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Abstract

Humans have a remarkable ability to rapidly generalize to new tasks that is difficult1

to reproduce in artificial learning systems. Compositionality has been proposed as2

a key mechanism supporting generalization in humans, but evidence of its neural3

implementation and impact on behavior is still scarce. Here we study the computa-4

tional properties associated with compositional generalization in both humans and5

artificial neural networks (ANNs) on a highly compositional task. First, we identi-6

fied behavioral signatures of compositional generalization in humans, along with7

their neural correlates using whole-cortex functional magnetic resonance imaging8

(fMRI) data. Next, we designed pretraining paradigms aided by a procedure we9

term primitives pretraining to endow compositional task elements into ANNs. We10

found that ANNs with this prior knowledge had greater correspondence with human11

behavior and neural compositional signatures. Importantly, primitives pretraining12

induced abstract internal representations, excellent zero-shot generalization, and13

sample-efficient learning. Moreover, it gave rise to a hierarchy of abstract represen-14

tations that matched human fMRI data, where sensory rule abstractions emerged15

in early sensory areas, and motor rule abstractions emerged in later motor areas.16

Our findings give empirical support to the role of compositional generalization in17

human behavior, implicate abstract representations as its neural implementation,18

and illustrate that these representations can be embedded into ANNs by designing19

simple and efficient pretraining procedures.20

1 Introduction21

Humans can efficiently transfer prior knowledge to novel contexts, an ability commonly referred22

to as transfer learning. One proposed mechanism underlying transfer learning is compositional23

generalization (or compositional transfer) – the ability to systematically recompose learned concepts24

into novel concepts (e.g., “red” and “apple” can be combined to form the concept of a “red apple”)25

[5, 8, 17]. Indeed, it has been suggested that an algorithmic implementation of compositional26

generalization is one of the key missing ingredients that ANN models need in order to achieve27

human-like learning and reasoning capabilities [27, 25]. Therefore, quantifying how compositional28

generalization is manifested in human behavior and investigating its underlying implementation in29

biological brains is a natural first step to harness and deploy it in machine learning models.30

Recent studies that investigated compositionality in machine learning have typically relied on ar-31

chitectures comprised of specialized modules. For instance, disentangled representation learning32
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separates the independent factors underlying the structure of the input data into disjoint components33

of the feature vector [14, 15, 32, 13]. Program synthesis methods achieve state-of-the-art performance34

on systematic generalization [17] through model architectures built by combining specialized neural35

and symbolic program modules interacting to search over a space of valid production rules [26, 34].36

Complementing these studies, abstract representations have been recently proposed as vector repre-37

sentations that reconcile compositional generalization with distributed neural codes [2]. In particular,38

parallel abstract representations – representations with a high Parallelism Score as previously de-39

fined [2] – support out-of-context generalization by encoding changes in individual variables as a40

linear shift in the representations. This notion of abstraction implies that these representations are41

compositionally additive; novel compositions are encoded as the vector sum of distinct abstract42

representations. This is similar to how word2vec embeddings solve relational analogy tasks [31, 28]43

and generalizes disentangled representations by allowing for arbitrary affine transformations of44

disentangled codes. Crucially, this type of representation is operationally defined in a way that can45

be quantified in neuroimaging data by computing the Parallelism Score metric defined in [2]. In46

other words, parallel abstract representations are a computationally promising candidate as neural47

substrate implementing compositional generalization, and are also measurable in the human brain by48

computing the Parallelism Score across fMRI voxels during neuroimaging experiments.49

This work is motivated by the working hypothesis that parallel abstract representations support50

compositional generalization. Accordingly, we first characterized the behavioral signatures of51

compositional generalization in a task that systematically varied rule conditions across 64 contexts,52

showing that humans generalize better to tasks with greater similarity structure to previous tasks.53

