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Abstract

Structured non-convex learning problems, for which critical points have favorable1

statistical properties, arise frequently in statistical machine learning. Algorithmic2

convergence and statistical estimation rates are well-understood for such problems.3

However, quantifying the uncertainty associated with the underlying training al-4

gorithm is not well-studied in the non-convex setting. In order to address this5

short-coming, in this work, we establish an asymptotic normality result for the6

constant step size stochastic gradient descent (SGD) algorithm—a widely used7

algorithm in practice. Specifically, based on the relationship between SGD and8

Markov Chains [1], we show that the average of SGD iterates is asymptotically nor-9

mally distributed around the expected value of their unique invariant distribution,10

as long as the non-convex and non-smooth objective function satisfies a dissipa-11

tivity property. We also characterize the bias between this expected value and the12

critical points of the objective function under various local regularity conditions.13

Together, the above two results could be leveraged to construct confidence intervals14

for non-convex problems that are trained using the SGD algorithm.15

1 Introduction16

Non-convex learning problems are prevalent in modern statistical machine learning applications such17

as matrix and tensor completion [2, 3, 4, 5, 6], deep neural networks [7, 8, 9], and robust empirical18

risk minimization [10, 11, 12]. Developing theoretically principled approaches for tackling such19

non-convex problems depends critically on the interplay between two aspects. From a computational20

perspective, variants of stochastic gradient descent (SGD) converge to first-order critical points [13,21

14] or local minimizers [15, 2, 16, 17] of the objective function. From a statistical perspective,22

oftentimes these critical points or local minimizers have nice statistical properties [18, 3, 10, 19, 20, 5];23

see also [21] for a counterexample. For the purpose of uncertainty quantification in such non-24

convex settings, studying the fluctuations of iterative algorithms used for training becomes extremely25

important. In this work, we focus on the widely used constant step size SGD, and develop results for26

quantifying the uncertainty associated with this algorithm for a class of non-convex problems.27

We consider minimizing a non-smooth and non-convex objective function f : Rd→ R,28

min
θ∈Rd

f(θ) . (1)

The iterations of SGD with a constant step size η > 0, initialized at θ(η)
0 ≡ θ0 ∈ Rd, are given by29

θ
(η)
k+1 = θ

(η)
k − η

(
∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )
)
, k ≥ 0 , (2)

where {ξk}k≥1 is a sequence of random functions from Rd to Rd corresponding to the stochasticity30

in the gradient estimate. Several problems in machine learning and statistics are naturally formulated31
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as the optimization problem in (1), where the function f(θ) is given by32

f(θ) :=
∫
F (θ, Z) dP (Z) , (3)

for an unknown distribution over the random variable Z ∈ Rp. The function F (θ, Z) is typically33

the loss function composed with functions from the hypothesis class parametrized by θ ∈ Rd. In34

online SGD with batch size b, at each iteration k, b independent samples Zj ∼ P (Z) are used to35

estimate the true gradient with 1
b

∑b
j=1∇F (θ

(η)
k , Zj). The above iterates are indeed a special case36

of the iterates in (2), with the noise sequence {ξk+1(θ
(η)
k )}k≥0 given by37

ξk+1(θ
(η)
k ) := 1

b

∑b
j=1

[
∇F (θ

(η)
k , Zj)−∇f(θ

(η)
k )
]
. (4)

Although proposed in the 1950s by [22], SGD has been the algorithm of choice for training statistical38

models due to its simplicity, and superior performance in large-scale settings [23, 1, 24, 25]. However,39

the fluctuations of this algorithm is well-understood only when the objective function f is strongly40

convex and smooth, and the step size η satisfies a specific decreasing schedule so that the iterates41

asymptotically converge to the unique minimizer [26, 27, 28]. On the other hand, it is well-known that42

the SGD iterates in (2) can be viewed as a Markov chain which allows them to converge to a random43

vector rather than a single critical point [1]. Building on this analogy between SGD and Markov44

chains, the aforementioned shortcomings can be alleviated by simply relaxing the global smoothness45

as well as the strong convexity assumptions to the tails of the objective function f , which allows for a46

flexible non-convex structure around the region of interest. Similar kinds of tail relaxations have been47

successfully employed in the diffusion theory when the target potential is non-convex [29, 30, 31],48

but they are not studied in the context of non-convex optimization when the algorithm is SGD. In this49

work, we study the fluctuations and the bias of the averaged SGD iterates in (2), around the first-order50

critical points of the minimization problem (1). Our contributions can be summarized as follows.51

• For a non-convex and non-smooth objective function f with tails growing at least quadratically,52

we establish the uniqueness of the stationary distribution of the constant step size SGD iterates53

in Proposition 2.1, and the asymptotic normality of Polyak-Ruppert averaging in Theorem 2.1.54

