptrain(T), ϵi)

}M
i=1

where ϵM > ϵM−1 > . . . > ϵ1 = 0 (4)

In choosing a spectrum of ϵi, we learn a set of meta-policies that have been trained on increasingly155

large set of tasks: at one end (i = 1), the meta-policy is trained only on the original training156

distribution, and at the other (i = M), the meta-policy trained to adapt to any possible task within the157

parametric family of tasks. These policies span a tradeoff between being robust to a wider set of task158

distributions with larger ϵ (allowing for larger distribution shifts), and being able to adapt quickly to159

any given task with smaller ϵ (allowing for better per-task regret minimization).160

With a set of meta-policies in hand, we must now decide how to leverage test-time experience to161

discover the right one to use for the actual test distribution ptest. We recognize that the problem162

of policy selection can be treated as a stochastic multi-armed bandit problem (precise formulation163

in Appendix A), where pulling arm i corresponds to running the meta-policy πϵimeta for an entire164

meta-episode (k task episodes). If a zero-regret bandit algorithm (eg: Thompson’s sampling [38]) is165

used , then after a certain number of test-time meta episodes, we can guarantee that the meta-policy166

selection mechanism will converge to the meta-policy that best balances the tradeoff between adapting167

quickly while still being able to adapt to all the tasks from ptest(T).168

To summarize our framework for distributionally adaptive meta-RL, we train a population of meta-169

policies at varying levels of robustness on a distributionally robust objective that forces the learned170

4

Meta-policy selection during meta-test

⇡✏meta<latexit sha1_base64="YWS0GhZozsEcomFEusaGA45kSRM=">AAACBXicbVA9SwNBEN2LXzF+RS21OAyCVbiLgpZBG8sI5gNyMextJsmSvb1jd04MxzU2/hUbC0Vs/Q92/hs3yRWa+GDg8d4MM/P8SHCNjvNt5ZaWV1bX8uuFjc2t7Z3i7l5Dh7FiUGehCFXLpxoEl1BHjgJakQIa+AKa/uhq4jfvQWkeylscR9AJ6EDyPmcUjdQtHnoR7yYewgMmASBN07vEg0hzEcq0Wyw5ZWcKe5G4GSmRDLVu8cvrhSwOQCITVOu260TYSahCzgSkBS/WEFE2ogNoGyppALqTTL9I7WOj9Ox+qExJtKfq74mEBlqPA990BhSHet6biP957Rj7F52EyyhGkGy2qB8LG0N7Eond4woYirEhlClubrXZkCrK0ARXMCG48y8vkkal7J6WKzdnpeplFkeeHJAjckJcck6q5JrUSJ0w8kieySt5s56sF+vd+pi15qxsZp/8gfX5A1a3mb8=</latexit>

⇡✏meta<latexit sha1_base64="YWS0GhZozsEcomFEusaGA45kSRM=">AAACBXicbVA9SwNBEN2LXzF+RS21OAyCVbiLgpZBG8sI5gNyMextJsmSvb1jd04MxzU2/hUbC0Vs/Q92/hs3yRWa+GDg8d4MM/P8SHCNjvNt5ZaWV1bX8uuFjc2t7Z3i7l5Dh7FiUGehCFXLpxoEl1BHjgJakQIa+AKa/uhq4jfvQWkeylscR9AJ6EDyPmcUjdQtHnoR7yYewgMmASBN07vEg0hzEcq0Wyw5ZWcKe5G4GSmRDLVu8cvrhSwOQCITVOu260TYSahCzgSkBS/WEFE2ogNoGyppALqTTL9I7WOj9Ox+qExJtKfq74mEBlqPA990BhSHet6biP957Rj7F52EyyhGkGy2qB8LG0N7Eond4woYirEhlClubrXZkCrK0ARXMCG48y8vkkal7J6WKzdnpeplFkeeHJAjckJcck6q5JrUSJ0w8kieySt5s56sF+vd+pi15qxsZp/8gfX5A1a3mb8=</latexit>

Test time Meta-policy adaptation

Figure 3: DiAMetR chooses appropriate meta-policy based on inferred distribution shift with Thompson’s
sampling and then quickly adapts the selected meta-policy to individual tasks during meta-test.