We then analyze fMRI imaging data showing that parallel abstract representations are distributed54

across the entire cortex in a content-specific way during the execution of our compositional task. This55

supports our working hypothesis that parallel abstract representations may implement compositional56

generalization. We then design a pretraining paradigm for ANNs to emulate humans’ prior knowledge57

about the compositional task elements, finding that ANNs pretrained in this way exhibit 1) more58

abstract representations, 2) excellent generalization performance, and 3) sample-efficient learning.59

Finally, we find that the layerwise organization of abstract representations in pretrained ANNs60

recapitulates the content-specific distribution in human cortex. Together, these findings provide61

empirical evidence for the role of abstract representations in supporting compositional generalization.62

1.1 Related work63

Several recent studies in neuroscience have applied analytic tools to identify the neural basis of64

rapid generalization in biological neural networks. Such studies employed various measures –65

cross-condition generalization [2, 36, 7, 4], state-space projections of task-related compositional66

codes [44, 38, 22], and Parallelism Score [2] – to quantify the generalizability and abstraction of67

representations. Prior work in neuroscience has primarily evaluated compositionality in limited68

context settings (e.g., up to 10 contexts), or without manipulating different types of features (e.g.,69

higher-order vs. sensory/motor features). Moreover, these neuroscience studies used simple task70

paradigms due to limitations in either the model organism (rodents and monkeys are unable to perform71

complex tasks [2]) or to isolate specific types of abstraction in humans (e.g., logical abstractions72

[36]). Here we significantly expand on prior work by using a 64-context compositional task that73

systematically varies different types of task features (e.g., sensory, motor, and logical rules) to74

evaluate content-specific abstractions across the entire brain and multilayer ANNs. This work also75

complements related work in compositional generalization in machine learning [25, 17, 26, 40, 43, 16].76

However, those studies primarily focused on building models that improve on current compositional77

generalization benchmarks on arbitrarily complex compositional tasks, such as SCAN [25], COG [43],78

or GQA [16]. Importantly, these studies did not directly benchmark ANN behavior (or representations)79

against human behavioral and neural data, making a direct comparison difficult. Here we leveraged80

a non-trivial 64-context compositional paradigm to investigate the representational principles that81

facilitate compositional generalization in both humans and ANNs.82
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2 Methods83

2.1 C-PRO task paradigm84

We used the Concrete Permuted Rule Operations (C-PRO) paradigm (Fig. 1a) during fMRI acquisition85

and ANN model training. Briefly, the C-PRO paradigm permutes specific task rules from three86

different rule domains (logical decision, sensory semantic, and motor response) to generate dozens87

of novel task contexts. This creates a context-rich dataset in the task configuration domain. The88

sensory rule indicates which stimulus feature the subject should attend to. The logic rule specifies a89

Boolean operation to be implemented on the stimulus feature set. The motor rule specifies a specific90

motor action (i.e., a button press with a specific finger). Visual stimuli include either horizontally or91

vertically oriented bars with either blue or red coloring. Simultaneously presented auditory stimuli92

include continuous (constant) or non-continuous (i.e., high or low pitched beeping) tones.93

Figure 1: a) The C-PRO paradigm permutes 12 rules belonging to three different rule domains –
logical, sensory, and motor gating – to generate up to 64 unique contexts. b) Human performance on
novel task contexts was significantly lower than the practiced contexts (participants were trained on
four practice contexts prior to the test session). Moreover, subjects performed novel task contexts with
more rule overlap with practiced contexts at a higher accuracy. c-e) Task performance as a function
of task trials for each rule (novel contexts only). Consistent with compositional generalization,
participants had a significant increase in task performance in 10/12 rules, even though each rule was
used in a novel context. Shaded area around line plots (c-e) reflects the 95% confidence interval.

