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Abstract

We investigate the problem of testing whether a discrete probability distribution1

over an ordered domain is a histogram on a specified number of bins. One of2

the most common tools for the succinct approximation of data, k-histograms3

over [n], are probability distributions that are piecewise constant over a set of4

k intervals. Given samples from an unknown distribution p on [n], we want5

to distinguish between the cases that p is a k-histogram versus far from any k-6

histogram, in total variation distance. Our main result is a sample near-optimal and7

computationally efficient algorithm for this testing problem, and a nearly-matching8

(within logarithmic factors) sample complexity lower bound, showing that the9

testing problem has sample complexity e⇥(
p
nk/"+ k/"2 +

p
n/"2).10

1 Introduction11

1.1 Background and Motivation12

A classical approach for the efficient exploration of massive datasets involves the construction of13

succinct data representations, see, e.g., the survey [CGHJ12]. One of the most useful and commonly14

used compact representations are histograms. For a dataset S, whose elements are from the universe15

[n] := {1, . . . , n}, a k-histogram is a function that is piecewise constant over k interval pieces.16

Histograms constitute the oldest and most popular synopsis structure in databases and have been17

extensively studied in the database community since their introduction in the 1980s [Koo80], see,18

e.g., [GMP97, JKM+98, CMN98, TGIK02, GGI+02, GKS06, ILR12, ADH+15, Can16], for a19

partial list of references. In both the statistics and computer science literatures, several methods have20

been proposed to estimate histogram distributions in a range of natural settings [Sco79, FD81, DL04,21

LN96, Kle09, CDSS14, ADH+15, ADLS17, DLS18].22

In this work, we study the algorithmic task of deciding whether a (potentially very large) dataset S23

over the domain [n] is a k-histogram (i.e., it has a succinct histogram representation with k interval24

pieces) or is “far” from any k-histogram representation (in a well-defined technical sense). Our focus25

is on sublinear time algorithms [Rub06]. Instead of reading the entire dataset S, which could be26

highly impractical, one can instead use randomness to sample a small subset of the dataset. Note that27

sampling a (uniformly) random element from S is equivalent to drawing a sample from the underlying28

probability distribution p of relative empirical frequencies. This observation brings our algorithmic29

problem of “histogram testing” in the framework of distribution property testing (statistical hypothesis30

testing) [BFR+00, BFR+13], see, e.g., [Can20] for a survey.31

Formally, we study the following task: for an integer 1  k  n, denote by H
n
k the set of k-histogram32

distributions over {1, 2, . . . , n}, i.e., the set of all distributions p such that there exists a partition33

of [n] into k consecutive intervals (not necessarily of the same size) with p being uniform on each34

interval. Given access to i.i.d. samples from an unknown distribution p on [n] and a desired error35
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tolerance 0 < " < 1, we want to correctly distinguish (with high probability) between the cases that36

p is a k-histogram versus "-far from any k-histogram, in total variation distance (or, equivalently,37

`1-norm). It should be noted that the histogram testing problem studied here is not new. Prior work38

within the algorithms and database theory community has investigated the complexity of the problem39

in the past ten years (see, e.g., [ILR12, ADH+15, Can16] and Section 1.4 for a detailed summary of40

prior work). However, known algorithms for this task are sub-optimal, and in particular there is a41

polynomial gap between the best known upper and lower bounds on the sample complexity of the42

problem. At a high level, the difficulty of our histogram testing problem in the sub-linear regime lies43

in the fact that the location and “length” of the k intervals defining the histogram representation (if44

one exists) is a priori unknown to the algorithm.45

We believe that the histogram testing problem is natural and interesting in its own right. Moreover,46

a sample-efficient algorithm for this testing task can be used as a key primitive in the context of47

model selection, where the goal is to identify the “most succinct” data representation. Indeed, various48

algorithms are known for learning k-histograms from samples whose sample complexities (and49

running times) scale proportionally to the succinctness parameter k (and are completely independent50

of the domain size n) [CDSS14, ADH+15, ADLS17]. Combined with an efficient tester for the51

property of being a k-histogram (used to identify the smallest possible value of k such that p is52

a k-histogram, e.g., via binary search), one can obtain a sketch of the underlying dataset. See53

Appendix C for a detailed description.54

1.2 Our Results55

Our main contribution is a near-characterization of the sample complexity of the histogram testing56

problem. Specifically, we provide (1) a sample near-optimal and computationally efficient testing57

algorithm for the problem, and (2) a nearly-matching sample complexity lower bound (within58

logarithmic factors). In particular, we establish the following theorem:59

Theorem 1 (Main Result). There exists a testing algorithm for the class of k-histograms on [n] with60

sample complexity m = eO(
p
nk/"+ k/"2 +

p
n/"2) and running time poly(m). Moreover, for any61

k 2 [n] and 0 < " < 1, any testing algorithm for the class of k-histograms on [n] requires at least62

e⌦(
p
nk/"+ k/"2 +

p
n/"2) samples.63

(The Õ(·) and ⌦̃(·) notation hides polylogarithmic factors in the argument.) Theorem 1 characterizes64

the complexity of the histogram testing problem within polylogarithmic factors. Note that there are65

three terms in the sample complexity; namely,
p
nk/", k/"2, and

p
n/"2. The sample complexity of66

the problem is dominated by one of these three different terms, depending on the relative sizes of67

n, k and 1/". An illustration is given in Figure 1.68

Prior to our work, the best previous histogram testing algorithm had sample complexity69

eO(
p
kn/"3) [CDGR18], while the best known lower bound was e⌦(

p
n/"2 + k/") [Can16].170

We note that previous upper and lower bounds exhibit a polynomial gap, even for constant values71

of " or k. For example, in the “large-k” regime where k = nc for some constant 0 < c < 1, there72

was a gap between eO(n1/2+c/2) and ⌦̃(n1/2) in the sample complexity. In this regime, however,73