adaptation mechanism to also be robust to tasks not in the training task distribution. At test-time, we171

use a bandit algorithm to select the meta-policy whose adaptation mechanism has the best tradeoff172

between robustness and speed of adaptation specifically on the test task distribution. Combining173

distributional robustness with test-time adaptation allows the adaptation mechanism to work even174

if distribution shift is present, while obviating the decreased performance that usually accompanies175

overly conservative, distributionally robust solutions.176

4.3 Analysis177

To provide some intuition on the properties of this algorithm, we formally analyze adaptive distribu-178

tional robustness in a simplified meta RL problem involving tasks Tg corresponding to reaching some179

unknown goal g in a deterministic MDP M, exactly at the final timestep of an episode. We assume180

that all goals are reachable, and use the family of meta-policies that use a stochastic exploratory181

policy π until the goal is discovered and return to the discovered goal in all future episodes. The182

performance of a meta-policy on a task Tg under this model can be expressed in terms of the state183

distribution of the exploratory policy: Regret(πmeta, Tg) = 1
dTπ (g)

. This particular framework has184

been studied in [10, 16], and is a simple, interpretable framework for analysis.185

We seek to understand performance under distribution shift when the original training task distribution186

is relatively concentrated on a subset of possible tasks. We choose the training distribution ptrain(Tg) =187

(1 − β)Uniform(S0) + βUniform(S\S0), so that ptrain is concentrated on tasks involving a subset188

of the state space S0 ⊂ S, with β a parameter dictating the level of concentration, and consider189

test distributions that perturb under the TV metric. Our main result compares the performance of a190

meta-policy trained to an ϵ2-level of robustness when the true test distribution deviates by ϵ1.191

Proposition 4.1 Let ϵi = min{ϵi + β, 1− |S0|
|S| }. There exists q(T) satisfying DTV (ptrain, q) ≤ ϵ1192

where an ϵ2-robust meta policy incurs excess regret over the optimal ϵ1-robust meta-policy:193

Eq(T)[Regret(π
ϵ1
meta, T)− Regret(πϵ2meta, T)] ≥

(
c(ϵ1, ϵ2) +

1

c(ϵ1, ϵ2)
− 2

)√
ϵ1(1− ϵ1)|S0|(|S| − S0|)

(5)

The scale of regret depends on c(ϵ1, ϵ2) =
√

ϵ2
−1−1

ϵ1−1−1
, a measure of the mismatch between ϵ1 and ϵ2.194

We first compare robust and non-robust solutions by analyzing the bound when ϵ2 = 0. In the regime195

of β ≪ 1, excess regret scales as O(ϵ1
√

1
β), meaning that the robust solution is most necessary196

when the training distribution is highly concentrated in a subset of the task space. At one extreme, if197

the training distribution contains no examples of tasks outside S0 (β = 0), the non-robust solution198

incurs infinite excess regret; at the other extreme, if the training distribution is uniform on the set of199

all possible tasks (β = 1− |S0|
|S|), robustness provides no benefit.200

We next quantify the effect of mis-specifying the level of robustness in the meta-robustness objective,201

and what benefits adaptive distributional robustness can confer. For small β and fixed ϵ1, the excess202

regret of an ϵ2-robust policy scales as O(
√
max{ ϵ2ϵ1 ,

ϵ1
ϵ2
}), meaning that excess regret gets incurred if203

the meta-policy is trained either to be too robust (ϵ2 ≫ ϵ1) or not robust enough ϵ1 ≫ ϵ2. Compared204

to a fixed robustness level, our strategy of training meta-policies for a sequence of robustness levels205

5

Algorithm 1 DiAMetR: Meta-training phase
1: Given: ptrain(T), Return: Π
2: πϵ1

meta,θ , DReplay-Buffer ← Solve equation 1 with off-policy RL2

3: Reward distribution rω , prior ptrain(z)← Solve eq 7 using DReplay-Buffer
4: for ϵ in {ϵ2, . . . , ϵM} do
5: Initialize qϕ(z), πϵ

meta,θ and λ ≥ 0.
6: for iteration n = 1, 2, ... do
7: Meta-policy: Update πϵ

meta,θ using off-policy RL2 [27]

θ := θ + α∇θEz∼qϕ(z)(Eπϵmeta,θ,P(
1

k

k∑
i=1

T∑
t=1

rω(s
(i)
t , a

(i)
t , z)))

8: Adversarial task distribution: Update qϕ using Reinforce [34]

ϕ := ϕ− α∇ϕ(Ez∼qϕ(z)[Eπϵmeta,θ,P [
1

k

k∑
i=1

T∑
t=1

rω(s
(i)
t , a

(i)
t , z)]] + λDKL(ptrain(z)∥qϕ(z))

