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Abstract

In medical image analysis, we often need to build an image recognition system for1

a target scenario with the access to small labeled data and abundant unlabeled data,2

as well as multiple related models pretrained on different source scenarios. This3

presents the combined challenges of multi-source-free domain adaptation and semi-4

supervised learning simultaneously. However, both problems are typically studied5

independently in the literature, and how to effectively combine existing methods is6

non-trivial in design. In this work, we introduce a novel MetaTeacher framework7

with three key components: (1) A learnable coordinating scheme for adaptive8

domain adaptation of individual source models, (2) A mutual feedback mechanism9

between the target model and source models for more coherent learning, and (3)10

A semi-supervised bilevel optimization algorithm for consistently organizing the11

adaption of source models and the learning of target model. It aims to leverage12

the knowledge of source models adaptively whilst maximize their complementary13

benefits collectively to counter the challenge of limited supervision. Extensive14

experiments on five chest x-ray image datasets show that our method outperforms15

clearly all the state-of-the-art alternatives.16

1 Introduction17

Despite great stride made by existing deep learning methods on medical image classification re-18

sults [24, 41, 51], their performance often degrade drastically when applied to a new scenario. This19

is mainly due to the domain shift challenge between the training and test data, caused by different20

environments, different instruments, and different acquisition protocols. Unlike natural images,21

annotating medical images requires special clinical expertise. It is hence more difficult to obtain large-22

scale medical image datasets with high-quality labels at every single scenario. Domain adaptation23

is a feasible solution, but comes with several limitations. Firstly, medical data is often under strict24

privacy and license constraints. That means the source domain data is usually inaccessible during25

domain adaptation. Secondly, medical data is typically multi-labeled which has more prominent26

different characteristics in different scenarios. Considering these practical constraints, we propose a27

new Semi-supervised Multi-source-free Domain Adaptation (SMDA) problem setting in the context28

of medical image classification. Our proposed setting has three key conditions: (1) There are multiple29

source domain models trained on respective multi-label medical image datasets, (2) All the source30

domain data is inaccessible for adaptation, and (3) The target domain data has only a small number31

of labelled samples along with abundant unlabeled data.32
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In medical image classification, there are limited domain adaptation works, with a need of accessing33

the source domain data [3, 14, 19, 25, 33, 42, 43, 47]. Further, they usually consider a single source34

domain. On the other hand, for employing multiple source domains, existing Multi-Source Domain35

Adaptation (MSDA) methods typically learn a common feature space for all source and target36

domains [44] or use ensemble methods combined with source classifiers [5]. However, all of these37

MSDA methods require access to the source domain data. Regarding multi-label medical image38

classification, there exists a solution which extends the standard classifier network by conditional39

adversarial discriminator networks [34]. But it is still not source-free. Indeed, there have been40

extensive study on Source-Free Domain Adaptation (SFDA) [26, 48]. However, they are not directly41

applicable to our problem. Firstly, most of them assume a single source domain [26, 48]. Using the42

SFDA method to transfer each source domain model to the target domain separately and average43

their predictions, this strategy cannot reveal the complementary information between different source44

domains. Secondly, the source model is often domain biased. Different hospitals are featured with45

different populations, leading to a situation that the source datasets focus on a specific set of class46

labels. The existing SFDA methods can not assess the credibility of a source domain model with47

different labels.48

To address the above SMDA’s limitations, employing knowledge distillation from multi-source49

models to the target domain can be considered [13, 30, 49, 52, 53]. This forms a multi-teacher and50

one-student scheme. In our problem setting, a few labels of the target domain are provided to judge51

the credibility of multi-source models in different labels. In reality, it is common to exploit a few52

labeled data in the target domain. Recent works [20, 21, 38, 39] have shown that a few labeled53

data from the target domain can significantly improve the performance of the model. Inspired by54

meta-learning approaches [28, 35, 37], we consider a bilevel optimization strategy to update both55

the teachers and students. This is because different models vary in reliability and there is a need for56

optimizing the update direction for each source model. This offers an opportunity of leveraging the57

complementary and collaboration of different source models during model optimization, critical for58

solving the low-supervision challenge.59

Based on the above analysis, we propose a novel framework termed as MetaTeacher. It is based60

on multi-teacher and one-student model. Each teacher model is pre-trained on a specific labeled61

source data. The student model is initialized by a randomly chosen teacher. In order to provide62

different update directions for multiple teachers, a coordinating weight learning method is proposed63

to determine the contribution of each teacher for each target sample. In addition to knowledge transfer64

from multiple teachers, when adapting a specific teacher model, we also explore the feedback from65

student and other teachers in a semi-supervised meta learning manner [12, 35]. Unlike the previous66