Theorem 1 results in the near-optimal bound of e⇥(n1/2+c/2). Similarly, in the “high-accuracy”74

regime where " = 1/nc for some constant c > 0 (and, say, constant k), previous bounds only75

established that the sample complexity lies between eO(n1/2+3c) and e⌦(n1/2+2c), while our result76

shows the (nearly-tight) bound is e⇥(n1/2+c). These are only two specific examples: more generally,77

the previously known bounds are suboptimal by polynomial factors in 1/" when " �
p

k/n; and78

by polynomial factors in all parameters k, n, 1/" when " 
p
k/n. Theorem 1 settles the sample79

complexity of the problem, up to logarithmic factors, for every parameter setting.80

At a technical level, our sample complexity lower bound construction conceptually differs from previ-81

ous work in distribution testing, drawing instead from sophisticated techniques from the distribution82

estimation literature. Our upper bound follows from the “Testing-via-Learning” framework proposed83

in [ADK15]. The main technical innovation is a sample- and time- efficient adaptive algorithm which84

1As discussed in Section 1.4, while an upper bound of e⌦(
p
n/"2 + k/"3) is claimed in [Can16], the analysis

of their algorithm is flawed; and, indeed, our work shows that the sample complexity bound stated in [Can16]
cannot hold, as it would contradict our lower bound.
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Figure 1: The x-axis, y-axis are log(k)/ log(n) and log(1/")/ log(n) respectively. Each point in the graph
corresponds to a setting of n, k, ", and is colored based on the corresponding dominating term.

can simultaneously learn an unknown histogram distribution with unknown interval structure and85

identify a domain where the learned result is accurate. We elaborate on these aspects next.86

1.3 Overview of Techniques87

Sample Complexity Lower Bound. We follow the typical high-level approach in proving sample88

complexity lower bound. Namely, we define two ensembles of distributions DYES and DNO such89

that, with high probability, the following conditions are satisfied: (1) a random distribution from90

DYES is a k-histogram, (2) a random distribution from DNO is "-far from any k-histogram, and (3)91

given samples of appropriate size, it is information-theoretically impossible to distinguish a random92

distribution drawn from DYES from a random distribution drawn from DNO.93

We start by describing our hard instances for the case that the accuracy parameter " is a small universal94

constant. On the one hand we define DYES so that all pi’s are the same except for a “small” number95

of domain elements i.e., c · k for a small constant c 2 (0, 1). On the other hand, for a distribution p96

drawn from DNO, pi will be randomly 0 or roughly 2/n, except for at most a constant fraction of the97

elements. It is not hard to see that, with high probability, a distribution drawn from DYES (resp. DNO)98

will be a k-histogram (resp. far from being a k-histogram).99

To ensure that the underlying distributions are indistinguishable using a small sample size, we want to100

guarantee that, for all small values of t, the number of elements with exactly t samples will be roughly101

the same for DYES and DNO, as this rules out any test statistic relying on counting the number of102

t-way collisions among the samples. Following [Val11, VV13, JVYHW15, WY16] this is essentially103

equivalent to showing that distributions drawn from DYES and DNO match their low-degree moments.104

In particular, for a random pair of distributions p, p0 drawn from DYES and DNO respectively, we want105

that
P

i p
t
i and

P
i p

0t
i are roughly the same for all small values t. We note that the non-exceptional106

elements of a distribution p0 drawn from DNO — which have probability mass either 0 or roughly107

2/n — will have second moment larger than the non-exceptional elements of a distribution p drawn108

from DYES — which have probability mass roughly 1/n — by approximately 1/n. To counteract this109

discrepancy, the (fewer than k) exceptional elements in DYES must have average mass at least 1/
p
kn.110