Each rule domain (logic, sensory, and motor) consists of four specific rules (Fig. 1a). A task context94

is comprised of one rule from each domain, for a total of 64 possible task contexts (4 logic x 4 sensory95

x 4 motor). Subjects were trained on 4/64 “practiced” task contexts prior to the fMRI session. The96

four practiced rule sets were selected such that all 12 rules were equally practiced. Subjects’ mean97

performance across all trials was 84% (median=86%; chance=25%). See Appendix for details.98

2.2 The geometry of abstract neural representations99

Behavioral signatures of compositional generalization can be investigated by measuring behavioral100

performance as a function of task composition and prior learning. Neural signatures of generalization101

can be identified using analysis methods that characterize the geometry of neural activations during102

task generalization. In particular, prior work proposed the Parallelism Score (PS) [2] as a measure103

to evaluate the consistency of task variable representation across different contexts. Intuitively, PS104

identifies a consistent coding axis across task contexts that benefits generalization.105
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We posit that representations with high PS (the specific type of abstract representation we investigate)106

support compositional generalization in human behavior. We illustrate here how PS is reflected in107

the geometry of neural representations with respect to the rule domains of the C-PRO task. Let108

us consider a set of C-PRO contexts with logic rules BOTH or EITHER, and sensory rules with109

values RED or VERTICAL (Fig. 2). High PS in the logic rule domain indicates that the difference110

in activation vectors between contexts with BOTH and EITHER rules is the same when paired111

with either the RED or VERTICAL sensory rules. Thus, a change from BOTH to EITHER results112

in the same parallel change irrespective of the sensory rule (Fig. 2c). In contrast to unstructured113

high-dimensional representations (Fig. 2a), this would afford high generalization, since the effect of114

changing the logic rule in either sensory rules automatically transfers to the other sensory rule.115

Figure 2: Hypothetical geometric configurations of neural activation space for “BOTH vs. EITHER”
and “RED vs. VERTICAL” rule contrasts. a) High-dimensional representations of task activations
lead to low PS (in addition to low generalizability across conditions) of rules. b) Low-dimensional
representations lead to overall low decodability, but some generalizability (across limited features).
c) Parallel Abstract Representation of the neural activations leads to high generalizability.

2.3 Parallelism score116

We generalize the definition of PS by [2] to tasks where variables can assume an arbitrary number117

of values (as opposed to being binary) and applied it to human fMRI and internal ANN activations.118

PS is defined as the cosine angle of the coding directions of the same rules in different contexts in119

the neural activation space (Fig. 3a-c). A cosine angle close to 1 indicates coding directions that120

are highly parallel, despite differences in context. Specifically, we compute the coding angle for121

a specific rule dichotomy (e.g., the coding direction “BOTH” vs. “EITHER”) by identifying all122

pairs of task contexts that had exactly the same secondary (sensory) and tertiary (motor) rules. For123

each pair, we subtracted the activation vectors associated with each context to obtain the vector that124

represented that coding direction (see Fig. 3a). We did this for all other pairs in that coding direction.125

Defining vi as this coding vector for the ith pair, we computed the PS score for one dichotomy as126

PSk = 1
16

P16
i 6=j cos(vi, vj)), since there are 16 possible pairs for each coding direction within the127

C-PRO task. To obtain the PS for a specific rule domain (e.g., logic, sensory, or motor rules), PSk is128

computed for every coding direction, then averaged (e.g., for logic PS, the average of “BOTH” versus129

“EITHER”, “BOTH” versus “NEITHER”, etc.).130

Statistical testing was performed using a non-parametric procedure, where we shuffled labels within131

each rule domain 1000 times and re-calculated PS to produce a null distribution. We corrected for132

multiple comparisons (across brain regions) using non-parametric family-wise error correction [33].133

2.4 ANN construction and training134

The primary ANN architecture had two hidden layers (128 units each) and an output layer that was135

comprised of four units that corresponded to each motor response. Training used a cross-entropy loss136

function and the Adam optimizer [24]. (See Appendix for details.)137
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Figure 3: a-c) 2-D schematic visualization of PS estimation for the a) sensory, b) logic, and c) motor
rule domains for a specific rule pair (e.g., RED vs. VERTICAL). Intuitively, PS captures the geometry
of the neural activation space by measuring the cosine angle between two linear decoders trained to
distinguish two rule conditions in different task contexts. d-f) PS was calculated for each rule domain
for every brain region [10]. PS was highest in association areas for logic rules, dorsal attention
network regions for sensory rules, and somatomotor network for motor rules.