To the best of our knowledge, these are the first uniqueness and normality results for the SGD55

algorithm when the objective function is non-convex (even not strongly convex) and non-smooth.56

• We further show in Theorems 3.1 and 3.2 that, with additional local smoothness assumptions on57

the non-convex objective function f , we can establish a control over the bias in terms of the step58

size. We further characterize the bias when the objective is (not strongly) convex in Theorem 3.3,59

providing a thorough bias analysis for the constant step size SGD under various settings that are60

frequently encountered in statistical learning.61

Our results provide algorithm-dependent guarantees for uncertainty quantification, and they could be62

leveraged to obtain confidence intervals (CIs) for non-convex and non-smooth learning problems.63

This is contrary to the majority of the existing results in statistics, which only establish normality64

results for the true stationary point of the non-convex objective function; see for example [10, 32].65

While being useful, such results completely ignore the computational hardships associated with66

non-convex optimization; hence, their practical implications are limited. On the other hand, in the67

optimization and learning theory literature, a majority of the existing results establish the rate of68

convergence of an algorithm to a critical point, and do not quantify the fluctuations associated with69

that algorithm. Our work bridges these separate lines of thought by providing asymptotic normality70

results directly for the SGD algorithm used for minimizing non-convex and non-smooth functions.71

More Related Works. Establishing asymptotic normality results for the SGD algorithm began with72

the works of [33, 34, 35, 36, 37], with [26] providing a definitive result for strongly convex objectives.73

In particular, [26] and [36] established that the averaged SGD iterates with an appropriately chosen74

decreasing step size is asymptotically normal with the variance achieving the Cramer-Rao lower bound75

for parameter estimation. Recent works, for example [38, 39, 27, 40, 41], leverage the asymptotic76

normality analysis of [26], and compute CIs for SGD. The benefits of constant step size SGD for faster77

convergence under overparametrization has also be demonstrated in the works of [42, 43, 44, 45]. The78

use of Markov chain theory to study constant step size stochastic approximation algorithms has been79

considered in several works [46, 47, 48, 23, 49, 50]. Recently, [1, 51] investigated the asymptotic80

variance of the constant step size SGD. We emphasize here that most of the above works assume81

strongly convex and smooth objective functions.82
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The non-linear autoregressive (NLAR) process [52, 53, 54] is a specification of our general frame-83

work (2) with the noise sequence {ξk}k≥1 being a collection of i.i.d mean-zero random vectors84

with continuous density supported on Rd. However, the methodology for establishing the geometric85

ergodicity of NLAR [52, 53, 54, 55] is by no means straightforward to carry over to the optimization86

setting, and does not generalize immediately to the state-dependent noise setup considered in our87

paper (see Assumption 2.3). In contrast, we establish the geometric ergodicity under easily verifiable88

assumptions on the objective function using tools from Markov chain theory. Moreover, additional89

steps are needed to go from geometric ergodicity to CLT results (especially if the chain starts with90

an arbitrary initial distribution), while we directly obtain a CLT by leveraging the Markov chain91

structure. Finally, there exists a vast literature on analyzing Langevin diffusion-based sampling92

algorithms which relies on the much simpler i.i.d. Gaussian noise sequence. We refer the interested93

reader to [56, 57, 30, 58, 59, 60, 61, 62, 63, 64, 65, 66] and the references therein, for details.94

Notation. For a, b ∈ R, denote by a ∨ b and a ∧ b the maximum and the minimum of a and b,95

respectively. We use ‖ · ‖ to denote the Euclidean norm in Rd. We denote the largest eigenvalue of96

the matrix A as λmax(A), and the smallest one as λmin(A). Let (Ω,F ,P) represent a probability97

space, and denote by B(Rd), the Borel σ-field of Rd. Let Pk(Rd) := {ν :
∫
Rd ‖θ‖

kν(dθ) < ∞}98

denote the set of probability measures with finite k-th moments. For a probability distribution π and99

a function g on X , we define π(g) :=
∫
X g(x)dπ(x), and L2(π) := {g : X → R : π(g2) <∞}.100

2 Central Limit Theorem for The Constant Step Size SGD101

In this section, we establish an asymptotic central limit theorem (CLT) for the Polyak-Ruppert102

averaging of the constant step size SGD iterates given in (2) when the objective function is potentially103

non-convex, non-smooth, and has quadratically growing tails. More specifically, we first prove that104

there exists a unique stationary distribution πη ∈ P2(Rd) for the Markov chain defined by the SGD105

algorithm when the objective function is dissipative (see Assumption 2.2) with gradient exhibiting at106

most linear growth (see Assumption 2.1). Furthermore, under the same conditions, we prove that107

a CLT holds for the Polyak-Ruppert averaging, and it is independent of the initialization. In what108

follows, we list and discuss the main assumptions required to establish a CLT for the SGD iterates,109

and compare them to those existing in the literature.110

Assumption 2.1 (Linear growth). The gradient of the objective function f has at most linear growth.111