Fortunately, using techniques from [VV13, WY+19], we are able to construct distributions that match111

t = ⇥(log n) moments in which no individual bin has mass more than eO(1/
p
kn). Combining this112

construction with basic information-theoretic arguments gives us an e⌦(
p
kn) sample complexity113

lower bound. We note that this lower bound is tight in the sense that with more than e⌦(
p
kn) samples114

one can reliably identify the exceptional elements, as they will each have relatively large numbers115

of samples with high probability, allowing us to distinguish DYES from DNO simply based on the116

sub-distributions over these elements.117

Given the aforementioned construction (for constant "), it is easy to obtain a sample lower bound118

of e⌦(
p
kn/") by mixing our hard instances with the uniform distribution (with mixing weights "119

and 1� " respectively). In fact, even if the testing algorithm knows in advance which samples come120

from the uniform part and which samples come from the original hard instance, distinguishing would121

require e⌦(
p
kn) samples from the original hard instance, and therefore e⌦(

p
kn/") samples overall.122
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This sample size lower bound turns out to be tight for " relatively large, as one can still reliably123

identify the exceptional bins with only e⌦(
p
kn/") samples. However, when " becomes sufficiently124

small, identifying the exceptional bins becomes more challenging. Indeed, if we take m samples, we125

expect that an exceptional bin has roughly m"/
p
kn more samples than a non-exceptional bin. On126

the other hand, a non-exceptional bin will have roughly Poi(m/n) samples with standard deviation127 p
m/n. When m/n � m"/

p
kn (which happens in the regime " ⌧

p
k/n), in order for the128

exceptional bins to be distinguishable, we would need that m"/
p
kn�

p
m/n or m� k/"2 many129

samples. Using a careful information-theoretic argument, we formalize this intuition to show that130

e⌦(k/"2) is indeed a sample lower bound in this regime.131

Sample-Efficient Tester. The starting point of our efficient tester is the Testing-via-Learning ap-132

proach of [ADK15]. Very roughly speaking, we first design a learning procedure which outputs a133

distribution p̂ that would be close to p in �2 divergence, assuming that p was in fact a k-histogram.134

Then we use a �2/`1 tolerant tester, in the spirit of the one introduced in [ADK15], to distinguish135

between the cases that p is close to p̂ in �2 divergence versus far from p̂ in `1-distance. This step is136

however significantly harder than this simple outline suggests, as it turns out challenging to perform137

the first step exactly. Instead, we design a specific learning algorithm with an implicit “hybrid”138

learning guarantee, (see Lemma 5) which in turns requires us to considerably generalize and adapt139

the “tolerant testing part” to avoid spurious discrepancies (introduced in the imperfect learning stage)140

which may lead to false negatives.141

To implement the first step, we follow the general “learn-and-sieve” idea suggested in [Can16], with142

important modifications to address the flaw in their approach and its analysis. In particular, suppose143

that p is a k-histogram. Then, if we knew the corresponding k intervals (that make up the partition144

for the k-histogram), it suffices to learn the mass of p on each interval, and let p̂ be uniform on each145

interval (with the appropriate total mass). Of course, a key source of difficulty arises from the fact146

that we do not know the partition a priori. To circumvent this issue, we divide [n] into (roughly)147

K = ⇥(k) intervals and try to detect if p is far in �2 divergence from being uniform on any of these148

intervals. If an interval from our partition incurs large �2 error (we call such an interval bad), we149

know that p must not be constant within this interval. Therefore, we proceed to subdivide these bad150

intervals into roughly equal parts, and recurse on the ⇥(k) intervals in our new partition. Assuming151

p is a k-histogram, we subdivide at most k intervals in each iteration, since there could be at most152

k intervals from any interval partition of [n] where p is not constant. Hence, in each iteration, we153

decrease the mass of the bad intervals by at least a constant factor. We repeat the process for at154

most O(log(1/")) many iterations; after this many iterations, the total mass of the bad intervals will155

become O("), and thus they may be safely ignored.156

A significant difference between our method and the approach from [Can16] lies in the method157

of sieving. In [Can16], it was only said that the algorithm would filter out a subset of breakpoint158

intervals based on the �2 statistics ([ADK15]) with the goal of reducing discrepancy; this is where159

the main gap in their analysis lies, and the particular (flawed) approach they suggested does not seem160

to be fixable [Can22]. On the contrary, we characterize the exact set of intervals that need to (and161

can) be removed with the formal definition of bad intervals with respect to a given partition I of [n]162

(See Definition 2). Based on that, our approach is to search for any sub-intervals J (not necessarily163

an interval in I) on which the �2 divergence between p and p̂, an approximation of p assuming p is164

uniform over intervals within the given partition, is more than e⌦("2/k). For an interval I from the165

partition I , we show the inclusion of such “bad sub-interval” J ✓ I then certifies the “badness” of I166

itself. To find such a J , we need a technique for accurately approximating p(J) simultaneously for167

all intervals J ✓ [n], in both absolute and relative error; a notion of approximation much stronger168

that what classical tools from statistical learning theory such as the VC inequality or the Dvoretzky–169

Kiefer–Wolfowitz (DKW) inequality provide. Notice that, for a fixed interval J ✓ [n], taking the170

empirical distribution over b samples gives an estimate q of p such that |q(J)� p(J)| <
p

p(J)/b171

with constant probability. By taking ⇥(log(n)) batches of samples (each containing b i.i.d. samples172

from p), and computing the median value of all of the q(J)’s, with high probability for each J , we173

then obtain an estimate '̂(J) 2 for which the above condition holds. Using the sub-routine, as long174

as b is at least ⌦(k/"2), we can ensure that |'̂(J)� p(J)|2/p(J)⌧ "2/k, and we can then safely175

use our estimate '̂(J) as a proxy for p(J) for the detection of those “bad sub-intervals” for which176