MSDA approaches, MetaTeacher can adapt each teacher in different directions according to the67

learned coordinating weight. This enable us to fully use different characteristics of source models,68

whilst avoiding the problem of insufficient training samples for multi-label classification to some69

extent.70

Our contributions are summarized as follows: (1) We propose a new problem setting, i.e., semi-71

supervised multi-source-free domain adaptation for multi-label medical image classification. To our72

best knowledge, our work is the first exploration of multi-source-free and semi-supervised domain73

adaptation in the field of transfer learning. (2) A novel framework MetaTeacher based on a multi-74

teacher and one-student scheme is introduced to solve the proposed SMDA problem. A mutual75

feedback mechanism is designed based on meta-learning between the target model and the source76

models for more coherent learning and adaptation. The knowledge from multiple source models77

are sufficiently leveraged. (3) A coordinating weight learning method is derived for dynamically78

revealing the performance differences of different source models over different classes. It is integrated79

with the semi-supervised bilevel optimization algorithm for consistently updating the teacher and80

student models. Extensive experiments on five well-known chest radiography datasets show that our81

approach outperforms state-of-the-art alternatives clearly, along with in-detail ablation studies for82

verifying the design choices of our model components.83
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2 Relate Works84

Unsupervised domain adaptation for medical image classification. There are shallow UDA85

and deep UDA approaches respectively. Shallow UDA approach adapts two routes, i.e., source86

domain instance weighting [42, 43] and feature transformation [19, 25]. All of these methods need to87

access source domain data. Similarly, there are also two routes for deep UDA approach. They are88

domain alignment based [14, 47] and pseudo-labeling based [3]. The first strategy solves the UDA89

problem by minimizing the domain difference between the source domain and target domain, and90

is currently the most popular method. Gao et al. [14] used the central moment difference matching91

to perform adaptation of classifying brain MRI data. The second strategy generates dummy data92

to retrain target model. For multi-label medical image classification, there exists a work based on93

domain alignment with a multi-label regularization term [34]. Bermúdez Chacón et al. [3] used the94

normalized cross-correlation to generate soft labels for the target domain. The above UDA methods95

do not update the source domain model, and they are all based on single-source domain. However,96

the situation of multi-source domains is very common in practical situations.97

Multi-source domain adaptation for medical image classification. In machine learning commu-98

nity, MSDA works mainly have two strategies, i.e. distribution alignment [31, 56] and adversarial99

learning [46, 54, 55]. The first strategy computes the statistical discrepancy between multi-source100

domains and target domain, and then combines all predictions. The second strategy trains a domain101

discriminator and forces the feature extraction network to learn domain-invariant features to confuse102

the domain discriminator. For medical image classification, there only exist several shallow DA103

models. Wang et al. [44] proposed to map multiple source and target data to a common latent space104

for autism spectrum disorder classification. Cheng et al. [5] constructed a multi-domain transfer105

classifier for the early diagnosis of Alzheimer’s disease. All of these strategies require to access106

source domain data and are not suitable for solving the proposed SMDA problem. To the best of our107

knowledge, current teacher-student domain adaptation methods in the medical and machine learning108

communities only consider the single-source domain case. When extending it to the multi-source109

domain, it will face a challenging multi-objective optimization problem [7, 29].110