That is, for some L ≥ 0, we have ‖∇f(θ)‖ ≤ L
(
1 + ‖θ‖

)
for all θ ∈ Rd .112

Majority of the results on SGD focus on smooth functions with gradients satisfying ‖∇f(θ) −113

∇f(θ′)‖ ≤ ‖θ − θ′‖ for all θ, θ′ ∈ Rd; see e.g. [26, 1]. The above condition allows for non-smooth114

objectives, and is a significant relaxation of the standard Lipschitz gradient condition.115

Assumption 2.2 (Dissipativity). The objective function f is (α, β)-dissipative. That is, there exists116

positive constants α, β such that 〈θ, ∇f(θ)〉 ≥ α ‖θ‖2 − β for all θ ∈ Rd .117

The dissipativity assumption has its origins in the analysis of dynamical systems, and is used widely118

in the analysis of optimization and learning algorithms [67, 29, 31, 68]. It could be viewed as a119

relaxation of strong convexity since it restricts the quadratic growth assumption to the tails of the120

function f , enforcing no local growth around the first-order critical points. A canonical example121

for this condition is the sum of a quadratic and any non-convex function with bounded gradient.122

For example, consider the function x → x2 + 10 sin(x) which is clearly non-convex and (1, 25)-123

dissipative. It is worth mentioning that many non-convex problems that arise in statistical learning124

such as phase retrieval [50] satisfy Assumption 2.2. We provide examples in Section 4.125

Assumption 2.3 (Noise sequence). Gradient noise sequence {ξk}k≥1 is a collection of i.i.d. random126

fields satisfying E[ξ1(θ)] = 0 and E1/2[‖ξ1(θ)‖2] ≤ Lξ(1 + ‖θ‖) , for any θ ∈ Rd and a positive127

constant Lξ. Moreover, for each θ ∈ Rd the distribution of the random variable ξ1(θ) can be128

decomposed as µ1,θ +µ2,θ where µ1,θ has a density, say pθ, with respect to Lebesgue measure which129

satisfies infθ∈C pθ(t) > 0 for any bounded set C and any t ∈ Rd.130

Assumption 2.3 as formulated above is stronger than what is needed in the proofs. It can easily be seen131

that the lower bound on the density pθ is only required to hold for a specific set whose form depends132

on η and various constants from Assumptions 2.1–2.3. The form of this set is complicated, and an133

exact expression is given in the Appendix – see (12). We also emphasize that Assumption 2.3 does134
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not specify any explicit parametric form for the distribution of the noise sequence contrary to recent135

works in non-convex settings where dissipitavity condition has been heavily utilized [29, 68, 31].136

We now establish the existence and uniqueness of the stationary distribution of the SGD iterates.137

Proposition 2.1 (Ergodicity of SGD). Let the Assumptions 2.1-2.3 hold, and the step size satisfy138

0 < η <
α−
√

(α2−(3L2+Lξ))∨0

3L2+Lξ
.

(a) SGD (2) admits a unique stationary distribution πη ∈ P2(Rd), depending on the step size η.139

(b) For a test function φ : Rd → R satisfying |φ(θ)| ≤ Lφ(1 + ‖θ‖), ∀θ ∈ Rd and some Lφ > 0,140

and for any initialization θ(η)
0 = θ0 ∈ Rd of the SGD algorithm, there exists ρ ∈ (0, 1) and κ141

(both depending on η) such that we have142 ∣∣E[φ(θ(η)
k

)]
− πη(φ)

∣∣ ≤ κ ρk(1 + ‖θ0‖2) , where πη(φ) :=
∫
φ(x)dπη(x).

The uniqueness of the stationary distribution of the constant step size SGD has been established in [1]143

for strongly convex and smooth objectives. In Proposition 2.1, we relax both of these assumptions144

allowing for non-convex and non-smooth objectives. Our proof relies on V -uniform ergodicity [69],145

which is fundamentally different from the ergodicity analysis in [1]. Under the dissipativity condition146

(quadratic growth of f ), geometric ergodicity in Proposition 2.1 is not surprising; yet, it is worth147

highlighting that the function f as well as the noise sequence require significantly less structure148

than what was assumed in the literature. The above step size assumption is almost standard and it is149

required to obtain a uniform bound on the moments of SGD iterates. We highlight that similar to the150

gradient descent algorithm, the step size depends on a quantity that serves as a surrogate condition151

number in our setting, namely, L/α. Note that ρ depends on η and will typically be converging152

to one if η → 0. Thus convergence in Proposition 2.1(b) can be expected to be slower when η153

becomes smaller. However, smaller η leads to a better control of the asymptotic bias (under additional154

regularity assumptions), see Theorems 3.1-3.3. Both of those statements (slower convergence for155

smaller η but smaller bias eventually) are confirmed in our numerical experiments, see Figure 1(d,h).156

Next, we state our first principal contribution, a central limit theorem for the averaged SGD iterates157

starting from any initial distribution, for a non-convex objective. For a test function φ : Rd → R, we158

denote the centered partial sums of φ evaluated at the SGD iterates with Sn(φ), i.e.,159

Sn(φ) :=
∑n−1
k=0

[
φ
(
θ

(η)
k

)
− πη(φ)

]
, where πη(φ) :=

∫
φ(x)dπη(x) .

