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Abstract
The emergence of large language models (LLMs) has resulted
in the production of LLM-generated texts that is highly so-
phisticated and almost indistinguishable from texts writ-
ten by humans. However, this has also sparked concerns
about the potential misuse of such texts, such as spreading
misinformation and causing disruptions in the education
system. Although many detection approaches have been pro-
posed, a comprehensive understanding of the achievements
and challenges is still lacking. This survey aims to provide
an overview of existing LLM-generated text detection tech-
niques and enhance the control and regulation of language
generation models. Furthermore, we emphasize crucial con-
siderations for future research, including the development
of comprehensive evaluation metrics and the threat posed
by open-source LLMs, to drive progress in the area of LLM-
generated text detection.

1 Introduction
Recent advancements in natural language generation (NLG)
technology have significantly improved the diversity, con-
trol, and quality of LLM-generated texts. A notable example
is OpenAI’s ChatGPT [50], which demonstrates exceptional
performance in tasks such as answering questions, com-
posing emails, essays, and codes. However, this newfound
capability to produce human-like texts at high efficiency
also raises concerns in detecting and preventing misuses
of LLMs in tasks such as phishing [4], disinformation [74],
and academic dishonesty [63]. For instance, many schools
banned ChatGPT due to concerns over cheating in assign-
ments [59], and media outlets have raised the alarm over
fake news generated by LLMs [25]. These concerns about
the misuse of LLMs have hindered the NLG application in
important domains such as media and education.
The ability to accurately detect LLM-generated texts is

critical for realizing the full potential of NLG while minimiz-
ing serious consequences. From the perspective of end-users,
LLM-generated text detection could increase trust in NLG
systems and encourage adoption [73]. For machine learning
system developers and researchers, the detector can aid in
tracing generated texts and preventing unauthorized use.
Given its significance, there has been a growing interest in
academia and industry to pursue research on LLM-generated
text detection and to deepen our understanding of its under-
lying mechanisms.

While there is a rising discussion onwhether LLM-generat-
ed texts could be properly detected and how this can be done,
we provide a comprehensive technical introduction of exist-
ing detection methods which can be roughly grouped into
two categories: black-box detection and white-box detec-
tion. Black-box detection methods are limited to API-level
access to LLMs. They rely on collecting text samples from
human and machine sources, respectively, to train a clas-
sification model that can be used to discriminate between
LLM- and human-generated texts. Black-box detectors work
well because current LLM-generated texts often show lin-
guistic or statistical patterns. However, as LLMs evolve and
improve, black-box methods are becoming less effective. An
alternative is white-box detection, in this scenario, the detec-
tor has full access to the LLMs and can control the model’s
generation behavior for traceability purposes. In practice,
black-box detectors are commonly constructed by external
entities, whereas white-box detection is generally carried
out by LLM developers.

This article is to discuss the timely topic from a data min-
ing and natural language processing perspective. Specifically,
we first outline the black-box detection methods in terms of
a data analytic life cycle, including data collection, feature
selection, and classification model design. We then delve into
more recent advancements in white-box detection methods,
such as post-hoc watermarks and inference time watermarks.
Finally, we present the limitations and concerns of current
detection studies and suggest potential future research av-
enues. We aim to unleash the potential of powerful LLMs
by providing fundamental concepts, algorithms, and case
studies for detecting LLM-generated texts.

2 Prevalence and Impact
How good is LLM-generated text, and what is its impact on
individuals and society? The recent advancement of Ope-
nAI’s ChatGPT gives us a glimpse of its potential. The con-
venience brought by ChatGPT shows promise in enhancing
efficiency in industries and education systems. For example,
ChatGPT’s ability to perform well on tests, such as MBA
exams at Wharton Business School [60], highlights its com-
petitivenesswith human knowledge and its potential to assist
professionals [3, 10]. In the healthcare industry, ChatGPT
can simplify documentation by generating medical records,
progress reports, and discharge summaries, helping medical
students and physicians to create effective memories of com-
plex medical concepts in clear language [42]. In emergency
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Figure 1. An overview of the LLM-generated text detection.