9: Lagrange constraint multiplier: Update λ to enforce DKL(ptrain(z)∥qϕ(z)) < ϵ,

λ :=λ≥0 λ+ α(DKL(ptrain(z)∥qϕ(z))− ϵ)

10: end for
11: end for

{ϵi}Mi=1 ensures that this misspecification constant is at most the relative spacing between robustness206

levels: maxi
ϵi
ϵi−1

. This enables the distributionally adaptive approach to control the amount of excess207

regret by making the sequence more fine-grained, while a fixed choice of robustness incurs larger208

regret (as we verify empirically in our experiments as well).209

5 DiAMetR: A Practical Algorithm for Meta-Distribution Shift210

In order to instantiate our distributionally adaptive framework into a practical algorithm, we must211

address how task distributions should be parameterized and optimized over, and also how the robust212

meta-RL problem can be solved with stochastic gradient methods. For simplicity, in the remainder213

of the paper, we focus on the setting where tasks share transition dynamics, but have different214

reward functions. We first introduce the individual components of task parameterization and robust215

optimization, and describe the overall algorithm in Algorithm 1 and 2.216

Parameterizing Task Distributions: Since we assume that variations in tasks correspond to changes217

in the reward function, the problem of representing a task distribution reduces to learning distributions218

over reward functions. We propose to learn a probabilistic model of the task reward functions seen219

in the training task distribution, and use the learned latent representation as a space on which to220

parameterize uncertainty sets over new task distributions. Specifically, we jointly train a reward221

encoder qψ(z|h) that encodes reward samples from an environment history into the latent space, and222

a decoder rω(s, a, z) mapping a latent vector z to a reward function using a dataset of trajectories223

collected from the training tasks. This generative model over reward functions can be trained as a224

standard latent variable model by maximizing a standard evidence lower bound (ELBO), trading off225

reward prediction and matching a prior ptrain(z) (chosen to be the unit gaussian).226

min
ω,ψ

Eh∼D

[
Ez∼qψ(z|h)

[
T∑
t=1

(rω(st, at, z)− rt)
2

]
+DKL(qψ(z|h)||N (0, I))

]
(6)

Having learned a latent space, we can parameterize new task distributions q(T) as distributions qϕ(z)227

(the original training distribution corresponds to ptrain(z) = N (0, I), and measure the divergence228

between task distributions as well using the KL divergence in this latent space D(ptrain(z)∥qϕ(z)).229

Learning Robust Meta-Policies: Given this task parameterization, the next question becomes how to230

actually perform the robust optimization laid out in Eq:3. The distributional meta-robustness objective231

can be modelled as an adversarial game between a meta-policy πϵmeta and a task proposal distribution232

q(T). As described above, this task proposal distribution is parameterized as a distribution over latent233

6

Environment Task reward rtrain {ritest}Ki=1 Θ

*-navigation 1[∥agent− target∥2 ≤ δ] 0.50 {0.55, 0.60, 0.65, 0.70} 2π
Fetch reach 1[∥gripper− target∥2 ≤ δ] 0.10 {0.12, 0.14, 0.16, 0.18, 0.20} 2π
Blocker push 1[∥block− target∥2 ≤ δ] 0.50 {0.60, 0.70, 0.80, 0.90, 1.0} π/2

Table 1: Parameters for train task distribution ptrain(st) = {(∆ cos θ,∆sin θ) | ∆ ∼ U(0, rtrain), θ ∼ U(0,Θ)}
and test task distributions {pitest(st) = {(∆ cos θ,∆sin θ) | ∆ ∼ U(ri−1

test , ritest), θ ∼ U(0,Θ)}}Ki=1 (where
r0test = rtrain) for different environments

space qϕ(z), while πϵmeta is parameterized a typical recurrent neural network policy as in [27]. We234

parameterize {πϵimeta}Mi=1 as a discrete set of meta-policies, with one for each chosen value of ϵ.235

This leads to a simple alternating optimization scheme (see Algorithm 1), where the meta-policy is236

trained using a standard meta-RL algorithm (we use off-policy RL2 [27] as a base learner), and the237

task proposal distribution with an constrained optimization method (we use dual gradient descent238