Training on the C-PRO task was performed in a sequential learning paradigm. To mimic the human138

experiment, an arbitrary set of four practiced contexts was initially selected for training. (This was139

randomly selected across different ANN initializations.) Then, novel task contexts were incrementally140

added into the set of training contexts.141

3 Results142

3.1 Behavioral signatures of rapid compositional generalization in humans143

We evaluated human behavioral compositional generalization by assessing performance on novel144

contexts in the C-PRO paradigm. Since adult humans have decades of prior knowledge, subjects145

were able to compositionally generalize to novel task contexts without any training (novel accu-146

racy=84.17%, chance=25%, Wilcoxon signed-rank p<0.0001). However, subjects performed the four147

practiced contexts better than novel contexts (practiced=87.67%, novel=84.17%; p=0.003). We next148

assessed how performance on novel contexts changed as a function of shared rule structure to the149

practiced contexts. Consistent with compositional transfer of previously learned rules, performance150

on novel task contexts improved as a function of similarity to the practiced contexts (accuracy, 2-rule151

overlap=84.86%; 1-rule overlap=83.48%; practiced vs. 2-rule overlap, p=0.008; 2-rule vs. 1-rule152

overlap, p=0.03; Fig. 1b). Though our findings are consistent with compositional transfer, we found153

that rapid transfer to novel contexts is more difficult. However, we found that increased exposure to154

specific rules improved performance on subsequent novel contexts using that same rule (all except for155

the “Both” and “Either” rules, likely due to ceiling effects, FDR-corrected p<0.05; Fig. 1c-e). This156

suggests that even though performance in novel contexts is worse than practiced contexts, subjects157

can improve rule transfer with increased practice (or pretraining).158
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3.2 Spatial and content-specific topography of abstract representations in human cortex159

We extended prior work to identify abstract representations using PS across the entire human cortex160

[2, 4, 36]. We calculated PS for each rule domain separately (Fig. 3a-c) using the vertices/voxels161

within each parcel (i.e., brain region) as activation vectors. We found topographic differences of162

sensory, logic, and motor rule abstractions tiled across human cortex (Fig. 3d-f). Specifically, we163

found that statistically significant sensory rule abstractions were primarily identified in higher order164

visual areas and the dorsal attention network (i.e., brain areas involved in the top-down selection165

of visual stimuli) (PS of significant regions=0.15; family-wise error (FWE)-corrected p<0.05; Fig.166

3d). Logic rule abstractions were more widely distributed, but primarily observed in frontoparietal167

areas (PS of significant regions=0.22; FWE-corrected p<0.05; Fig. 3e). Motor rule abstractions were168

primarily localized to somatomotor cortex (PS of significant regions=0.29; FWE-corrected p<0.05;169

Fig. 3f). Notably, regions with abstract representations form a subset of regions of those that contain170

rule information using standard decoding methods (Fig. 7).171

3.3 Embedding prior knowledge into ANNs with simple pretraining tasks172

Human behavioral data suggested improved compositional generalization with increased task rule173

exposure, in addition to the years of “pretraining” from ordinary development (i.e., at least 18+174

years). Thus, we sought to evaluate whether embedding prior knowledge of rules could improve175

compositional generalization in ANNs, while simultaneously investigating how prior knowledge176

impacts the geometry of ANNs’ internal task representations. Given that the C-PRO task was177

specifically designed as a compositional task that conjoined three task rules, we created pretraining178

paradigms designed to teach ANNs basic rule knowledge (Fig. 4; see Appendix for full description).179

Figure 4: a) The logic rule primitives task involved teaching boolean relations among different logical
operations. For example, when presented with the “BOTH” rule, the task was to distinguish two
identical (“True”) versus two different (“False”) stimuli (i.e., same vs. different). b) Sensory rules
involved mapping sensory rules onto stimulus features. c) Motor rules involved mapping motor rules
onto motor output units. d-e) Simple task pretraining (2-rule tasks) was designed to teach the model
how to perform simple (d) sensorimotor mappings and (e) logical-sensory gatings.