services, ChatGPT can help generate real-time police reports,
reducing response times for officers in action.
However, the integration of ChatGPT in education has

raised concerns among experts. The use of AI technology in
education has sparked worries about cheating, as students
may use it to gain unauthorized access to information and
complete assignments. The tool may offer quick answers, but
it does not promote critical-thinking and problem-solving
skills, which are vital for academic and long-term success. As
a response, New York City Public Schools have banned the
use of ChatGPT in academic papers, and teaching statements
[59]. This underscores the need for careful ethical consider-
ations and guidelines when incorporating LLM technology
into education. Additionally, organizations such as the Inter-
national Conference on Machine Learning and publishers
like Nature have stated that LLM-generated texts cannot be
credited as an author in their conference papers and journals
[21], which leads to an urgent need to distinguish LLM-
generated texts from human-written texts. To address the
issue of cheating in academia, OpenAI and third-parties have
recently developed several tools to help teachers and insti-
tutions identify potential instances of academic misconduct
[51, 65]. Although not foolproof, these tools manage to pre-
serve academic integrity in education systems and research
institutions. Given its significance, there has been a grow-
ing interest in academia and industry to pursue research on
LLM-generated text detection.

3 Black-box Detection
zIPFANIn the realm of black-box detection, external entities
are restricted to API-level access to the LLM, as illustrated
in Figure 1. To construct an effective detector, black-box
methods require the collection of text samples from both
human-generated and machine-generated sources. Subse-
quently, a classifier is trained to differentiate between the
two categories based on chosen features. This paper presents
the three crucial components of black-box text detection:
data collection, feature selection, and the implementation of
the classification model.

3.1 Data Collection
The performance and generalizability of black-box detec-
tion models are heavily dependent on the quality and di-
versity of the collected data. Recently, there has been an
increasing number of studies that focus on gathering LLM-
generated responses and comparing them to human-written
texts across various domains. This section delves into the
various strategies for obtaining data from both human and
machine sources.

3.1.1 LLM-generated Data: LLM is trained to estimate
the probability of the next token in a sequence, given the
preceding words. Recent advancements in Natural Language
Generation have led to the development of LLMs for various
domains, including question answering [32], news genera-
tion [12, 52, 68], and story creation [24]. When collecting
datasets for LLM-generated texts, it is essential to specify
the target domain and generation model. The majority of
studies utilize transformer-based LLMs [71], such as GPT-2
[56], GPT-3 [8], OPT [75], and ChatGPT [50], for text gener-
ation within specific domains. Typically, LLMs with a larger
number of parameters typically produce higher-quality text,
but also demand more computational resources. Appropriate
LLM selection or fine-tuning before use can significantly
improve the quality of the generated texts [20]. For instance,
Solaiman et al. fine-tune the GPT-2 model on Amazon prod-
uct reviews, producing reviews with a style consistent with
those found on Amazon [62].

Language models are known to generate text with format
and style issues. To avoid these artifacts, researchers can
provide domain-specific prompts or constraints before gen-
erating the outputs. For instance, Clark et al. [12] randomly
selected 50 articles from Newspaper3k to use as prompts for
the GPT-3 model for news generation and set the filtering
constraints on the models with the phrase "Once upon a
time" for story creation. The length of LLM-generated texts
can also be controlled with short prompts and a specified
number of word constraints [49, 55]. The sampling strategy
also has a significant impact on the generated text quality
and style. While greedy algorithms like beam search [66]
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Figure 2. The top-k overlay using visualization tool GLTR
[28]. There is a notable difference between the two texts. The
human-written text is from Chalkbeat New York [22].

generate the most probable sequence, they are deterministic
and may not allow for creativity and language diversity. On
the other hand, stochastic algorithms like nucleus sampling
[35] preserve some randomness while eliminating poor can-
didates, making them more suitable for free-form generation
tasks.