2Notice that '̂ is neither a distribution nor a measure, but just a map from intervals to positive real values.
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|p(J)� p̂(J)|2/p̂(J) is large, which in turns certify the bad intervals from a given partition. This177

suffices unless p(J) is substantially larger than our estimate p̂(J).178

Unfortunately, the ratio between |'̂(J) � p(J)|2/p̂(J) and |'̂(J) � p(J)|2/p(J) (in particular179

p(J)/p̂(J)) can be unbounded when p(J) is smaller than 1/b. In such a case, in a collection of180

b samples from p, we are likely to see no samples in J , and thus our empirical estimate p̂(J) will181

be 0. We can fix this issue (i.e., the case where p̂(J) is actually 0) by mixing both p and p̂ with182

the uniform distribution, thus allowing us to assume that p̂(J) � |J |/2n � 1/(2n). Yet, this still183

leaves a potential gap of roughly n/b between the ratio of p(J) and p̂(J). Fortunately, if we select184

b �
p
nk/", we will have that |'̂(J) � p(J)|2/p(J) ⌧ "/

p
nk, and even accounting for losing185

a factor of b/n, we will still have that |'̂(J) � p(J)|2/p(J) ⌧ "2/k. This implies that we will186

successfully detect any bad intervals and achieve our learning guarantees.187

1.4 Prior Work188

Motivated by the question of building provably good succinct representations of a dataset from189

only a small sub-sample of the data, [ILR12] first introduced histogram testing as a preliminary,190

ultra-efficient decision subroutine to find the best parameter k for the number of bins. They provided191

an algorithm for this task which required eO(
p
kn/"5) samples from the dataset, a sample complexity192

which beats the naïve approach (reading and processing the whole dataset) for small values of k193

and relatively large values of the accuracy parameter ". Subsequent work [CDGR18] reduced the194

dependence on " from quintic to cubic, giving an algorithm with sample complexity eO(
p
kn/"3).195

This bound was, however, still quite far from the “trivial” lower bound of ⌦(
p
n/"2), which follows196

from a reduction to uniformity testing (i.e., the case k = 1) [Pan08].197

Prior to the current work, an eO(
p
n/"2 + k/"3) upper bound and an e⌦(

p
n/"2 + k/") lower bound198

were obtained in [Can16]. While the lower bound is theoretically sound (albeit, as it turns out,199

suboptimal), as pointed out in [Can22], the upper bound does not hold due to a technical flaw in the200

analysis, leaving the optimal sample complexity of the problem open for even constant ". Moreover,201

the lower bound of [Can16], based on a reduction of histogram testing to the well-studied problem of202

support size estimation, provably cannot be improved to provide either (i) a quadratic dependence on203

", i.e., e⌦(k/"2) or (ii) coupling between the two domain parameters k, n, i.e., e⌦(
p
nk/"). Our work204

remedies all those issues, fully resolving the question of histogram testing, for the whole parameter205

range, within logarithmic factors.206

Finally, we note that a number of works have obtained algorithms and lower bounds for related,207

yet significantly different, testing problems. Specifically, [DK16] gave a sample-optimal testing208

algorithm for the special case of our problem where the k intervals are known a priori. Moreover, a209

number of works [DKN15b, DKN15a, DKN17] have obtained identity and equivalence testers under210

the assumption that the input distributions are k-histograms.211

Preliminaries.We denote by TV(p,q) the total variation (TV) distance between probability dis-212

tributions p,q over [n] := {1, 2, . . . , n}, defined as TV(p,q) := supS✓[n](p(S) � q(S)) =213
1
2

Pn
i=1 |p(i)� q(i)|, where p(S) :=

P
i2S p(i). We will make essential use of the �2-divergence214

of p with respect to q, defined as d�2

�
p
��q

�
:=

Pn
i=1 (pi � qi)

2 /qi. We will also require gener-215

alizations of these definitions on restrictions of the domain. In particular, given S ✓ [n], we use216

the notation TVS(p,q) := (1/2)
P

i2S |p(i)� q(i)| and dS�2

�
p
��q

�
:=

P
i2S (pi � qi)

2 /qi. We217

note that for any S ✓ [n], it holds that TVS(p,q)2  1
4d

S
�2

�
p
��q

�
.218

The asymptotic notation Õ (resp. ⌦̃) suppresses logarithmic factors in its argument, i.e., Õ(f(n)) =219

O(f(n) logc f(n)) and ⌦̃(f(n)) = ⌦(f(n)/ logc f(n)), where c > 0 is a universal constant. The220

notations⌧ and� intuitively mean “much less than” and “much greater than” respectively. Formally,221

we write f(n)⌧ g(n) to denote that f(n) < c · g(n), for some universal constant 0 < c.222

2 Near-Optimal Tester223

A preliminary simplification. Without loss of generality, we will assume that p(i) � 1
2n for every224

i 2 [n]. Indeed, this can be ensured by mixing the unknown distribution with the uniform distribution225

un on [n] beforehand, i.e., p0 := 1
2 (p + un) (see Fact 3 in Appendix for how to sample from p0226
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efficiently). It is easy to see that p0 remains a histogram after mixing: p0
2 H

n
k if p 2 H

n
k , and p0 is227

at least ("/2)-far away from every histogram if p is "-far from every histogram.228