[26]). Each iteration n, three updates are performed: 1) the meta-policy πmeta updated to improve239

performance on the current task distribution, 2) the task distribution q(z) updated to increase weight240

on tasks where the current meta-policy adapts poorly and decreases weight on tasks that the current241

meta-policy can learn, while staying close to the original training distribution, and 3) a penalty242

coefficient λ is updated to ensure that q(z) satsifies the divergence constraint.243

Algorithm 2 DiAMetR: Meta-test phase
1: Given: ptest(T), Π = {πϵi

meta,θ}
M
i=1

2: Initialize TS = Thompson-Sampler()
3: for meta-episode n = 1, 2, ... do
4: Choose meta-policy i = TS.sample()
5: Run πϵi

meta,θ for meta-episode
6: TS.update(

arm=i,
reward=meta-episode return)

7: end for

Test-time meta-policy selection: Since test-time244

meta-policy selection can be framed as a multi-armed245

bandit problem, we use a generic Thompson’s sam-246

pling [38] algorithm (see Algorithm 2). Each meta-247

episode n, we sample a meta-policy πϵmeta with prob-248

ability proportional to its estimated average episodic249

reward, run the sampled meta-policy πϵmeta for an250

meta-episode (k environment episodes) and then up-251

date the estimate of the average episodic reward.252

Since Thompson’s sampling is a zero-regret bandit253

algorithm, it will converge to the meta-policy that254

achieves the highest average episodic reward and255

lowest regret on the test task distribution.256

6 Experimental Evaluation257

(a) Wheeled navigation (b) Ant navigation (c) Fetch reach (d) Block push

Figure 4: The agent needs to either navigate, move its gripper or push the block to an unobserved target location,
indicated by green sphere, by exploring its environment and experiencing reward.

We aim to comprehensively evaluate DiAMetR and answer the following questions: (1) Do meta-258

policies learned via DiAMetR allow for quick adaptation under different distribution shifts in the259

test-time task distribution? (2) Does learning for multiple levels of robustness actually help the260

algorithm adapt more effectively than a particular chosen uncertainty level? (3) Does proposing261

uncertainty sets via generative modeling provide useful distributions of tasks for robustness?262

Setup. We train DiAMetR on four continuous control environments: Wheeled navigation [11]263

(Wheeled driving a differential drive robot), Ant navigation (Ant controlling a four legged robotic264

quadruped), Fetch reach and Block push [11] (Figures 4a to 4d) (see Appendix H for more265

details). Each environment has a train task distribution Ti ∼ ptrain(T) such that each task Ti266

parameterizes a reward function ri(s, a) := r(s, a, Ti). Ti itself remains unobserved, the agent267

7

simply has access to reward values and executing actions in the environment. The meta-policies268

are evaluated on train task distribution ptrain(T) and on different distributionally shifted test task269

distribution {pitest(T)}Ki=1. We use 4 random seeds for all our experiments and include the standard270

error bars in our plots. In all of these problems, the distribution of train and test tasks is determined271

by the distribution of the underlying target locations st, which determines the reward function (exact272

distributions in Table 1). Since these environments have sparse rewards, DiAMetR uses a structured273

VAE to model reward distributions (see Appendix C for more details).274

6.1 Adaptation to Varying Levels of Distribution Shift275

During meta test, given a test task distribution ptest(T), DiAMetR uses Thompson sampling to select276

the appropriate meta-policy πϵmeta,θ within N = 250 meta episodes. πϵmeta,θ can then solve any task277

T ∼ ptest(T) within 1 meta episode (k = 2 environment episode). Since DiAMetR adaptively278

chooses a meta-policy during test time, we compare it to RL2 with test time finetuning. Figure 5279

shows that RL2’s performance more or less remains the same after test time finetuning showing280

that 10 iteration (with 25 meta-episodes per iteration) isn’t enough for RL2 to learn an meta-policy281

for a new task distribution. For comparison, RL2 takes 1500 iterations (with 25 meta-episodes per282

iteration) during training to learn a meta-policy for train task distribution.283

Figure 5: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on different environ-
ments. We run the adaptation procedure for 10 iterations collecting 25 meta-episodes per iteration. The test target
distance distribution for {Wheeled,Ant}-navigation is U(0.65, 0.70), for Fetch reach is U(0.65, 0.70)
and for Block push is U(0.9, 1.0). We provide test time adaptation comparisons on other test target distance
distributions in Appendix G.