3.1.2 Human-written Data. Manual composition by hu-
mans is a natural way to obtain human-written data. For
instance, in the study conducted by Dugan et al. [19], the
author aims to evaluate the quality of NLG systems and as-
sess human perceptions of generated texts. To accomplish
this, two hundred Amazon Mechanical Turk workers [16]
are hired to complete 10 annotations on the website and
provide a natural language explanation for their decisions.
However, manually gathering data through human effort
can be time-consuming and financially unfeasible for large
datasets. An alternative approach is to extract texts directly
from human-written sources, such as websites and scien-
tific articles. For example, we can easily gather thousands of
descriptions of computer science concepts from Wikipedia,
written by human experts, to answer questions like "What
is <concept>?" [32]. Furthermore, many publicly available
benchmark datasets, such as ELI5 [23], which consists of
270K threads from the Reddit forum "Explain Like I’m Five",
already provide human-written texts in a structured form.
Collecting human-written texts from these readily available
sources can significantly reduce the time and cost involved,
but it’s crucial to consider sampling biases and topic diversity,
such as including the written texts of non-native speakers.
Additionally, since LLMs are trained on text sampled from a
specific time period, it’s important to ensure that the publi-
cation date of the human-generated data is close to or after
the training data of the LLM [28].

3.1.3 Human Evaluation Findings: Previous research
has provided valuable insights into how to distinguish LLM-
generated texts from human-written texts through human
evaluations. Firstly, it has been noted that LLM-generated
texts are less emotional and objective compared to human-
written text, which often uses punctuation and grammar

to convey subjective feelings [32, 69]. For example, human
authors frequently use exclamation marks, question marks,
and ellipsis to express their emotions, while LLMs generate
answers that are more formal and structured. However, it’s
important to note that LLM-generated texts may not always
be accurate or helpful as they can be fabricated [32]. At the
sentence level, research has shown that human-written text
is more coherent than LLM-generated text, which tends to
repeat terms within a paragraph [20, 43]. These observations
suggest that LLMs leave distinctive signals in their generated
text, and appropriate features can be selected to distinguish
between LLM and human-written text.

3.2 Detection Feature Selection
How can we differentiate between LM-generated texts and
human-written texts? This sectionwill discuss possible detec-
tion features from various perspectives, including statistical
disparities, linguistic patterns, and fact verification.

3.2.1 Statistical Disparities. The detection of statistical
disparities between LLM-generated and human-written texts
is achieved through the use of various statistical metrics, such
as Term Frequency-Inverse Document Frequency (TF-IDF)
[62], Self-BLEU [77], and the Zipfian coefficient [54]. The
Zipfian coefficient measures the text’s conformity to an expo-
nential curve, which is described by Zipf’s law [35]. On the
other hand, the Self-BLEU [77] score evaluates the diversity
and consistency of the n-grams present in the generated text.
A visual forensic tool, GLTR [28], has been developed to de-
tect generation artifacts across common sampling methods,
as demonstrated in Figure 2. Perplexity is another commonly
used metric for LLM-generated text detection. It measures
the quality of the languagemodel by quantifying the negative
average log-likelihood of the texts under the LLM [7, 24, 35].
Studies have shown that language models tend to concen-
trate on common patterns in the texts they were trained
on, resulting in low perplexity scores for LLM-generated
text. Conversely, human authors have the ability to express
themselves in a wide range of styles, which makes it more
challenging for language models to predict and results in
higher perplexity values for human-written text. However,
it should be noted that these statistical disparities are limited
by the requirement of having a document-level text, which
inevitably reduces the resolution of the detection [51], as
shown in Figure 3.

3.2.2 Linguistic Patterns. The linguistic patterns in the
human and LLM-generated texts can be analyzed through
various contextual properties, including vocabulary features,
part-of-speech, dependency parsing, and sentiment analysis.
The vocabulary features provide insight into the queried
text’s word usage patterns by analyzing characteristics such
as average word length, vocabulary size, and word density.
Previous studies on OpenAI’s ChatGPT have shown that
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Figure 3. A taxonomy of LLM-generated text detection.