Semi-supervised domain adaptation (SSDA). Our problem is also related to SSDA which assumes111

a small number of labeled samples in the target domain. Compared to UDA, using a few labeled112

samples of the target domain allows to further achieve better domain alignment [23, 32, 50]. Due113

to the shift of domain distribution, directly applying classical semi-supervised learning methods to114

the SSDA problem will lead to sub-optimal performance. Representative SSDA works are based115

on subspace learning [32, 50], entropy minimization [15, 38], label smoothing [9, 36] and active116

learning [36, 40]. However, all of these methods assume a single source domain with the source117

domain data accessible. Unlike these works, our method incorporates meta-learning and uses the118

performance on the labeled target data as a feedback signal.119

3 The Proposed Method120

Problem statements. Suppose DT = {(Xt
L, Y

t
L) , X

t
U} where Y t

L denotes label annotations for a121

small amount of target domain samples Xt
L and Xt

U for target domain samples without any label122

annotations. The dimension of label vector is m. DSi
=

{(
Xi

L, Y
i
L

)}
where Y i

L denotes label123

annotations for i-th source domain samples Xi
L. For semi-supervised multi-source-free domain124

adaptation problem, when the pretrained source classifiers fTi
is applied to the target domain, the125

source dataset DSi is not accessible for i = 1, · · · , n. Given source classifiers fTi for i = 1, · · · , n126

and the target data DT , the task is to find a mapping fS : Xt
U → Y t

U where Y t
U denotes the predicted127

labels for target domain sample Xt
U that can work well in the target domain.128

Overview. As shown in Fig.1, our framework is based on multi-teacher and one-student scheme. First,129

multiple teacher models are pretrained according to each source domain, and then the student model130

is initialed using a randomly chosen teacher model. They are all composed of a feature extractor131

based on Resnet50 [16] and a multi-label classifier. The classifier consists of a fully connected layer,132
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Figure 1: Overview of MetaTeacher. (a) learns coordinating weight mapping which will be used
later to provide guidance for updating teacher model. (b) alternately updates the teacher and student
models. Each teacher is updated with feedback signals from student and other teachers.

where the input is an one-dimensional expanded feature, and the output is the probability of each133

label. The objective function is the error loss between the predicted output and the ground truth.134

Compared with traditional teacher-student model, our method has two differences: (1) coordinating135

weight learning; (2) bilevel optimization. For the first part, a mapping is trained based on labeled136

target domain samples, which fuses the multi-teacher predictions adaptively for each target sample.137

This mapping will be used in the another part. In the initial iteration, the mapping and student model138

are trained based on labeled target samples. In subsequent iterations, this part will only optimize the139

mapping while the student model will be updated based on bilevel optimization. Then, in the bilevel140

optimization part, the student and teacher models are updated alternately based on meta-learning.141

Specifically, for an unlabeled target sample, a coordinating weight is generated, which provides142

optimization direction for each teacher model. Finally, these two parts will be iteratively undated143

until convergence.144

3.1 Coordinating Weight Learning145

As mentioned earlier, the teacher models are trained on different source domain data. Due to146

different distributions, they have different characteristics. Therefore, for a target domain sample, the147

classification probability of each teacher model is inconsistent. When we want to optimize a teacher148

model based on the target domain samples, the optimization direction of each teacher model should149

be different. So it is necessary to obtain the contribution weight of each teacher model to the final150

classification results. We call it coordinating weight. Fortunately, we can obtain the weight mapping151

with the labeled samples in the target domain.152

As shown in Fig.1(a), for obtaining the coordinating weight, we first input the labeled target sample153

xtl into the student network, and get the output B = g(xtl) from feature extraction network g, where154

B ∈ Rc×h×w. c, h, and w are the number of channels, height, and width respectively. Then, we155

perform a maximum pool operation on the feature map B to get ψ ∈ R1×c which retains the most156

important information of each channel. Our mapping consists of two learnable variables µ and ν,157

where µ ∈ Rn×1, ν ∈ Rc×m. Then, we define a mapping ϕ = µψν ∈ Rn×m for the target sample158

xtl . After normalizing, we get the coordinating weight matrix W where159

Wj,k =
exp(ϕj,k)∑n
z=1 exp(ϕz,k)

. (1)