We constructed a simple feedforward ANN with two hidden layers (Fig. 8). This made it easier to180

investigate the effects of pretraining on internal representations, rather than architectural choices.181

We designed two pretraining paradigms: Primitives (1-rule) and Simple task (2-rule) pretraining.182

Primitives pretraining trained on 1-rule tasks that focused explicitly on learning the semantics of183

primitive rule features (Fig. 4a-c). This included distinguishing sensory stimuli, learning motor184

response mappings (e.g., “left index” rule would lead to a left index response), and abstract logical185

relations, which involved learning the boolean relations amongst logic rules. Simple task pretraining186

focused on learning 2-rule conjunctions (i.e., a sensory and motor rule pairing / logical and sensory187

rule pairing) (Fig. 4d-e). Importantly, these pretraining paradigms focused on learning primitive 1- or188

2-rule associations that were significantly simpler than the full C-PRO task (3-rule combination).189
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3.4 Pretraining induces abstractions, zero-shot performance, and sample efficiency190

We measured the PS in ANNs trained with different pretraining routines: Vanilla (no pretraining),191

Primitives pretrained, Simple task pretrained, and Combined (Primitives + Simple task pretrained).192

PS was calculated for each rule domain separately, and then averaged across hidden layers. Pretrained193

ANNs had significantly higher PS than the Vanilla ANN (Primitives vs. Vanilla, t(37)=5.26, p=1e-05;194

Simple task vs. Vanilla, t(37)=8.46, p=1e-11; Combined vs. Vanilla, t(37)=3.03, p=0.003) (Fig. 5a).195

Moreover, PS increased from Primitives to Simple task pretraining (t(37)=3.91, p=0.0002), though196

no significant increase in PS was observed in Combined vs. Simple task pretraining.197

Figure 5: a) PS of hidden units averaged across all rule domains. b) Zero-shot learning of all
64 C-PRO contexts. c) Sample efficiency of models (Combined and trained vanilla model were
performance-matched). Total samples, including pretraining samples (if applicable).

We next evaluated the zero-shot performance on the full C-PRO task after pretraining (Fig. 5b). As198

expected, the Vanilla ANN performed near chance (acc=23.25%, chance=25%, one-sided t(38)=-2.17,199

p=0.98). Primitives pretraining marginally improved zero-shot performance (acc=31.51%, t(38)=8.09,200

p<1e-9). Simple task pretraining exhibited significant improvement over Primitives pretrained models201

(acc=70.57%, Simple task vs. Primitives, t(37)=19.84, p<1e-31). Finally, we found that Combined202

pretraining had excellent zero-shot performance on the entire C-PRO task (acc=92.15%, Combined203

vs. Simple task pretraining, t(37)=10.85, p<1e-16). Notably, we found that PS and zero-shot204

performance monotonically increased with pretraining, illustrating that classic multilayer networks205

can transfer abstract representations for systematic zero-shot generalization [17].206

Finally, we sought to assess the impact of pretraining on learning/sample efficiency. We therefore207

trained a Vanilla network (no pretraining) on 60/64 C-PRO contexts to match the zero-shot perfor-208

mance of the Combined pretraining model (i.e., at least 90% accuracy on the 60 context training209

set). We found that on the remaining test set (4/64 C-PRO contexts), the Vanilla trained model210

achieved 96.02% generalization performance, but required up to 4.23x training samples to match the211

performance of the Combined model (Fig. 5c). Critically, the 4.23x more training samples included212

all possible samples (pretraining and C-PRO samples). This illustrated that pretraining afforded both213