Theorem 2.1 (CLT). Let the Assumptions 2.1-2.3 hold. For a step size η and a test function φ160

satisfying the conditions in Proposition 2.1, we define σ2
πη (φ) := limn→∞

1
nEπη

[
S2
n(φ)

]
. Then,161

n−1/2Sn(φ)
d−→ N

(
0, σ2

πη (φ)
)
.

The above result characterizes the fluctuations of a test function φ averaged across SGD iterates, even162

when the objective function is both non-convex and non-smooth. The asymptotic variance in the163

above CLT can be equivalently stated in another compact form. If we define the centered test function164

as h(θ) = φ(θ)− πη(φ), the asymptotic variance can be written as165

σ2
πη (φ) = 2πη(hĥ)− πη(h2), where ĥ =

∑∞
k=0 E

[
h
(
θ

(η)
k

)]
.

Indeed, this is the variance we compute at the end of our proof in Section A. However, the expression166

in Theorem 2.1 is obtained by simply applying [55, Thm 21.2.6]. For the case of strongly convex167

functions with decreasing step size schedule, it is well-known from the works of [26, 36] that the168

limiting variance of the averaged SGD iterates achieves the Cramer-Rao lower bound for parameter169

estimation; see also [70, 28] for non-asymptotic rates in various metrics. The question of providing170

lower bounds for the limiting variance of the critical points in the non-convex setting is extremely171

subtle, and is often handled on a case-by-case basis. We refer the interested reader to [71, 72, 10].172

There are several important implications of the above CLT for constructing CIs in practice. First note173

that, following the standard construction in inference, one can write the distribution of the sample174

mean approximately as n−1Sn(φ) ≈ N
(
0, n−1σ2

πη (φ)
)
. Here, one needs to estimate the population175

quantity, the asymptotic variance σ2
πη (φ), for the purpose of obtaining CIs. In Section 5, we discuss176

three strategies for estimating this quantity, which could be eventually used for inference in practice.177

A theoretical analysis of the proposed approaches in Section 5 is beyond the scope of this work.178
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3 Bias of the Constant Step Size SGD179

Proposition 2.1(b) shows that the expectation of a test function evaluated at the k-th iterate converges180

exponentially fast to the expected value of the stationary distribution πη. Therefore, a complete181

characterization of the properties of the SGD requires a control over the asymptotic bias πη(φ)−φ(θ∗)182

for a critical point θ∗. It turns out that this bias behavior is intimately related to the local properties of183

the objective around its critical points. Therefore, under the mild assumptions that yield the CLT,184

one cannot expect a tight control over the bias. This section contains three types of bias analyses185

under different local growth conditions on the objective function f , characterizing the bias behavior186

in various non-convex and convex settings. We further note that without local regularity conditions, it187

is still possible to show that the SGD iterates (2) move towards a compact ball containing all critical188

points exponentially fast; a formal statement of this result along with a corresponding discussion is189

provided in Proposition B.1, which is deferred to Appendix B. Throughout this section, we make a190

slightly stronger assumption on the noise sequence.191

Assumption 3.1 (Fourth moment of the noise). Gradient noise sequence {ξk}k≥1 satisfies Assump-192

tion 2.3, and E
[
‖ξ1(θ)‖4

]
≤ Lξ(1 + ‖θ‖4) , for any θ ∈ Rd, where Lξ is as in Assumption 2.3.193

Localized Dissipativity Condition: We now introduce the generalized dissipativity condition which,194

in addition to the quadratic tail growth property enforced in Assumption 2.2, imposes a local growth195

within some compact region, around the unique critical point θ∗.196

Assumption 3.2 (Localized dissipativity). The objective function f satisfies197

〈∇f(θ), θ − θ∗〉 ≥
{
α‖θ − θ∗‖2 − β ‖θ − θ∗‖ ≥ R
g
(
‖θ − θ∗‖

)
‖θ − θ∗‖ < R ,

where θ∗ ∈ Rd is the unique minimizer of f , R := δ
α +

√
β
α with δ ∈ (0,∞), g : [0,∞)→ [0,∞)198

is a convex function with g(0) = 0 whose inverse exists.199

If g(x) = x2, the objective function is locally strongly convex. However, the above assumption200

covers a wide range of objectives with different local growth rates depending on the function g. Next,201

we show that the above assumption along with the assumptions leading to the CLT is sufficient to202

establish an algorithmic control over the bias with a sufficiently small step size.203

Theorem 3.1. Let the Assumptions 2.1, 3.1, and 3.2 hold. Then SGD iterates with step size satisfying204

0 < η < cL,α for cL,α in (16) admit the stationary distribution θ(η) ∼ πη which satisfies205

E
[
‖θ(η) − θ∗‖

]
≤ C

δ η + g−1(Cη).