Suppose for the sample xtl , the predictions of all teachers are formed as a matrix P ∈ Rn×m, by160

taking the Hadamard product between the teacher predictions and the coordinating weight matrix, we161

can get the fused prediction as the following,162

ȳtl = Sum(P ◦W ) (2)
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where Sum(·) means adding by rows. Denoting ȳsl = fS(x
t
l ; θS) as the student prediction on the163

target sample xtl , we train the weight mapping and initialize student network using the following loss,164

LW = L (ȳsl , yl) + αLKL

(
ȳtl , ȳ

s
l

)
+ β (∥µ∥+ ∥ν∥) (3)

where L (ȳsl , yl) = 1
m

∑m
i=1[yl,ilog(ȳ

s
l,i) + (1 − yl,i)log(1 − ȳsl,i)] represent the BCE (Binary165

Cross Entropy) loss, yl is the groud truth, θS is the parameter of student network. LKL (ȳtl , ȳ
s
l ) =166 ∑m

i=1 ȳ
t
l,i log(ȳ

t
l,i/ȳ

s
l,i) represents the KL (Kullback-Leibler divergence) loss which measures the167

distribution difference between the fused teacher prediction and student prediction. α and β are two168

balance parameters.169

Remark. The mapping generates coordinating weight by Eq.(1), which not only reveals the com-170

plementarity of different teachers on different instances, but also, more interestingly, participates in171

the derivation of the update formula of teacher in the bilevel optimization process (see Appendix),172

providing a reference for the update direction of different teachers.173

3.2 Bilevel Optimization174

The bilevel optimization problem [4, 6] was first proposed in the field of game theory. It includes an175

upper-level optimization task and a lower-level optimization task, where upper-level optimization task176

contains lower-level optimization task as a constraint. Here, the upper-level optimization task (student)177

provides feedback signals to the lower-level optimization tasks (teachers) through the performance on178

labeled data and the coordinating weight mapping. For an unlabeled target sample xtu, suppose the179

pesudo-label based on the learned coordinating weight mapping ϕ from multi-teachers Eq.(2) is ȳtu180

and the corresponding coordinating weight matrix is Wu, we can define a loss function Γu as follows,181

Γu(θT1
, · · · , θTn

, θS) = L(ȳtu, ȳsu) (4)

where ȳsu = fT (x
t
u; θS), θTi

is the parameter of the i-th teacher network. Similarly, a loss function182

Γl (θT1
, · · · , θTn

, θS) = L (yl, ȳ
s
l ) is defined for a labeled target samples xtl . In the bilevel optimiza-183

tion task, updating θS is the upper-level optimization task objective, while updating θT1
, · · · , θTn

is184

the lower-level optimization task objective. The upper-level optimization task and the lower-level185

optimization task are mutually constrained. To reach the lower-level optimization task objective, the186

performance of the upper-level optimization task objective on the labeled target data is utilized as187

feedback signal. So we get the objective function in lower-level optimization task as the following,188

min
θT1

,··· ,θTn

Γl

(
θT1

, · · · , θTn
, θOP

S

)
s. t. θOP

S = min
θS

Γu (θT1
, · · · , θTn

, θS) . (5)

Obviously, Eq.(5) cannot be optimized simply by gradient descent method, because the teacher189

models parameters can not be updated until θS reaches the optimum. We refer to the idea of190

meta-learning [12, 27, 35] and make a one-step approximation of the problem,191

θOP
S ≈ θS − ηS · ∇θsΓu (θT1

, θT2
, · · · , θTn

, θS) (6)

where ηS is the learning rate of the student network. Substitute Eq. (6) into Eq. (5) to obtain a new192

optimization objective function193

Γl (θT1
, · · · , θTn

, θS − ηS · ∇θsΓu (θT1
, θT2

, · · · , θTn
, θS)) . (7)

By optimizing Eq. (7) (see Appendix), we get the following update rules,194

θ′S = θS − ηS · ∇θsΓu, (8)

θ′Ti
= θTi − ηTi ·

[
(∇θ′

S
Γl)