To test DiAMetR’s ability to adapt to varying levels of distribution shift, we evaluate it on the284

above mentioned test task distributions. We compare DiAMetR with meta RL algorithms such as285

(off-policy) RL2 [27], VariBAD [43] and HyperX [44]. Figure 6 shows that DiAMetR outperforms286

RL2, VariBAD and HyperX on test task distributions. Furthermore, the performance gap between287

DiAMetR and other baselines increase as distribution shift between test task distribution and train task288

distribution increases. Naturally, the performance of DiAMetR also deteriorates as the distribution289

shift is increased, but as shown in Fig 6, it does so much more slowly than other algorithms. We290

also evaluate DiAMetR on train task distribution to see if it incurs any performance loss. Figure 6291

shows that DiAMetR either matches or outperforms RL2, VariBAD, and HyperX on the train task292

distribution. We refer readers to Appendix D for results on point-navigation environment and293

Appendix E for ablation studies and further experimental evaluations.294

Figure 6: We evaluate DiAMetR and meta RL algorithms (RL2, VariBAD and HyperX) on training task
distribution and different test task distributions. DiAMetR outperforms RL2, VariBAD and HyperX on train
distributions and different test distributions. The first point rtrain on the horizontal axis indicates the training target
distance ∆ distribution U(0, rtrain) and the subsequent points ritest indicate the shifted test target ∆ distribution
U(ri−1

test , ritest).

8

6.2 Analysis of Tasks Proposed by Latent Conditional Uncertainty Sets295

(a) ϵ = 0.1 (b) ϵ = 0.2 (c) ϵ = 0.4 (d) ϵ = 0.8

Figure 7: Imagined test reward distributions in
Ant-navigation environment in increasing order of
distribution shifts. Train reward distribution is uniform
within the red circle.

We visualize the imagined test reward distribu-296

tion for various distribution shifts. Specifically,297

we create a heatmap of imagined test reward298

functions. Figure 7 visualizes the imagined test299

reward distribution in Ant-navigation envi-300

ronment in increasing order of distribution shifts301

with respect to train reward distribution (with302

distribution shift parameter ϵ increasing from303

left to right). The train distribution of rewards304

has uniformly distributed target locations within305

the red circle. As clearly seen in Figure 7, as306

we increase the distribution shifts, the learned307

reward distribution model imagines more target308

locations outside the red circle.309

6.3 Analysis of Importance of Multiple Uncertainty Sets310

DiAMetR meta-learns a family of adaptation policies, each conditioned on different uncertainty set.311

As discussed in section 4, selecting a policy conditioned on a large uncertainty set would lead to312

overly conservative behavior. Furthermore, selecting a policy conditioned on a small uncertainty set313

would result in failure if the test time distribution shift is high. Therefore, we need to adaptively314

select an uncertainty set during test time. To validate this phenomenon empirically, we performed315

an ablation study in Figure 8. As clearly visible, adaptively choosing an uncertainty set during test316

time allows for better test time distribution adaptation when compared to selecting an uncertainty317

set beforehand or selecting a large uncertainty set. These results suggest that a combination of318

training robust meta-learners and constructing various uncertainty sets allows for effective test-time319

adaptation under distribution shift. DiAMetR is able to avoid both overly conservative behavior and320

under-exploration at test-time.321

Figure 8: Adaptively choosing an uncertainty set for DiAMetR policy (Adapt) during test time allows it to
better adapt to test time distribution shift than choosing an uncertainty set beforehand (Mid). Choosing a large
uncertainty set for DiAMetR policy (Conservative) leads to a conservative behavior and hurts its performance
when test time distribution shift is low. The first point rtrain on the horizontal axis indicates the training target
distance ∆ distribution U(0, rtrain) and the subsequent points ritest indicate the shifted test target distance ∆
distribution U(ri−1

test , ritest).

7 Discussion322

In this work, we discussed the challenge of distribution shift in meta-reinforcement learning and323

showed how we can build meta-reinforcement learning algorithms that are robust to varying levels324

of distribution shift. We show how we can build distributionally “adaptive" reinforcement learning325

algorithms that can adapt to varying levels of distribution shift, retaining a tradeoff between fast326

learning and maintaining asymptotic performance. We then show we can instantiate this algorithm327

practically by parameterizing uncertainty sets with a learned generative model. We empirically328

showed that this allows for learning meta-learners robust to changes in task distribution.329

There are several avenues for future work we are keen on exploring, for instance extending adaptive330

distributional robustness to more complex meta RL tasks, including those with differing transition331

dynamics. Another interesting direction would be to develop a more formal theory providing adaptive332

robustness guarantees in meta-RL problems under these inherent distribution shifts.333