Further, for a test function φ : Rd → R that is Lφ-Lipschitz, the bias satisfies206 ∣∣πη(φ)− φ(θ∗)
∣∣ ≤ Lφ(Cη/δ + g−1(Cη)

)
,

where207

C :=3
(
3L2 + 3L

1/2
ξ (1 + (β/α)2)

)(
1 + ∫ ‖θ‖2πη(dθ) + ‖θ∗‖2

)
. (5)

If the local growth is linear, i.e. g(x) = x, we obtain the bias |πη(φ) − φ(θ∗)| ≤ O(η). If local208

growth is quadratic, i.e. g(x) = x2, the growth is locally slower than the linear case; thus, we get209

the bias control |πη(φ) − φ(θ∗)| ≤ O(η1/2), which is worse in step size dependency; it reduces210

to the bound derived in [1, Lemma 10]. We highlight that [73] proves the following lower bound:211

lim infk→∞ E[‖θ(η)
k − θ∗‖2]1/2 ≥ cη1/2 for some c > 0 under the assumption of Lipschitz gradients.212

This is in line with our findings since Lipschits gradients imply g(x) ≤ x2 for small x.213

Generalized Łojasiewicz Condition: In this section we work with a generalization of the commonly214

used Łojasiewicz condition in optimization.215

Assumption 3.3 (Generalized Łojasiewicz condition). The objective function f has a critical point216

θ∗ and it satisfies217

‖∇f(θ)‖2 ≥
{
γ
{
f(θ)− f(θ∗)

}
‖θ − θ∗‖ ≥ R

g
(
f(θ)− f(θ∗)

)
‖θ − θ∗‖ < R,

where γ,R > 0, and g : [0,∞)→ [0,∞) is a convex function with g(0) = 0 whose inverse exists.218
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In the case g(x) = xκ with κ ∈ [1, 2), for example, the above condition is termed as the Łojasiewicz219

inequality [74], and for κ = 1, it reduces to the well-known Polyak-Łojasiewicz (PL) inequality [75].220

Note that this inequality implies that every critical point is a global minimizer; yet, it does not imply221

the existence of a unique critical point.222

The next result establishes an algorithmically controllable bias bound in terms of the step size.223

Theorem 3.2. Let the Assumptions 2.1,2.2, 3.1, and 3.3 hold, and the Hessian satisfies ‖∇2f(θ)‖ ≤224

L̃(1 + ‖θ‖), ∀θ ∈ Rd and some L̃ > 0. Then, the SGD iterates with a step size satisfying225

0 < η < 2
L̃
∧ cL,α ∧ c†L,α ∧ 1 for cL,α, c

†
L,α in (16) have the stationary distribution πη ,226

πη(f)− f(θ∗) ≤ g−1
(

2Mη

2−L̃η

)
+ 2Mη

2−L̃η ,

227 where M :=12L̃
(
L+ L

1/2
ξ + L

1/4
ξ

)2(
1 +m+m3/4 +

∫
‖θ‖2πη(dθ)

)
with

m := 8
7α

[(
β + 6L2 + 3L

1/2
ξ + 16

) ∫
‖θ‖2πη(dθ) + 16L4 + 2Lξ + 128L6 + 8L

3/2
ξ

]
.

Additionally, if the test function is given as φ = φ̃ ◦ f for a Lφ̃-Lipschitz function φ̃, it holds that228 ∣∣πη(φ)− φ(θ∗)
∣∣ ≤ Lφ̃{g−1

(
2Mη

2−L̃η

)
+ 2Mη

2−L̃η

}
.

For smooth objectives with Lipschitz gradient, [75] provides a linear rate under the PL-inequality229

(see also [76, Lemma 2]), which yields the asymptotic bias |πη(φ) − φ(θ∗)| ≤ O(η). The above230

result recovers their findings as a special case, and provides a considerable generalization.231

Convexity: To make the analysis of constant step size SGD complete, we digress from the main232

theme of this paper and consider this algorithm in the (non-strongly) convex regime, for which there233

is no bias characterization known to authors. We show that, under the convexity assumption, one can234

achieve the same bias control as in the case of PL-inequality.235

Theorem 3.3. Let the Assumptions 2.1,2.2, and 3.1 hold for a convex function f . Then, the SGD236

iterates with a step size 0 < η < cL,α for cL,α in (16) admit the stationary distribution πη , and for a237

minimizer θ∗ it satisfies238

πη(f)− f(θ∗)≤ Cη ,

for C in (5). Further, if the test function is given as φ = φ̃ ◦ f for a Lφ̃-Lipschitz function φ̃ , then,239 ∣∣πη(φ)− φ(θ∗)
∣∣ ≤ Lφ̃Cη .