T · ∇θSΓu

]T · ∇θTi
L
(
ȳiu, ỹ

i
u

)
(9)

for i = 1, · · · , n, where θ′S and θ′Ti
are the updated parameters corresponding to the student and195

teachers respectively. ȳiu = fTi (x
t
u; θTi) ·W i

u and W i
u is the ith-row coordinating weight vector of196

Wu respect to the i-th teacher. ỹiu is the pseudo labels after normalizing the values of ȳiu to 0 or 1,197

i.e., ỹiu,j = 0 when ȳiu,j < 0.5 and ỹiu,j = 1 for other cases.198
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Additionally, in order to prevent optimizing teachers in the same direction, the predictions of the199

updated multiple teachers should be as far away from each other as possible. So, we define a200

divergence loss as follows,201

LD = −ln
n∑

j=1,j ̸=i

L2

(
BTi

(
xtu; θTi

)
, BTj

(
xtu; θTj

))
(10)

where BTi
(xu; θTi

) represents the max-pooled results of the output feature map of the i-th teacher202

network. Here, we apply a max-pooling operation to the output features of multiple teachers and203

calculate the distance with L2 norm. By requiring these feature maps to be far away each other, the204

optimization direction of teachers will be effectively adjusted. Finally, we update the i-th teacher205

network by the following rule,206

θ′Ti
= θTi

− ηTi
·
([

(∇θS′Γl)
T · ∇θSΓu

]T · ∇θTi
L
(
ȳiu, ỹ

i
u

)
+ γ∇θTi

LD

)
(11)

where γ is a hyperparameter.207

Remark. Eq.(11) reveals that the update direction of θTi
is determined by three factors: (1) coor-208

dinating weight confuses feedback signals from different teachers; (2) student network parameters209

provide feedback signals and generate coordinating weight; (3) diversity constraint emphasizes the210

characteristic of different teacher networks. Interestingly, these three factors change over time during211

the meta-learning process. In addition to alternating updates of the student and teacher models, we212

also update the mapping periodically.213

4 Experiments214

Datasets. Five publicly available chest x-ray datasets are used to construct our multi-domain215

adaptation scenarios. NIH-CXR14 [45] is a large public dataset of chest x-ray, which contains 108,948216

front view x-ray images of 32,717 patients collected from NIH Clinical Center, with a total of 14217

disease labels. MIMIC-CXR [18] contains 377,110 images and text reports, corresponding to 227,835218

radiological studies conducted by Beth Israel Deaconess Medical Center in Boston, Massachusetts.219

CheXpert [17] consists of 224,316 chest x-ray of 65,240 patients. The dataset collected chest x-ray220

examinations and related radiology reports performed at inpatient and outpatient centers at Stanford221

Hospital from October 2002 to July 2017. Open-i [8] is collected by Indiana University Hospital222

through the network from open source literature and biomedical image collection. It contains 3955223

radiology reports, corresponding to 7470 frontal and lateral chest films. To be consistent with other224

datasets, we filter out the side chest x-ray in Open-I, leaving only 3955 frontal images. Google-Health-225

CXR [2] is manually labeled by medical experts for CXR images with high accuracy and contains226

about 4000 images. We follow the traditional UDA setting, and choose the disease closed set in these227

five datasets as multi classification labels, i.e., Atelectasis, Cardiomegaly, Effusion, Consolidation,228

Edema and Pneumonia. Four transfer scenarios are constructed, which are NIH-CXR14, CheXpert,229

MIMIC-CXR to Open-i; NIH-CXR14, CheXpert, MIMIC-CXR to Google-Health-CXR; CheXpert,230

MIMIC-CXR to NIH-CXR14 and NIH-CXR14, CheXpert to Open-i.231

Implementation details. In order to make a compromise between images in different datasets, we232

scale the images to 128*128 before feeding them into the network. To expand the training set, several233

data augmentation techniques are used, including random cropping and horizontal flipping. SGD with234

momentum of 0.9 is used as the optimizer. For the student model, the initial learning rate is 0.01 and235

the weight decay is 5e-4. The learning rate for coordinating weight mapping is 0.001; For the teacher236

models, the initial learning rate is 0.001 and the weight decay is 5e-6. The values of α, β and γ are237

set as 0.5, 0.01 and 0.01 respectively. For the case when the target domains datasets are small-scale,238

such as Open-i and Google-Health-CXR, we assume that there are 200 labeled data in the target239

domains, and in order to give a good initial condition for training, we randomly select a source model240

to initialize the target model. For the case when the target domains datasets are large-scale, such241

as NIH-CXR14, we assume that there are 500 labeled data in the target domains. Unless otherwise242

specified, the interval for updating coordinating weight mapping is set as 100 iterations. Following243
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Table 1: Comparing the state-of-the-art methods on the transfer from NIH-CXR14, CheXpert, MIMIC-CXR to
Open-i. Metric: AUROC.