human-written texts tend to have a more diverse vocabu-
lary but shorter length compared to language models in
question-answering tasks [32]. The part-of-speech analy-
sis highlights the dominance of nouns in ChatGPT texts,
implying argumentativeness and objectivity, while the de-
pendency parsing analysis shows that ChatGPT texts use
more determiners, conjunctions, and auxiliary relations. Sen-
timent analysis, on the other hand, provides a measure of
the emotional tone and mood expressed in the text. Unlike
humans, large language models tend to be neutral by default
and lack emotional expression. Research has shown that
ChatGPT expresses significantly less negative emotion and
hate speech compared to human-written texts [32]. Besides
analyzing a single text, there are plenty of linguistic patterns
in the multi-turn conversation [5]. These linguistic patterns
are a reflection of the training data and strategies of LLMs
and serve as valuable features for detecting LLM-generated
text. However, it is worth noting that LLMs can significantly
change their linguistic patterns in response to prompts. For
example, adding the prompt "Please respond with humor"
can alter the sentiment of the LLM’s answer and affect the
robustness of linguistic patterns.

3.2.3 Fact Verification. Language models (LLMs) often
rely on likelihood maximization objectives during training,
which can result in the generation of nonsensical or incon-
sistent text, known as hallucination [38]. This phenomenon
emphasizes the significance of fact-verification as a crucial
feature for detection [76]. For example, OpenAI’s ChatGPT
has been reported to generate false scientific abstracts [9]
and post misleading news opinions [31]. Studies have re-
vealed that popular decoding methods, such as top-k and
nucleus sampling, result in more diverse and less repetitive
generations. However, they also produce text that is less
verifiable [46]. These findings highlight the potential to use
fact verification to detect LLM-generated texts.

Prior research has advanced the development of tools and
algorithms for conducting fact verification, which entails
retrieving evidence for claims, evaluating consistency and
relevance, and detecting inconsistencies in texts. One strat-
egy is to use sentence-level evidence, such as extracting facts

from Wikipedia, to directly verify facts of a sentence [46].
Ma et al. [45] employed representation learning to embed
sentence-level evidence based on coherence modeling and
natural language inference, leading to a deeper understand-
ing of the text’s semantics. Another approach is to analyze
document-level evidence via graph structures, which cap-
ture the factual structure of the document as an entity graph.
This graph is utilized to learn sentence representations with
a graph neural network, followed by the composition of
sentence representations into a document representation
for fact verification. This method has revealed that human-
written text tends to repeat terms, while LLM-generated
text often includes irrelevant information [76]. Some studies
also use knowledge graphs constructed from truth sources,
such as Wikipedia, to conduct fact verification [11, 61, 64].
These methods evaluate consistency by querying subgraphs
and identify non-factual information by iterating through
entities and relations. Given that human-written text may
also contain misinformation, it is crucial to supplement the
detection results with other features in order to accurately
distinguish texts generated by LLMs.

3.3 Classification Model
The detection task is typically approached as a binary clas-
sification problem, with the objective of capturing textual
features that differentiate between human-written and LLM-
generated texts. This section provides an overview of the
major categories of classification models.

3.3.1 Traditional ClassificationAlgorithm. Traditional
classification algorithms utilize various features outlined in
Section 3.2 to differentiate between human-written and LLM-
generated text. Some of the commonly used algorithms are
Support Vector Machines, Naive Bayes, and Decision Trees.
For instance, Fröhling et al. [26] in their study use linear
regression, SVM, and random forests models that were built
based on both statistical and linguistic features and success-
fully identified texts generated by GPT-2, GPT-3, and Grover
models. Similarly, Solaiman et al. [62] achieve a decent per-
formance in identifying texts generated by GPT-2 (1.5 billion
parameters) through a combination of TF-IDF unigram and
bigram features with a logistic regression model. In addition,
studies have also shown that using pre-trained language
models to extract textual features, followed by SVM for clas-
sification, can outperform the direct use of statistical features
[15]. One advantage of traditional classification algorithms
is that they are interpretable, allowing researchers to analyze
the importance of input features.