Convexity implies that any critical point θ∗ is a global minimizer, which is similar to the PL-inequality;240

yet, it does not imply a unique minimizer unlike strong convexity. The resulting step size dependency241

of the bias is the same as in the case of PL-inequality, which is because both of these conditions assert242

a similar gradient-based domination criterion on the sub-optimality. That is, we have in the convex243

case 〈∇f(θ), θ−θ∗〉 ≥ f(θ)−f(θ∗), and in the case of PL-inequality γ−1‖f(θ)‖2 ≥ f(θ)−f(θ∗).244

4 Examples and Numerical Studies245

We now demonstrate the asymptotic normality and bias in non-convex optimization with two examples246

arising in robust statistics for which our assumptions can be verified. We consider the online SGD247

setting with the update rule: θ(η)
k+1 = θ

(η)
k − η

bk

∑bk
j=1∇F (θ

(η)
k , Zj), for k ≥ 0, with independent248

samples Zj ∼ P (Z) used to estimate the true gradient in each iteration k ; and also the semi-249

stochastic setting, where the noise sequence {ξk(θ)}k≥1 is independent of θ and is simply a sequence250

of i.i.d. random vectors – such a setting helps verifying our assumptions more explicitly.251

4.1 Regularized MLE for heavy-tailed linear regression252

While the least-squares loss function is common in the context of linear regression, it is well-253

documented that it suffers from robustness issues when the error distribution of the model is heavy-254

tailed [77]. Indeed in fields like finance, oftentimes the Student’s t-distribution is used to model255

the heavy-tailed error [78]. In this case, defining the random vector Z := (X,Y ), the stochastic256
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optimization problem in (3) is given by the expectation of the function F (Z, θ) := log
(
1 + (Y −257

〈X, θ〉)2
)

+ λ
2 ‖θ‖

2, which is non-convex (as a function of θ) for small penalty levels λ > 0.258

Correspondingly, given n independent and identically distributed samples (xi, yi), the finite-sum259

version of the optimization problem corresponds to minimizing the following objective function260

f(θ) := 1
2m

∑m
i=1 log

(
1 + (yi − 〈xi, θ〉)2

)
+ λ

2 ‖θ‖
2. (6)

We consider the finite-sum setup and we verify our assumptions and empirically demonstrate our261

results on CLT as well as the bias in a clean manner.262

4.1.1 Semi-stochastic Gradient Descent263

In the experiments, X := (x1, . . . ,xm)> ∈ Rm×d represents a fixed design matrix generated264

from Xij ∼ Bernoulli(±1)/
√
d, and y := (y1, . . . , ym)> ∈ Rm represents the response vector265

generated according to the linear model yi = 〈xi, θtrue〉 + ε with (θtrue)i
iid∼ Unif(0, 1), and ε266

is Student-t distributed (df = 10) noise. We choose m = 5000, d = 10, and the Lipschitz test267

function φ(θ) = ‖θ‖ unless stated otherwise.268

Asymptotic normality: Fig. 1-(a,b,c,d) demonstrates the normality and the bias of SGD with heavy-269

tailed gradient noise distributed as Student-t (df = 5). Each plot has two density curves where red270

and blue curves in Fig. 1-(a,b) respectively correspond to initializations with θ0 = (1, . . . , 1)> and271

θ′0 = (1.5, . . . , 1.5)> with step size η = 0.3; green and orange curves in Fig. 1-c correspond to step272

sizes η = 0.2 and η′ = 0.3 with initialization θ0. All experiments are based on 4000 Monte Carlo273

runs. We observe in Fig. 1-a that different initializations have an early impact on the normality when274

the number of iterations is moderate. However, when SGD is run for a longer time, this effect is275

removed as in Fig. 1-b. Lastly, Fig.1-c demonstrates the effect of step size on the normality, where the276

means are different for different step sizes as they depend on the stationary distribution πη. Indeed,277

the above results are not surprising as one can verify that the assumptions of Theorem 2.1 are satisfied.278

Lemma 4.1. The objective function (6) satisfies Assumptions 2.1 and 2.2. Further, Assumption 2.3 is279

also satisfied with the Student-t distributed (df = 10) noise.280

Bias: In order to demonstrate the bias behavior without speculation, one needs the global minimum281