Testing via Learning. The main approach is to follow the Testing-via-Learning framework pro-229

posed in [ADK15]. In particular, suppose we have a learning algorithm capable of constructing p̂230

that is close to p in �2 divergence when p 2 H
k
n. Then, (1) if p 2 H

n
k , we will have that p and p̂ are231

close and (as a consequence of this) that p̂ is close to being a k-histogram. Yet, (2) if p is far from232

being a k-histogram, then by the triangle inequality we must have either that p̂ is far from being a233

k-histogram, or that p and p̂ are far from each other in `1 distance. We can use dynamic programming234

to check the explicit description is indeed close to a k-histogram in `1 distance efficiently (see Lemma235

4.11 of [CDGR18]). To verify p and p̂ are close, we will use a result of [ADK15] on tolerant identity236

testing. In particular, given an explicit description p̂, the tester takes sample from the unknown237

distribution p and decides whether p and p̂ are closed in �2 divergence or far in `1 distance. We238

remark that p̂ can be relaxed to be a positive measure.239

Lemma 1 (Adapted from Lemmas 2 and 3 [ADK15]). Let p and p̂ be a distribution and a positive240

measure defined on [n] respectively. Fix " 2 (0, 1) and let A = {i 2 [n] : p̂(i) � "/(50n)}. There241

exists a tester Tolerance-Identity-Test, which takes Poi(m) i.i.d. samples from p and outputs Accept242

if dA�2

�
p
��p̂

�
 "2/500 and Reject if TV

A (p, p̂) � " with constant probability.243

Outline for Learning. If p 2 H
n
k and we know the partition of p in advance, one can learn p up244

to "2 in �2 divergence with ⇥(k/"2) samples (following the analysis of Laplace estimator from245

[KOPS15]). Without the partition information, we can nonetheless achieve a weaker guarantee. That246

is, we can output a fully specified measure p̂ on [n], together with a sub-domain G ✓ [n], such that247

dG�2

�
p
��p̂

�
is small. In particular, we can achieve the guarantee in three steps. (i) Equally divide the248

domain [n] into K � k many intervals (Lemma 2). (ii) Output a succinct measure p̂ that is constant249

on each interval specified by Step (i) (Section 2.1). (iii) Identify the intervals B where dB�2

�
p
��p̂

�
is250

large (Section 2.2) and take G = [n]\B. The fact that we only have p and p̂ close in �2 divergence251

on a sub-domain G is a reasonable compromise as long as p(B), p̂(B)⌧ ": if p is "-far away from252

p̂ in `1 distance on [n], p is at least ("� p(B)� p̂(B))-far away from p̂ on [n]\B. Otherwise, we253

may take more samples from p restricted to B and sub-divide the problematic intervals identified in254

Step (iii). Repeating the above steps iteratively then brings us to the case p(B)⌧ ".255

Equitable Partition. The first step is to divide the domain into ⇥(k) many intervals over which256

the masses of p are approximately equal. As shown in [ADK15], this can be done with e⇥(k) many257

samples through a routine we denote as Approx-Divide. We also need a routine for sub-dividing a258

set of disjoint intervals into even lighter sub-intervals. Nonetheless, one can reduce the sub-dividing259

task to domain partitioning by running Approx-Divide on the sub-distribution restricted to the set of260

disjoint intervals. Proofs are provided in Appendix A.1.261

Lemma 2. There exists an algorithm Approx-Sub-Divide that, given parameters � 2 (0, 1] and262

integer B > 1, as well as a set of disjoint intervals I = {I1, I2, · · · , Iq}, given sample access to p on263

[n], outputs a list of partitions S1, . . . ,Sq , where Si is the partition of the interval Ii 2 I, such that264

the following holds with probability at least 1� �. (i) The algorithm uses O
�
B/p(I) · log

�
B/�

��
265

samples. (ii) The output contains at most (8B+q) intervals in total. (iii) Every non-singleton interval266

S 2
Sq

j=1 Sj satisfies p(S)  p(I) · 16/B.267

2.1 Simultaneously Estimating Mass of Intervals268

In this section, we first introduce Interval-Mass-Estimate, a sub-routine that can accurately approxi-269

mate the mass of p(J) for all intervals J ✓ [n] simultaneously and then show how we can use it to270

learn p (assuming p 2 H
k
n).271

Interval-Mass-Estimate first divides the number of samples drawn into ⇥(log(n/�)) batches. For272

an interval I , we compute the estimate (number of samples falling in I divided by the batch size)273

for each batch separately and compute the median over the statistics. This is often referred as the274

“Median Trick” and is crucial in achieving the learning guarantees with high probability. Pseudo-code275

and analysis are provided in Appendix A.2.276

Lemma 3. Let be p be supported on [n] such that p(i) � 1/(2n). Fix b 2 Z+
and � 2 (0, 1]. The277

algorithm Interval-Mass-Estimate takes 3b log(n/�) i.i.d. samples from p and outputs '̂, a map278
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from sub-intervals of [n] to real values, such that, with probability at least 1��, for every sub-interval279