9

References334

[1] T. Chen, J. Xu, and P. Agrawal. A system for general in-hand object re-orientation. In A. Faust,335

D. Hsu, and G. Neumann, editors, Proceedings of the 5th Conference on Robot Learning,336

volume 164 of Proceedings of Machine Learning Research, pages 297–307. PMLR, 08–11 Nov337

2022. URL https://proceedings.mlr.press/v164/chen22a.html.338

[2] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via randomized smooth-339

ing. In International Conference on Machine Learning, pages 1310–1320. PMLR, 2019.340

[3] L. Collins, A. Mokhtari, and S. Shakkottai. Distribution-agnostic model-agnostic meta-learning.341

CoRR, abs/2002.04766, 2020. URL https://arxiv.org/abs/2002.04766.342

[4] T. Deleu and Y. Bengio. The effects of negative adaptation in model-agnostic meta-learning.343

arXiv preprint arXiv:1812.02159, 2018.344

[5] R. Dorfman, I. Shenfeld, and A. Tamar. Offline meta learning of exploration. arXiv preprint345

arXiv:2008.02598, 2020.346

[6] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. Rl2: Fast reinforce-347

ment learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.348

[7] A. Fallah, A. Mokhtari, and A. Ozdaglar. Generalization of model-agnostic meta-learning349

algorithms: Recurring and unseen tasks. Advances in Neural Information Processing Systems,350

34, 2021.351

[8] A. Filos, P. Tigkas, R. McAllister, N. Rhinehart, S. Levine, and Y. Gal. Can autonomous352

vehicles identify, recover from, and adapt to distribution shifts? In International Conference on353

Machine Learning, pages 3145–3153. PMLR, 2020.354

[9] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep355

networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.356

[10] A. Gupta, B. Eysenbach, C. Finn, and S. Levine. Unsupervised meta-learning for reinforcement357

learning. arXiv preprint arXiv:1806.04640, 2018.358

[11] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine. Meta-reinforcement learning of359

structured exploration strategies. Advances in neural information processing systems, 31, 2018.360

[12] J. Hong, H. Wang, Z. Wang, and J. Zhou. Federated robustness propagation: Sharing adversarial361

robustness in federated learning. arXiv preprint arXiv:2106.10196, 2021.362

[13] A. Jabri, K. Hsu, A. Gupta, B. Eysenbach, S. Levine, and C. Finn. Unsupervised curricula for363

visual meta-reinforcement learning. Advances in Neural Information Processing Systems, 32,364

2019.365

[14] L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. Srinivasa. Grasping with chopsticks:366

Combating covariate shift in model-free imitation learning for fine manipulation. In 2021 IEEE367

International Conference on Robotics and Automation (ICRA), pages 6185–6191. IEEE, 2021.368

[15] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.369

arXiv preprint arXiv:2107.04034, 2021.370

[16] L. Lee, B. Eysenbach, E. Parisotto, E. P. Xing, S. Levine, and R. Salakhutdinov. Efficient371

exploration via state marginal matching. CoRR, abs/1906.05274, 2019. URL http://arxiv.372

org/abs/1906.05274.373

[17] Z. Lin, G. Thomas, G. Yang, and T. Ma. Model-based adversarial meta-reinforcement374

learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, ed-375

itors, Advances in Neural Information Processing Systems 33: Annual Conference376

on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,377

2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/378

73634c1dcbe056c1f7dcf5969da406c8-Abstract.html.379

10

https://proceedings.mlr.press/v164/chen22a.html
https://arxiv.org/abs/2002.04766
http://arxiv.org/abs/1906.05274
http://arxiv.org/abs/1906.05274
http://arxiv.org/abs/1906.05274
https://proceedings.neurips.cc/paper/2020/hash/73634c1dcbe056c1f7dcf5969da406c8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/73634c1dcbe056c1f7dcf5969da406c8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/73634c1dcbe056c1f7dcf5969da406c8-Abstract.html

[18] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models380

resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.381

[19] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via reinforce-382

ment learning. arXiv preprint arXiv:2205.02824, 2022.383

[20] R. Mendonca, X. Geng, C. Finn, and S. Levine. Meta-reinforcement learning robust to distribu-384

tional shift via model identification and experience relabeling. CoRR, abs/2006.07178, 2020.385