θ∗ of the non-convex problem. Therefore, we simplify the problem (6) to another non-convex problem282

f(θ) := 1
2 log

(
1 + ‖θ‖2

)
+ λ

2 ‖θ‖
2 . (7)

Notice that the general structure is the same, with no data, and θ∗ is known, i.e. θ∗ = 0. We choose283

the test function φ(θ) = φ̃ ◦ f(θ), where φ̃(x) = 1/(1 + e−x) is Lipschitz. Fig. 1-(d) demonstrates284

how the bias πη(φ)− φ(θ∗) changes over iterations, where different curves correspond to different285

step sizes. We notice that larger step size provides fast initial decrease; yet the resulting asymptotic286

bias is larger which aligns with our theory – indeed, a smaller asymptotic bias for a smaller step size287

η is predicted by Theorem 3.2 while slower convergence can be expected given the discussion after288

Proposition 2.1. The following lemma proves that our assumptions are satisfied for this objective.289

Lemma 4.2. The objective function (7) is non-convex when λ is sufficiently small, and it satisfies290

Assumptions 2.1,2.2, and 3.3. Further, Assumption 3.1 is also satisfied for this example.291

4.1.2 Online Stochastic Gradient Descent292

For our online SGD experiments, we use bk = 2, for all k to obtain the stochastic gradient. We also293

experimented with mk = 1, 10, 50 and observed similar behavior. The distribution of the random294

vector Z = (X,Y ) ∈ Rd+1, is as follows: Each coordinate of the vector X ∈ Rd, is generated as295

Bernoulli(±1)/
√
d and given vector X , the response Y ∈ R is generated according to the linear296

model Y = 〈X, θtrue〉+ ε with each coordinate of θtrue ∈ Rd generated from Unif(0, 1), and fixed,297

and ε ∈ R is Student-t (df = 10) noise. We choose d = 10, and set a burn-in period of size 100.298

Asymptotic normality: Fig. 2-(a,b,c) demonstrates the normality of online SGD. Each plot has two299

density curves where red and blue curves in Fig. 2-(a,b) respectively correspond to initializations300

with θ0 = (1, . . . , 1)> and θ
′

0 = (2.5, . . . , 2.5)> with step size η = 0.3; green and orange curves in301

Fig. 2-c correspond to step sizes η = 0.2 and η′ = 0.3 with initialization θ0. All experiments are302

based on 4000 Monte Carlo runs. We observe in Fig. 2-a that different initializations have an early303

impact on the normality when the number of iterations is moderate. However, when SGD is run for a304

longer time, this dependence is removed as in Fig. 2-b. Lastly, Fig.2-c demonstrates the effect of step305

size on the normality, where the means are different for different step sizes as they depend on the306

stationary distribution πη . Indeed, all these observations are as predicted by our theory.307
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Figure 1: First and second rows correspond to non-convex examples in Sections 4.1.1 and 4.2.1,
respectively. Figures (a,b), (e,f) show the density of n−1/2Sn(φ) = n−1/2

∑n
k=1 φ(θ

(η)
k ) with

different initializations (red, blue) for different number of iterations. Figures (c,g) show the same
density with different step sizes. Figures (d,h) show the evolution of bias against iterations.

4.2 Regularized Blake-Zisserman MLE for corrupted linear regression308

While the above example was based on linear-regression with heavy-tailed noise, we now consider309

the case of heavy-tailed regression with corrupted noise. In this setup, the noise model in linear310

regression is assumed to be Gaussian, but a fraction of the noise vectors are assumed to be corrupted311

in the sense that they are drawn from a uniform distribution. Such a scenario arises in visual312

reconstruction problems; see for example [79] for details. In this case, defining the random vector313

Z := (X,Y ), the stochastic optimization problem in (3) is given by the expectation of the function314

F (Z, θ) := log
(
ν + e−(Y−〈X, θ〉)2

)
+ λ

2 ‖θ‖
2, for ν > 0. Similar the previous case, we also315

consider the finite-sum version: Given n independent and identically distributed samples (xi, yi), it316

corresponds to minimizing the following objective function317

f(θ) = − 1
2m

∑m
i=1 log

(
ν + e−(yi−〈xi, θ〉)2

)
+ λ

2 ‖θ‖
2, ν > 0 . (8)

4.2.1 Semi-stochastic Gradient Descent318

Asymptotic normality: In the experiments, we use the same setup and parameters as in Section 4.1.1.319

Fig 1-(e,f,g) demonstrates the asymptotic normality of the SGD with heavy-tailed gradient noise320