I ✓ [n] it holds that p(I)/'̂(I)  max(2 , 8n/b), '̂(I)/p(I)  3 and |'̂(I)� p(I)| 
p
p(I)/b.280

Let I be a partition of [n]. We try to learn p pretending that p is constant over each interval within I281

with the routine Empirical-Learning. In particular, the algorithm uses Interval-Mass-Estimate to282

obtain estimations of the mass of I 2 I and then flatten the mass uniformly among elements i 2 I .283

Notice that, due to the application of the median trick, the output is not necessarily a distribution but284

rather a positive measure3 p̂ on [n] which is constant over each interval within I.285

If p is indeed a k-histogram, errors are only incurred on a special type of intervals (of which there286

are at most k) which we refer to as the breakpoint intervals.287

Definition 1 (Breakpoint Intervals). Given a k-histogram p on [n], we say that i 2 [n] is a breakpoint288

with respect to p if p(i) 6= p(i + 1); and that an interval I ✓ [n] is a breakpoint interval (with289

respect to p) if I contains at least one breakpoint.290

With Definition 1 in mind, we now specify the formal learning guarantees. Pseudo-code and proofs291

are provided in Appendix A.3.292

Lemma 4. Suppose p 2 H
n
k . Let I be a partition of [n] into K intervals. Let b 2 Z+

, � 2 (0, 1] and293

T := 3 log(K/�). There exists an algorithm Empirical-Learning, given (Tb) i.i.d. samples from p,294

outputs a positive measure p̂, which satisfies the following with probability at least 1� �. (i) p̂ is295

constant within each interval in I . (ii) For every sub-intervals J ✓ I where I 2 I is a non-breakpoint296

interval with respect to p, we have p(J)/p̂(J)  max(2 , 8 · n/b) and |p̂(J)� p(J)| 
p
p(J)/b.297

By combining the two guarantees in (ii) in Lemma 4, one can see the �2 divergence between p298

and p̂, restricted to the non-breakpoint intervals, will be at most "2 with high probability if taking299

⇥(KT/"2) many samples. However, following a result from [KOPS15, Can16], one only need300

⇥(K/"2) samples to learn a K-histogram up to "2 error in this restricted notion of �2 divergence.301

One may wonder whether this is enough for us, and if the stronger (but less natural) guarantees302

provided by Lemma 4, which end up increasing the number of samples required, are necessary. As303

we will see in the next section, we indeed need not only that the �2 divergence is small, but also that304

the ratio p(I)/p̂(I) is bounded for all non-breakpoint intervals. In particular, this latter property305

enables us to compute relatively accurate estimates of the �2 divergence restricted to sub-intervals306

and (consequently) to tell whether p is constant or from far from being constant on an interval.307

2.2 Bad Interval Detection308

While large contributions to the �2 divergence (assuming the learning phase was successful) will309

only come from breakpoint intervals, not all of them will necessarily contribute significantly to the310

�2 divergence. In particular, a breakpoint interval is only considered “bad” and needs to be filtered311

out if the error incurred is proportional to the number of breakpoints within.312

Definition 2 ("-Bad-Interval). Fix a partition I of [n] containing K intervals. Let I 2 I be a313

breakpoint interval of p. Furthermore, suppose I contains j � 1 breakpoints i.e. p is j-piece-wise314

uniform in I . We say I 2 I is an "-bad interval with respect to p̂ and I if dI�2

�
p
��p̂

�
� j · "2/K.315

The definition suits our purpose for two reasons. (i) The total �2 error between p and p̂ on the set316

of “good” intervals (complement of the set of “bad” intervals) is small. Indeed, let G 2 I be a set317

containing no "-bad intervals. Since there are at most K intervals contained in G and k breakpoints318

contained in the intervals in G, it is easy to see that dG�2

�
p
��p̂

�
 O("2). (ii) One can reliably319

separate bad intervals from non-breakpoint intervals assuming the learning phase was successful.320

To see why, note that in that case every non-breakpoint interval I satisfies dJ�2

�
p
��p̂

�
⌧ "2/K for321

all J ✓ I with high probability. On the contrary, for any bad interval I , we claim there must be a322

sub-interval Q ✓ I where dQ�2

�
p
��p̂

�
� "2/K and both p and p̂ are constant within. In particular, if323

I is an "-bad interval that contains (j � 1) breakpoints, we then have a partition {Q1, · · · , Qj} of I324

over which p is piece-wise constant and at least one of them will have �2 error at least "2/K.325

Our next step is to show how we can leverage the separating condition to design an efficient bad326

interval detection mechanism. This is where our method significantly differs from [Can16]. At a high327

level, we take another set of independent samples to get an estimate '̂(Q) of p(Q) for all Q ✓ [n]328

3That is, p̂ might not sum to one, and thus is not itself a probability distribution.
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simultaneously. Then, we compare '̂(Q) with p̂(Q) to see whether we have dQ�2

�
p
��p̂

�
� "2/K,329

which would in turns imply the interval I ◆ Q from the given partition is "-bad. We next provide the330

pseudo-code for Learn-And-Sieve, which finds a positive measure p̂ on [n] and a domain B such331

that d[n]\B�2

�
p
��p̂

�
 O("2) provided p 2 H

n
k . Its detailed analysis can be found in Appendix A.4.