URL https://arxiv.org/abs/2006.07178.386

[21] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust387

perceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,388

2022.389

[22] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learner.390

arXiv preprint arXiv:1707.03141, 2017.391

[23] E. Mitchell, R. Rafailov, X. B. Peng, S. Levine, and C. Finn. Offline meta-reinforcement392

learning with advantage weighting. In International Conference on Machine Learning, pages393

7780–7791. PMLR, 2021.394

[24] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learning to395

adapt in dynamic, real-world environments through meta-reinforcement learning. arXiv preprint396

arXiv:1803.11347, 2018.397

[25] A. Nair, A. Gupta, M. Dalal, and S. Levine. Awac: Accelerating online reinforcement learning398

with offline datasets. arXiv preprint arXiv:2006.09359, 2020.399

[26] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,400

120(1):221–259, 2009.401

[27] T. Ni, B. Eysenbach, S. Levine, and R. Salakhutdinov. Recurrent model-free RL is a strong base-402

line for many POMDPs, 2022. URL https://openreview.net/forum?id=E0zOKxQsZhN.403

[28] T. P. Oikarinen, W. Zhang, A. Megretski, L. Daniel, and T. Weng. Robust deep reinforcement404

learning through adversarial loss. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang,405

and J. W. Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual406

Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-407

14, 2021, virtual, pages 26156–26167, 2021. URL https://proceedings.neurips.cc/408

paper/2021/hash/dbb422937d7ff56e049d61da730b3e11-Abstract.html.409

[29] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial reinforcement learning.410

In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on411

Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of412

Proceedings of Machine Learning Research, pages 2817–2826. PMLR, 2017. URL http:413

//proceedings.mlr.press/v70/pinto17a.html.414

[30] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen. Efficient off-policy meta-reinforcement415

learning via probabilistic context variables. In International conference on machine learning,416

pages 5331–5340. PMLR, 2019.417

[31] A. Rényi. On measures of entropy and information. In Proceedings of the Fourth Berkeley418

Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory419

of Statistics, volume 4, pages 547–562. University of California Press, 1961.420

[32] J. Rothfuss, D. Lee, I. Clavera, T. Asfour, and P. Abbeel. Promp: Proximal meta-policy search.421

arXiv preprint arXiv:1810.06784, 2018.422

[33] A. Sinha, H. Namkoong, R. Volpi, and J. Duchi. Certifying some distributional robustness with423

principled adversarial training. arXiv preprint arXiv:1710.10571, 2017.424

[34] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-425

ment learning with function approximation. Advances in neural information processing systems,426

12, 1999.427

11

https://arxiv.org/abs/2006.07178
https://openreview.net/forum?id=E0zOKxQsZhN
https://proceedings.neurips.cc/paper/2021/hash/dbb422937d7ff56e049d61da730b3e11-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/dbb422937d7ff56e049d61da730b3e11-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/dbb422937d7ff56e049d61da730b3e11-Abstract.html
http://proceedings.mlr.press/v70/pinto17a.html
http://proceedings.mlr.press/v70/pinto17a.html
http://proceedings.mlr.press/v70/pinto17a.html

[35] S. Thrun and L. Y. Pratt, editors. Learning to Learn. Springer, 1998. ISBN 978-428

1-4613-7527-2. doi: 10.1007/978-1-4615-5529-2. URL https://doi.org/10.1007/429

978-1-4615-5529-2.430

[36] L. N. Vaserstein. Markov processes over denumerable products of spaces, describing large431

systems of automata. Problemy Peredachi Informatsii, 5(3):64–72, 1969.432

[37] E. Vinitsky, Y. Du, K. Parvate, K. Jang, P. Abbeel, and A. M. Bayen. Robust reinforcement433

learning using adversarial populations. CoRR, abs/2008.01825, 2020. URL https://arxiv.434

org/abs/2008.01825.435

[38] D. Wolpert and W. Macready. No free lunch theorems for optimization. IEEE Transactions on436

Evolutionary Computation, 1(1):67–82, 1997. doi: 10.1109/4235.585893.437

[39] M. Wu, N. Goodman, C. Piech, and C. Finn. Prototransformer: A meta-learning approach to438

providing student feedback. arXiv preprint arXiv:2107.14035, 2021.439

[40] A. Xie, S. Sodhani, C. Finn, J. Pineau, and A. Zhang. Robust policy learning over multiple440

uncertainty sets. arXiv preprint arXiv:2202.07013, 2022.441

[41] H. Zhang, H. Chen, D. S. Boning, and C. Hsieh. Robust reinforcement learning on state442

observations with learned optimal adversary. In 9th International Conference on Learning443

Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.444

URL https://openreview.net/forum?id=sCZbhBvqQaU.445

[42] T. Z. Zhao, A. Nagabandi, K. Rakelly, C. Finn, and S. Levine. Meld: Meta-reinforcement446

learning from images via latent state models. arXiv preprint arXiv:2010.13957, 2020.447

[43] L. Zintgraf, K. Shiarlis, M. Igl, S. Schulze, Y. Gal, K. Hofmann, and S. Whiteson.448

Varibad: A very good method for bayes-adaptive deep rl via meta-learning. arXiv preprint449

arXiv:1910.08348, 2019.450

[44] L. M. Zintgraf, L. Feng, C. Lu, M. Igl, K. Hartikainen, K. Hofmann, and S. Whiteson. Ex-451

ploration in approximate hyper-state space for meta reinforcement learning. In International452

Conference on Machine Learning, pages 12991–13001. PMLR, 2021.453

Checklist454

1. For all authors...455

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s456

contributions and scope? [Yes]457

(b) Did you describe the limitations of your work? [Yes] See Section 7458

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work459

is done in simulation and won’t have any negative societal impact.460

(d) Have you read the ethics review guidelines and ensured that your paper conforms to461

them? [Yes] This work does not actually use human subjects, and is done in simulation.462

We have reviewed ethics guidelines and ensured that our paper conforms to them.463

2. If you are including theoretical results...464

(a) Did you state the full set of assumptions of all theoretical results? [N/A] Math is used465

as a theory/formalism, but we don’t make any provable claims about it.466

(b) Did you include complete proofs of all theoretical results? [N/A]467

3. If you ran experiments...468

(a) Did you include the code, data, and instructions needed to reproduce the main ex-469

perimental results (either in the supplemental material or as a URL)? [Yes] We have470

included the code along with a README in the supplemental material471

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they472

were chosen)? [Yes] See Appendix I473

12

https://doi.org/10.1007/978-1-4615-5529-2
https://doi.org/10.1007/978-1-4615-5529-2
https://doi.org/10.1007/978-1-4615-5529-2
https://arxiv.org/abs/2008.01825
https://arxiv.org/abs/2008.01825
https://arxiv.org/abs/2008.01825
https://openreview.net/forum?id=sCZbhBvqQaU

(c) Did you report error bars (e.g., with respect to the random seed after running experi-474

ments multiple times)? [Yes] All plots were created with 4 random seeds with std error475

bars.476

(d) Did you include the total amount of compute and the type of resources used (e.g., type477

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix I478

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...479

(a) If your work uses existing assets, did you cite the creators? [Yes] Environments we480

used are cited in section 6. Codebase used are cited in Appendix I481

(b) Did you mention the license of the assets? [N/A]482

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]483

We published the code and included all environments and assets as a part of this484

(d) Did you discuss whether and how consent was obtained from people whose data you’re485

using/curating? [Yes] Environments and codebases we used are open-source.486

(e) Did you discuss whether the data you are using/curating contains personally identifiable487

information or offensive content? [N/A]488

5. If you used crowdsourcing or conducted research with human subjects...489

(a) Did you include the full text of instructions given to participants and screenshots, if490

applicable? [N/A]491

(b) Did you describe any potential participant risks, with links to Institutional Review492

Board (IRB) approvals, if applicable? [N/A]493

(c) Did you include the estimated hourly wage paid to participants and the total amount494

spent on participant compensation? [N/A]495

13

	Introduction
	Related Work
	Preliminaries
	Distributionally Adaptive Meta-Reinforcement Learning
	Known Level of Test-Time Distribution Shift
	Handling Arbitrary Levels of Distribution Shift
	Analysis

	DiAMetR: A Practical Algorithm for Meta-Distribution Shift
	Experimental Evaluation
	Adaptation to Varying Levels of Distribution Shift
	Analysis of Tasks Proposed by Latent Conditional Uncertainty Sets
	Analysis of Importance of Multiple Uncertainty Sets

	Discussion
	Test time Meta Policy Selection
	DiAMetR with Generative Models
	Structured VAE for modelling reward distributions
	Experimental Evaluation on Point Robot Navigation
	Ablation studies
	Theory
	TV Version

	Meta-agent Selection and Adaptation during Meta-test
	Environment Description
	Architectural Details and Hyperparameters Used