Student-t(df = 6). The experimental setup is the same as the previous example with the same values321

for θ0, θ
′
0, η, η

′. We observe the early impact of initialization in Fig 1-a, the clear normality in Fig. 1-b,322

and the effect of step size on CLT in Fig.1-c. These observations also align with our theory since this323

objective also satisfies our assumptions.324

Lemma 4.3. The objective function (8) satisfies Assumptions 2.1, 2.2. Further, Assumption 2.3 is325

also satisfied with the Student-t (df = 10) noise.326

Bias: Similar to the previous example, we simplify the problem so that we can compute the bias327

πη(φ)− φ(θ∗). We consider the function328

f(θ) := − 1
2 log

(
ν + e−‖θ‖

2)
+ λ

2 ‖θ‖
2, ν > 0 . (9)

We observe in Fig.1-h that smaller step sizes lead to smaller asymptotic bias. One can verify that this329

can be predicted from Theorem 3.1.330

Lemma 4.4. The objective function (9) is non-convex when λ is sufficiently small, and it satisfies331

Assumptions 2.1 and 3.2. Further, Assumption 3.1 is also satisfied for this example.332

4.2.2 Online Stochastic Gradient Descent333

Asymptotic normality: In the experiments, we use the same setup as in Section 4.1.2. Fig. 2-(d,e,f)334

demonstrates the normality of online SGD. Each plot has two density curves where red and blue curves335

in Fig. 2-(d,e) respectively correspond to initializations with θ0 = (1, . . . , 1) and θ
′′

0 = (1.5, . . . , 1.5)336
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Figure 2: Left: First and second rows correspond to non-convex examples in Sections 4.1.2 and 4.2.2,
respectively. Figures (a,b), (d,e) show the density of n−1/2Sn(φ) = n−1/2

∑n
k=1 φ(θ

(η)
k ) with dif-

ferent initializations (red, blue) for different number of iterations. Figures (c,f) show the same density
with different step sizes. Right: Coverage probabilities for Subsampling quantile, Subsampling var,
and Long-run var as functions of the number of iterations. Subsampling quantile method outmatches
the others in terms of coverage probability and achieves the nominal level with larger iterations.

with step size η = 0.3; green and orange curves in Fig. 2-c correspond to step sizes η = 0.2 and337

η′ = 0.3 with initialization θ0. All experiments are based on 4000 Monte Carlo runs. We observe338

in Fig. 2-d that different initializations have an early impact on the normality when the number of339

iterations are moderate. However, when SGD is run for a longer time, this effect is removed as in340

Fig. 2-e. Lastly, Fig.2-f demonstrates the effect of step size on the normality, where the means are341

different for different step sizes as they depend on the stationary distribution πη .342

5 Discussions343

By leveraging the connection between constant step size SGD and Markov chains [1], we provided344

theoretical results characterizing the fluctuations and bias of SGD for non-convex and non-smooth345

optimization which arises frequently in statistical learning.346

Estimating the Asymptotic Variance: As discussed in Section 2, in order to use the established347

CLT to compute CIs in practice, the population expectation πη(φ) and asymptotic variance σ2
πη (φ)348

have to be estimated. We suggest the following three ways to do so:349

• Estimate them based on sample average of a single trajectory of SGD iterates, i.e., the mean350

πη(φ) is estimated as n−1
∑n−1
k=0 φ

(
θ

(η)
k

)
, and the asymptotic variance σ2

πη (φ) can be estimated by351

adopting the online approach of [80] to the constant step size setting. The variance σ2
πη (φ) can352

also be estimated by the Newey-West long-run variance estimation [81, 82] or empirical variance353

estimation based on sub-sampling [83, Sections 4.2 and 4.6] for a single trajectory.354

• First run N parallel SGD trajectories and compute the average of each trajectory, to obtain N355

independent observations from the stationary distribution πη. Next, use the N observations to356

compute the sample mean and the sample variance estimators for πη(φ) and σ2
πη (φ).357

• Leverage the online bootstrap and variance estimation approaches proposed in [41, 39, 84] for the358

constant step size SGD setting in order to obtain estimates for πη(φ) and σ2
πη (φ).359

As a confirmation of the practicability of constructing CIs, we provide preliminary experimental360

results for constructing CIs with minibatch SGD. We consider the data generation setup described361

in Sections 4.1 and 4.2 with step size 0.3, and run online SGD with batch size 2. In each run, the362

first 200 values are discarded. CIs are constructed for each trajectory based on sub-sampling with363

empirical CDF (Subsampling quantile) and variance estimation (Subsampling var) [83, Sections 4.2364

and 4.6], and Newey-West long-run variance estimation (Long-run var) with data-driven bandwidth365

selection [81, 82]. Empirical coverage results as a function of iteration numbers (nominal level = 95%,366

4000 Monte Carlo replications) for the three methods and different initializations (θ0 = (1, . . . , 1)>367

and θ′0 = (1.5, . . . , 1.5)>) are reported in Figure 2 (right). A non-asymptotic justification of the368

relative merits of the above variance estimation approaches are left as future work.369
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