3.3.2 Deep Learning Approaches. In addition to rely-
ing on extracted features for detection, the use of language
models, such as BERT [18] and RoBERTa [44], as a backbone
has been explored in recent studies. This approach involves
fine-tuning these models on a mixture of human-written and
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LLM-generated text, allowing them to capture the textual
differences between the two implicitly. Most studies adopt
the supervised learning paradigm for training the language
model, as demonstrated by Ippolito et al. [36] who fine-tuned
the BERT model on a collected dataset of generated-text
pairs. This study showed that human raters have significantly
lower accuracy than automatic discriminators in identifying
LLM-generated text. In a low-resource scenario, Rodriguez
et al. [58] showed that a few hundred labeled in-domain
genuine and synthetic texts are sufficient for good perfor-
mance, evenwhen the external entity does not have complete
information about the LLM text generation pipeline. De-
spite the strong performance under the supervised learning
paradigms, the annotations of detection data are sometimes
challenging to acquire in real-world applications, leading
the supervised paradigms to be not applicable. A recent re-
search [27] detects the LLM-generated documents by lever-
aging the repeated higher order of n-grams, which can then
be trained under unsupervised learning paradigms, without
the requirements of collecting LLM-generated datasets as
training data. Besides using the language model as the back-
bone, recent research finds that contextual structure can be
viewed as a graph containing entities mentioned in the texts
and the semantically relevant relations, which utilizes a deep
graph neural network to capture the structure feature of a
document for LLM-generated news detection [76]. While
deep learning approaches often achieve better detection re-
sults, their black-box nature severely limits interpretability.
Researchers typically need to employ interpretation tools to
understand the basis for the model’s decisions.

4 White-box Detection
In white-box detection, the detector has full access to the
target language model, allowing the embedding of secret
watermarks into its outputs for monitoring any suspicious
or unauthorized activity. In this section, we first present
the three requirements for watermarks in natural language
generation, followed by an overview of the two main cat-
egories of white-box watermarking approaches: post-hoc
watermarking and inference-time watermarking.

4.1 Watermarking Requirements
We build upon previous research in traditional digital water-
marking [14] and propose three essential requirements for
NLG watermarking. (1) Effectiveness: The watermark must
be effectively embedded into the generated texts and verifi-
able, at the same time, maintaining the quality of the gener-
ated texts. (2) Secrecy: The watermark should be designed to
achieve stealthiness, without introducing noticeable changes
that can be easily detected by automated classifiers. In prac-
tice, it should be indistinguishable from non-watermarked
texts. (3) Robustness: The watermark should be resilient and
difficult to remove through common modifications such as

synonym replacement. To remove the watermark, the at-
tacker must make significant modifications that render the
texts unusable. These three requirements serve as the foun-
dation for NLG watermarking and ensure the traceability of
LLM-generated texts.

4.2 Post-hoc Watermarking
Given an LLM-generated text, post-hoc watermarks will em-
bed a hidden message or identifier into the text. Verification
of the watermark can be performed by recovering the hid-
den message from the suspicious text. There are two main
categories of post-hoc watermarking methods: rule-based
and neural-based approaches.

4.2.1 Rule-based Approaches. Initially, nature language
researchers adapted techniques from multimedia watermark-
ing, which were non-linguistic in nature and relied heavily
on character changes. For example, the line-shift watermark
method involves moving a line of text upward or downward
(or left or right) based on the binary signal (watermark) to
be inserted [6]. However, these "printed text" watermark-
ing approaches had limited applicability and were not ro-
bust against text reformatting [39]. Later research shifted
towards using the syntactic structure for watermarking. For
instance, a study by Atallah et al. [2] embedded watermarks
in parsed syntactic tree structures, preserving themeaning of
the original texts and making it unreadable to those without
knowledge of the modified tree structure. Additionally, syn-
tactic tree structures are difficult to remove through editing
and remain effective when the text is translated into other
languages. Further improvements were made in a series of
works, which proposed variants of the method that embed-
ded watermarks based on synonym tables instead of just
parse trees [37, 47, 48]. In addition to syntactic structure, re-
searchers have also leveraged the semantic structure of text
to embed watermarks. This includes exploiting features such
as verbs, nouns, prepositions, spelling, acronyms, grammar
rules, etc. For instance, a synonym substitution approach
was proposed in which watermarks are embedded by re-
placing certain words with their synonyms without altering
the context of the text [67]. Generally, rule-based methods
use fixed rule-based substitutions, which may systematically
change the text statistics, undermining the secrecy of the
watermark and enabling adversaries to detect and remove
the watermark automatically.