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 83.27 91.55 96.18 97.02 92.74 89.24 91.67
CAiDA [10] 82.45 92.16 95.12 95.92 89.89 90.37 90.99

SHOT-best [26] 81.48 91.22 94.19 95.10 88.96 89.58 90.09

MME [38] 82.44 90.82 95.46 96.07 90.26 87.20 90.38
ECACL [22] 82.60 92.18 96.32 95.97 90.70 89.61 91.23

Source Only(N) 83.09 87.20 96.11 95.10 86.87 77.40 87.63
Source Only(C) 82.26 87.64 94.71 96.61 90.22 75.12 87.76
Source Only(M) 80.63 91.31 94.87 94.53 84.91 82.78 88.05

Fine-tune(average) 82.14 88.71 95.32 95.52 88.77 78.48 88.16

Ours(w/o mapping) 79.99 92.64 98.22 93.64 95.50 84.54 90.76
Ours(w/o update) 81.98 90.72 95.76 95.51 89.40 82.53 89.32

Ours(all ) 81.72 92.59 96.25 97.64 94.52 94.33 92.84

Table 2: Comparing the state-of-the-art methods on the transfer from NIH-CXR14, CheXpert, MIMIC-CXR to
Google-Health-CXR. Metric: AUROC.

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 77.24 81.71 85.94 79.03 83.48 83.68 81.85
CAiDA [10] 76.90 81.82 87.55 79.62 85.10 82.72 82.29

SHOT-best [26] 75.43 80.28 86.63 77.88 82.37 81.22 80.64

MME [38] 77.34 84.93 86.17 78.65 85.33 71.28 80.62
ECACL [22] 76.27 84.54 87.06 79.95 85.82 72.66 81.05

Source Only(N) 76.54 84.48 86.36 75.66 83.94 62.59 78.26
Source Only(C) 72.09 76.45 84.55 79.07 68.25 58.39 73.13
Source Only(M) 68.04 79.38 84.17 72.41 68.71 52.60 70.88

Fine-tune(average) 73.48 80.14 85.96 74.17 74.74 60.20 74.78

Ours(w/o mapping) 75.62 83.91 85.40 80.27 75.13 81.77 80.35
Ours(w/o update) 76.75 84.30 86.67 78.59 82.31 65.84 79.08

Ours(all) 77.65 79.52 88.73 78.74 86.73 84.78 82.69

the setting of multi-label medical image classification problems, the evaluation criterion is Area244

Under the Receiver Operating Characteristic (AUROC) [11] curve score.245

4.1 Comparisons to State-of-the-Art246

At present, there does not exist any experimental report on our problem setting. So we choose247

four category of methods for compare. The first category is Source only which means directly248

applying a teacher model to the target domain. The second category is Fine-tune(average) which249

fine-tune each teacher network using labeled target domain data, then average their predicted values.250

The third category is the state-of-the-art multi-source-free domain adaptation methods, which are251

DECISION [1], CAiDA [10], and SHOT-best. The SHOT-best refers to adapting each source domain252

separately through the SHOT [26] method. The model with the best performance on the validation set253

is selected. The final category is semi-supervised domain adaptation methods, which are MME [38]254

and ECACL [22]. For the semi-supervised domain adaptation methods, we assume that the labeled255

target data are the same as our method. Since they are single-source based methods, we perform256

domain adaptation for each source model and take the best result.257

Tables 1-4 show the comparison results on four transfer scenarios. Ours(all) is our proposed method.258

Source Only(N), Source Only(C) and Source Only(M) are the teacher models respect to the NIH-259

CXR14, CheXpert and MIMIC-CXR datasets respectively. For the scenario from CheXpert, MIMIC-260

CXR to NIH-CXR14, since the dataset NIH-CXR14 contains 108,948 x-ray images, different from261
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Table 3: Comparing the state-of-the-art methods on the transfer from CheXpert, MIMIC-CXR to NIH-CXR14.
Metric: AUROC .