Algorithm 1 Learn-And-Sieve

Require: Sample access to p; a partition I of [n] containing K intervals; accuracy "; failure
probability �.

1: Let m = C · (K/"2 +
p
Kn/") · log(n/�) for a sufficiently large constant C.

2: Draw 2m i.i.d. samples from p and split the samples evenly into S1,S2.
3: p̂ Empirical-Learning (S1, I, �/4), '̂ Interval-Mass-Estimate(S2, �/4), B  {}.
4: for all intervals Q ✓ I for some I 2 I do
5: if '̂(Q)/p̂(Q) > 6 ·max(1, " ·

p
n/K) or |'̂(Q)� p̂(Q)| > 0.5

p
p̂(Q)"2/K then

6: Add I to B.
7: Output Reject if B contains more than k intervals. Otherwise, return B, p̂.

332 Lemma 5 (Sieving Lemma). Given a partition I containing K intervals, sample access to p on [n]333

and � 2 (0, 1). Then, the output of Learn-And-Sieve (Algorithm 1) satisfies the following. (i) Suppose334

p 2 H
n
k . Then the algorithm returns a positive measure p̂ and B such that d[n]\B�2

�
p
��p̂

�
 "2 with335

probability at least 1� �. (ii) The output B contains at most k intervals (if the algorithm does not336

reject). (iii) At most O((K/"2 +
p
Kn/") · log(n/�)) samples are used.337

Proof Sketch. We claim that, if p 2 H
n
k , B contains all the "-bad intervals and no non-338

breakpoint intervals with high probability. Let I be a non-breakpoint interval. For b =339

⇥(m/ log(n/�)) = ⇥(K/"2 +
p
Kn/"), we have, with high probability, |'̂(Q)� p(Q)| 340 p

p(Q)/b, |p̂(Q)� p(Q)| 
p
p(Q)/b and p(Q)/p̂(Q)  max(2 , 8 · n/b) which follow from341

Lemmas 3 and 4. Combining this with triangle inequality and our choice of b implies the sec-342

ond condition of Line 5 will be false. The first condition can be shown to be false by rewriting343

'̂(Q)/p̂(Q) as '̂(Q)/p(Q) · p(Q)/p̂(Q), which are themselves bounded, with high probability, by344

3 and ⇥(1) ·max(1, "
p
n/K) again by Lemmas 3 and 4 and our choice of b.345

Let I be a breakpoint interval. We then have |p(Q)� p̂(Q)| �
p
p̂(Q) · "2/K for some sub-interval346

Q ⇢ I . If p(Q) is light (p(Q)  2"/
p
Kn), we can show p(Q)/b  1/4 · p̂(Q) · "2/K, making347

'̂(Q), our estimation for p(Q), sufficiently accurate such that the second condition of Line 5 will348

be true. Otherwise, as b �
p
Kn/", the estimation '̂(Q) will be within multiplicative factors of349

p(Q). If p̂(Q) is not much lighter than p(Q), we can again show p(Q)/b  1/4 · p̂(Q) · "2/K.350

Otherwise, the first condition of Line 5 will be true. Conditioned on that B includes all "-bad intervals351

and no non-breakpoint intervals, it is easy to see that B will contain no more than k intervals and352

dI\B�2

�
p
��p̂

�
 O("2). We note that points (i) and (iii) follow from the definition of the algorithm.353

Learn-and-Sieve (Algorithm 1) outputs a fully specified description p̂ and a sub-domain G := [n]\B354

such that dG�2

�
p
��p̂

�
is small given p 2 H

k
n. For testing purposes, this is a reasonable divergence355

from the ideal guarantee that d�2

�
p
��p̂

�
is small as long as p(B) is also small. If so, we can set356

p̂(i) = 0 for i 2 B and invoke Tolerant-Identity-Test with p and p̂. If the test passes, we then know357

that TVG (p, p̂)  "/2: this together with p(B)  "/2 then gives TV (p, p̂)  ".358

Unfortunately, running Learn-and-Sieve only once we may have p(B) = ⌦(1). To handle this, we359

will need more fine-grained sieving procedure, which uses Approx-Sub-Divide to further partition360

the bad intervals detected and invokes Learn-and-Sieve iteratively. In each iteration, the total mass of361

the bad intervals shrinks by a constant factor, allowing us to reach p(B)⌧ " in at most O(log(1/"))362

iterations. The pseudo-code (Algorithm 4) and detailed analysis are provided in Appendix A.5.363

3 Sample Complexity Lower Bound364

In this section, we describe the hard instance of histogram testing, which leads to an e⌦(
p
kn/"+k/"2)365

lower bound. We will apply the so-called Poissonization trick: we will relax P , the unknown object366
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being tested, to be a positive measure with total mass ⇥(1). We denote such a measure as an367

approximate probability vector and give the corresponding notion of histogram.368