zero-shot generalization and sample efficient learning.214

3.5 Pretraining leads to compositional generalization in ANNs comparable to humans215

We evaluated the learning and generalization dynamics of ANNs with and without pretraining, after216

training ANNs on 4 of the full C-PRO contexts (matching the human experiment). (Training was217

stopped after achieving 90% performance on the 4 practiced contexts.) We found overall poor gener-218

alization on novel task contexts in the Vanilla model (accuracy, practiced=94.37%, novel=28.79%;219

p<0.0001; Fig. 9a). This suggested that unlike humans (see Fig. 1b), ANNs with no prior knowledge220

cannot compositionally generalize. We subsequently compared generalization performance on ANNs221

after pretraining. We found that with Primitives pretraining, generalization performance significantly222

improved (57.97%; Fig. 9b). We observed additional improvements with Simplified task pretraining223

(86.79%; Fig. 9c), achieving generalization performance on par with human performance (Fig. 9d).224

We next incrementally trained all ANN models on novel contexts, by adding one novel context into225

the training set at a time. We tested generalization performance on the held-out (test set) contexts until226
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ANNs were trained on 63/64 contexts (Fig. 10a). We found that generalization performance on novel227

contexts was significantly higher in ANNs with either pretraining routine (Fig. 10b). This was despite228

the fact that all ANNs had the same stopping criteria (i.e., 90% accuracy on the C-PRO training229

set). We ran an additional experiment where each of the ANNs were shown an identical number of230

C-PRO task samples during training (i.e., fixed number of samples), replicating our core finding (Fig.231

11). These findings suggest that the inductive biases formed during pretraining significantly improve232

downstream generalization performance.233

3.6 Pretraining ANNs facilitates sample-efficient learning throughout novel task learning234

We sought to evaluate how pretraining impacted sample efficiency. We found that pretrained ANNs235

quickly became more sample efficient as the training set expanded, even when accounting for total236

number of (pretraining and C-PRO) samples (Fig. 10b). We quantified the generalization performance237

to sample efficiency ratio as the generalization inefficiency, finding that after learning only 7 C-PRO238

contexts, vanilla ANNs generalized worse than pretrained ANNs (Fig. 10c). These findings support239

the notion that initial pretraining routines can simultaneously improve compositional generalization240

and sample efficiency.241

3.7 Convergent hierarchy of abstract representations in humans and ANNs242

Analysis of human fMRI data revealed that content-specific abstraction was spatially heterogeneous243

across cortex. Recent neuroscience work has identified hierarchical gradients that organize along244

a sensory input-to-motor output axis in both resting-state [29] and multi-task fMRI data [18]. We245

therefore sought to quantify PS across the sensory-to-motor hierarchy in fMRI data, and compare it to246

PS changes in the feedforward hierarchy (i.e., layer-depth) in ANNs. We focused our analyses on the247

Combined pretrained model (which incorporates both Primitives and Simple task pretraining) due to248

its excellent zero-shot generalization (Fig. 5b). In addition, we extended our model to include three249

hidden layers to make it easier to compare PS of different hidden-layer depths to the three cortical250

systems of interest: sensory, association, and motor systems (Fig. 6a).251

Figure 6: a) A discretized sensory-to-motor hierarchy (see Fig. 13 for discretization details). b) We
computed the normalized PS (i.e., the PS of each brain region normalized by the maximum PS across
all regions) for each rule domain across the discretized cortical systems. c) Same analysis as in b),
but using the PS found in each ANN hidden layer.