4.2.2 Neural-basedApproaches. In contrast to rule-based
methods that demand significant engineering efforts to de-
sign, neural-based approaches conceptualize the information-
hiding process as an end-to-end learning process. These ap-
proaches typically involve three components: a watermark
encoder network, a watermark decoder network, and a dis-
criminator network [1, 17, 70]. Given a target text and a
secret message (e.g., random binary bits), the watermark en-
coder network generates a modified text that incorporates
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Figure 4. Illustration of inference timewatermark. A random
seed is generated by hashing the previously predicted token
"a", splitting the whole vocabulary into "green list" and "red
list". The next token "carpet" is chosen from the green list.

the secret message. The watermark decoder network then
endeavors to retrieve the secret message from the modified
text. One challenge is that the watermark encoder network
may significantly alter the language statistics. To address
this problem, the framework employs an adversarial train-
ing strategy [30] and includes the discriminator network.
The discriminator network takes the target text and water-
marked text as input and aims to differentiate between them,
while the watermark decoder network aims to make them
indistinguishable. The training process continues until the
objectives of the three components attain a satisfactory level
of performance. For watermarking LLM-generated text, de-
velopers can use the watermark encoder network to embed
a pre-set secret message into LLMs’ outputs, and the water-
mark decoder network to detect any potential text generated
by the model. Although neural-based approaches eliminate
the need for manual rule design, their inherent lack of in-
terpretability raises concerns about their truthfulness and
the absence of mathematical guarantees for the watermark’s
effectiveness, secrecy, and robustness.

4.3 Inference Time Watermark
In contrast to post-hoc watermarks that are added after text
generation, inference-time watermarks target the decoding
process within the LLM. The LLM neural language model
generates a probability distribution for the next word in a
sequence based on the previous words. A decoding strategy,
which is an algorithm that selects words from this distri-
bution to generate a sequence, provides an opportunity to
embed the watermark by altering the word selection process.

A representative example of this method can be found in
research conducted by Kirchenbauer et al. [41]. During the
next token generation, a hash code is generated based on
the previously generated token, which is then used to seed
a random number generator. This seed randomly divides
the whole vocabulary into a "green list" and a "red list" of
equal size. The next token is subsequently generated from
the green list. In this way, the watermark is embedded into
every generated word, as depicted in Figure. 4. To detect
the watermark, a third party with knowledge of the hash
function and random number generator can reproduce the

red list for each token and count the number of violations of
the red list rule, thus verifying the authenticity of the text.
The probability that a natural source produces 𝑁 tokens
without violating the red list rule is only 1/2𝑁 , which is
vanishingly small even for text fragments with a few dozen
words. To remove the watermark, adversaries need to modify
at least half of the document’s tokens. However, one concern
with these inference-time watermarks is that the controlled
sampling process may significantly impact the quality of the
generated text. One solution is to relax the watermarking
constraints, e.g., increasing the whitelist vocabulary size
[41], and aim for a balance between watermarking and text
quality.