Definition 3 (Approximate Probability Vector). We define the set of ⌫-approximate probability369

vectors (APV) on the domain [n] by P̃
n(⌫) := {P : Pi 2 [0,1) 8i 2 [n] , |kPk1 � 1|  ⌫}.370

Accordingly, the set of histogram APV is given by H̃
n
k (⌫) := {P 2 P̃

n(⌫) : P/kPk1 2 H
n
k}.371

Under the Poisson sampling model, given an unknown P 2 P̃
n(⌫), the goal it to decide whether372

P 2 H̃
n
k (⌫) or P is at least "(1 + ⌫)-far4 from any P 0

2 H̃
n
k (⌫) in `1 distance when given the vector373

{M1,M2, · · ·Mn} where Mi ⇠ Poi(m · Pi). We denote the sample complexity of the problem by374

mpoi
hist(n, k, ", ⌫) and provide its formal definition in Appendix B.375

To lower bound mpoi
hist(n, k, ", ⌫), we follow the idea of moment matching illustrated in [Val11, VV13,376

WY16]. In particular, one first constructs two discrete non-negative random variables U,U 0 whose377

first few moments are identical. Moreover, U and U 0 will be designed to have different properties378

such that one can use i.i.d. copies of U (and U 0) to generate random measures that are histograms379

(and far-away from histograms respectively).380

Our construction of such a pair of random variables is based on Chebyshev’s polynomials, a standard381

tool in approximation theory and the parameter estimation literature. The two variables will be382

supported on the roots of the polynomial p(x) = x
�
x� 1

n

� �
x� 2

n

�
Td

⇣
1�

p

kn
C·log2 n · x

⌘
, where383

Td(·) is the Chebyshev’s polynomial (of the first kind) and C is a sufficiently large constant. More384

precisely, U will be supported on roots r where the derivatives p0(r) < 0, U 0 will be on roots where385

p0(r) > 0, and the probabilities will be proportional to p0(r) accordingly. Consequently, U will most386

likely be 1/n (hence useful for histogram construction) and U 0 will most likely be 0 or 2/n, each387

with non-trivial probabilities (hence appropriate for non-histogram construction). Besides, they will388

have their maximums bounded by eO(1/
p
kn), which is crucial to achieve the nearly optimal lower389

bounds. The detailed construction and analysis are provided in Appendix B.1.390

Lemma 6. Given positive integers k, n where k < n, there exists a pair of non-negative random391

variable U,U 0
supported on [0, 1) and absolute constants c, c0 > 0 satisfying (i) Pr

⇥
U 6= 1

n

⇤
⌧

k
n .392

(ii) Pr [U 0 = 0] > 1/3 and Pr
⇥
U 0 = 2

n

⇤
> 1/3. (iii) U,U 0

 c0 log2 n/
p
kn. (iv) E[U ] = E[U 0] =393

1
n (1 +O(

p
k/n)). (v) E[U t] = E[U 0t] for 1  t  c · log n.394

We the proceed to construct two families of Approximate Probability Vectors, one of which belongs395

to H̃
n
k and the other far from it using the random variables stated in Lemma 6. To do so, we396

define H =
�
1/n+ "U (1), · · · , 1/n+ "U (n)

�
, H 0 =

�
1/n+ "U 0(1), · · · , 1/n+ "U 0(n)

�
where397

U (i), U 0(i) are n i.i.d. copies of U , U 0 in Lemma 6.398

We address the two regimes
p
k/n  " log2 n and

p
k/n � " log2 n separately. In the former case,399

the heaviest element among H and H 0 are roughly e⇥("/
p
kn). Hence, when the algorithm takes400

eo(
p
kn/") samples, it rarely sees any element appearing a large number of times. By the moment-401

matching property of U and U 0, the probabilities of seeing some elements appearing for t times for402

t  log n are almost identical under H and H 0, therefore making H and H 0 indistinguishable. In the403

latter case, we have "U ⌧ 1
n , implying that no elements in the measures are significantly heavier than404

the rest. As a result, H and H 0 are both almost uniform except with a different number of “bumps”405

(elements that are slightly heavier). Subsequently, the algorithm needs more samples (about e⌦(k/"2))406

to tell whether a certain element is heavier than the rest, leading to a phase transition in the sample407

complexity of the problem. We remark that whether e⌦(k/"2) or e⌦(
p
nk/") dominates depends408

exactly on the relationship between
p

k/n and " (omitting poly-logarithmic factors). Combining the409

two regimes then gives us the following lower bound, whose proof is provided in Appendix B.2.410

Proposition 2. There exists a constant ⌫ 2 (0, 1) such that for any sufficiently large n and " 2411

(0, 1/10), it holds mpoi
hist(n, k, ", ⌫) � ⌦(max(

p
kn/(" log n) , k/("2 log3 n))).412

Finally, we can easily translate our lower bound result in the Poissonized sampling model to the413

Multinomial (standard fixed-size) sampling model by a standard reduction. Combining it with the414

known ⌦(
p
n/"2) bound (see [Can16, Proposition 4.1]) then concludes our lower bound argument.415

Formal proofs are given in Appendix B.3.416

4The extra (1+ ⌫) factor accommodates the fact that P may not be a distribution, i.e., 1  kPk1 < (1+ ⌫).
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