We measured the PS for each rule domain for sensory, association, and motor systems. Sensory252

rule PS was highest in the sensory system, logic rule PS was highest in association systems, and253

motor rule PS was highest in the motor system (Fig. 6b). To observe whether similar hierarchical PS254

organization emerged in ANNs, we used the Combined pretrained model with three hidden layers,255

and plotted PS as a function of ANN depth. Since our ANN transformed sensory inputs into motor256

outputs, we analogized each ANN layer to the sensory, association, and motor cortical systems257

(Fig. 6a). We found a similar pattern in the ANN: sensory PS peaked in the first hidden layer;258

logic PS peaked in the second hidden layer; and motor PS peaked in the last two hidden layers (Fig.259
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6d). We corroborated these findings using a continuous sensory-motor hierarchical gradient map260

(without discretization) (Fig. 12-13). These findings suggest that abstraction emerges as a function of261

rule-dependent specialization and hierarchical organization.262

4 Discussion, Limitations, Conclusions263

We provide empirical support for the role of compositionality in human generalization, and implicate264

abstract representations as its neural implementation. In classic ANNs, which are known to perform265

poorly during systematic generalization [17, 6], we found that computationally cheap pretraining266

paradigms embedded abstract representations that led to human-like generalization performance and267

sample efficient learning. When mapping abstract representations across cortex and ANN layers, we268

found converging patterns of rule-specific abstractions from early sensory areas/layers to late motor269

areas/layers across human and ANN hierarchies. These results reveal the hierarchical organization270

of content-specific abstractions in the human brain and ANNs, while revealing the impact of these271

abstractions for compositional generalization in models.272

Our pretraining approach directly leverages knowledge of task structure to design pretraining routines273

that embed task biases into ANNs. Despite the sample efficiency of this approach, this pretraining274

approach requires the initial overhead of designing paradigms useful for downstream learning.275

A related approach that similarly requires prior knowledge of task structure is “representational276

backpropagation” – a regularization approach that aims to produce an idealized hidden representation277

[23]. However, there are other inductive bias approaches that do not require prior task knowledge. One278

approach constrains ANNs to produce abstract task representations by initializing ANN weights from279

a low-norm distribution [7]. However, initializing ANN weights in this regime is computationally280

costly. Another approach is to initialize networks with built-in modular structures to facilitate the281

re-use of network modules across tasks [30, 39]. However, exactly how such networks disentangle282

representations has not yet been explored. Nevertheless, all these approaches are complementary to283

each other. It will be important for future work to assess how these approaches may synergistically284

interact to optimize for sample-efficient generalization in multi-task settings.285

Though we provide comprehensive evidence of the role of abstraction in compositional generalization,286

there are several limitations in the present study that future research can explore. We found that the287

spatial topography of abstract representations was highly content-dependent. However, analyses288

were limited to cross-context manipulations of limited rule types (sensory, logic, and motor gating),289

without addressing the organization of other task components (e.g., reward or stimuli). Thus, future290

studies can explore how brains and ANNs represent the abstraction of other task components. Second,291

though we were able to explore cross-context generalization across 64 contexts – significantly more292

than previous empirical studies in neuroscience – cross-context analysis was limited to a single293

task type (i.e., the C-PRO paradigm). It will be critical to see the organization of abstraction in294

multi-task settings that go beyond 64 contexts. Finally, our ANN modeling approach revealed the295

computational benefits of pretraining. It will be important for future work to benchmark sample296

efficiency and generalization performance against other training paradigms (e.g., in continual learning297

and/or meta-learning settings; [12, 42]).298

In conclusion, we characterized a convergent hierarchical organization of abstract representations299

across the human cortex and in ANNs using a 64-context paradigm, and provided insight into the300

impact of abstract representations on generalization performance. Overall, we found that simple301

pretraining tasks efficiently embed abstract representations into ANNs, leading to improved systematic302

generalization similar to human behavior. These findings provide a human-centric benchmark from303

which to understand and evaluate compositional generalization in ANNs, paving the way for greater304

interpretability of compositionality in ANNs. Importantly, investigating compositional generalization305

through a human-centric framework (e.g., by benchmarking ANNs against human behavior in the306

same task) creates a concrete target for interpreting the strengths and limitations of compositionality307

in ANNs. We hope these findings inspire further investigations into the comparison and analysis of308

compositionality in humans and ANNs.309
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