5 Authors’ Concerns
5.1 Limitations of Black-box Detection.
Bias in Collected Datasets. Data collection plays a vital
role in the development of black-box detectors, as these sys-
tems rely on the data they are trained on to learn how to
identify detection signals. However, it is important to note
that the data collection process can introduce biases that
can negatively impact the performance and generalization
of the detector. These biases can take several forms. For ex-
ample, many existing studies tend to focus on only one or
a few specific tasks, such as question-answering or news
generation, which can lead to an imbalanced distribution of
topics in the data and limit the detector’s ability to general-
ize. Additionally, human artifacts can easily be introduced
during data collection, as seen in the study conducted by
Guo et al. [32], where the lack of style instruction in col-
lecting LLM-generated answers led to OpenAI’s ChatGPT
producing answers with a neutral sentiment. These spuri-
ous correlations can be captured and even amplified by the
detector, leading to poor generalization performance when
deployed in real-world applications [29].
Confidence Calibration. In the development of real-world
detection systems, it’s crucial not only to have accurate clas-
sifications but also to provide an indication of the likelihood
of being incorrect. For instance, a text with a 98% proba-
bility of being generated by an LLM should be considered
more likely to be machine-generated than one with a 90%
probability. In other words, the predicted class probabili-
ties should reflect its ground truth correctness likelihood.
Calibrated confidence scores are also important for model in-
terpretability, as they provide valuable information for users
to establish trust in the system [13]. Good confidence scores
help build trust in the user, especially for neural networks
whose decisions can be difficult to interpret. Although neural
networks are more accurate than traditional classification
models, extensive studies have pointed out that they are no
longer well-calibrated [33, 53]. Therefore, it’s essential to cal-
ibrate the confidence scores in black-box detection classifiers,
which are often neural-based models.
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In our opinion, while black-box detection works at present
due to detectable signals left by language models in gener-
ated text, it will gradually become less viable as language
model capabilities advance and ultimately become infeasi-
ble. In light of the rapid improvement in LLM-generated text
quality, the future of reliable detection tools lies in white-box
watermarking detection approaches.

5.2 Lacking Comprehensive Evaluation Metrics
Existing studies often rely on metrics such as AUC or accu-
racy for evaluating detection performance. However, these
metrics only consider an average case and are not enough
for security analysis. Consider comparing two detectors: De-
tector A perfectly identify of 1% of the LLM-generated texts
but succeeds with a random 50% chance on the rest. Detector
B succeeds with 50.5% on all data. On average, two detectors
have the same detection accuracy or AUC. However, detec-
tor A demonstrates exceptional potency, while detector B is
practically ineffective. In order to know if the detector can
reliably identify the LLM-generated text, researchers need to
consider the low false-positive rate regime (FPR) and report
a detector’s True-Positive Rate (TPR) at a low false-positive
rate. This objective of designing methods around low false-
positive regimes is widely used in computer security [34, 40].
This is especially crucial for populations who produce un-
usual text, such as non-native speakers. Such populations
might be especially at risk for false-positive, which could
lead to serious consequences if these detectors are used in
our education systems.

5.3 Threats from Open-Source LLMs.
Current detection methods are based on the assumption
that the LLM is controlled by the developers and offered as
a service to end-users [57], this one-to-many relationship
is conducive to detection purposes. However, the possibil-
ity of developers open-sourcing their models or the models
being stolen by hackers poses a challenge to these detec-
tion approaches. For instance, Meta open-sourced its latest
large language model, named Open Pre-trained Transform-
ers (OPT), with parameters ranging from 125 million to 175
billion [75], while Huggingface also open-sourced its chat-
bot model and shifted its focus to democratizing machine
learning.
Once the end user gets full access to the LLM, the ability

to modify the LLMs’ behavior hinders black-box detection
from identifying generalized language patterns. Embedding
a watermark in the open-sourced LLM is a potential solu-
tion. However, it can still be defeated as users have full ac-
cess to the model and can fine-tune it or change sampling
strategies to erase the watermark. To tackle this, developers
may increase the model parameter vulnerability to prevent
end-user modification of the released model, where a slight
change in the model parameters can cause a significant per-
formance degradation [72]. However, previous studies have

been conducted on the miniature model of the tiny classi-
fication tasks, making it uncertain if these techniques can
be applied to large language models. Currently. the cost and
effort involved in LLMs training make it unlikely that devel-
opers will release their most powerful LLMs. Nonetheless,
detecting LLM-generated texts from open-sourced LLMs re-
mains a critical issue that needs to be addressed in the future.

6 Conclusion
The detection of LLM-generated texts is a rapidly growing
and evolving field with a plethora of newly developed tech-
niques. This survey provides a precise categorization and
in-depth examination of existing approaches to help the re-
search community comprehend the strengths and limitations
of each method. Despite the rapid advancements in LLM-
generated text detection, significant challenges still need to
be addressed. Further progress in this field will require de-
veloping innovative solutions to overcome these challenges.
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