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 72.99 80.73 79.37 75.52 82.30 71.38 77.05
CAiDA [10] 72.64 81.12 80.25 74.73 81.02 70.44 76.70
SHOT-best [26] 70.79 79.62 79.24 72.25 80.79 69.65 75.39

MME [38] 72.90 81.73 81.01 73.11 81.03 71.52 76.88
ECACL [22] 72.41 81.98 82.07 72.92 80.82 71.65 76.98

Source Only(N) 72.31 80.52 79.42 69.66 77.95 67.37 74.54
Source Only(C) 70.45 79.66 79.98 68.26 78.01 70.82 73.86

Fine-tune(average) 71.52 80.29 80.08 68.97 78.02 69.05 74.66

Ours(w/o mapping) 72.05 81.58 78.36 72.94 82.19 69.82 76.16
Ours(w/o update) 72.24 80.69 79.56 69.80 78.13 70.55 75.16
Ours(all) 73.63 86.64 80.86 72.24 86.68 66.37 77.74

Table 4: Comparing the state-of-the-art methods on the transfer from NIH-CXR14, CheXpert to
Open-i. Metric: AUROC.

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 83.15 90.86 96.12 96.32 92.33 88.79 91.26
CAiDA [10] 82.38 91.97 94.89 95.30 89.81 90.44 90.80
SHOT-best [26] 81.48 91.22 94.19 95.10 88.96 89.58 90.09

MME [38] 81.46 90.40 94.86 97.73 89.79 87.31 90.26
ECACL [22] 82.22 88.76 96.04 96.85 92.43 87.90 90.70

Source Only(N) 83.09 87.20 96.11 95.10 86.87 77.40 87.63
Source Only(C) 82.26 87.64 94.71 96.61 90.22 75.12 87.76

Fine-tune(average) 82.66 87.98 95.85 95.67 88.58 77.02 87.96

Ours(w/o mapping) 83.73 93.37 96.04 97.30 91.51 82.34 90.72
Ours(w/o update) 82.70 88.91 95.47 95.48 88.96 78.85 88.40
Ours(all) 82.11 92.42 96.80 97.07 92.20 91.27 91.98

other scenarios, this time we do not need to initialize the target model with the source models. It262

can be observed that our method achieves the best performance. The extensive experiments on four263

different transfer scenarios verify the adaptability of our method under multi-label chest x-ray dataset264

transfer cases. For the scenario from NIH-CXR14, CheXpert to Open-i, compared with the first265

scenario, MIMIC-CXR is removed. As show in Table 4, the effect of two source domains is 0.86%266

lower than that of three source domains.267

4.2 Ablation Analysis and Discussion268

Component analysis. In Tables 1-4, Ours(w/o mapping) represents that our proposed method269

removes the part of coordinating weight learning and optimization substituted by average. Ours(w/o270

update) means to remove the bilevel optimization process. In this situation, updating teachers and271

student follows the knowledge distillation learning process, i.e, using the weighted output of teachers272

to supervise the learning of student network. The results in the last three rows of Tables 1-4 show that273

these two parts are indispensable. It is worth mentioning that the bilevel optimization part contributes274

more gain to the overall performance than the coordinating weight learning. This is because the275

bilevel optimization can greatly improve the predictive ability of some diseases by updating the276

teachers, such as Edema in Table 1 and Pneumonia in Table 2, which are limited by distillation277

methods. The coordinating weight learning can judge which disease category the teacher is good at278

by weight, knowledge with different weights can be learned from different teachers. Therefore, the279

results in each disease category are close to the predictions of the best teachers, such as Pneumonia in280

Table 1 and Atelectasis in Table 2.281
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Table 5: Effect of the size of labeled target data on the transfer from NIH-CXR14, CheXpert, MIMIC-CXR to
Open-i. Metric: AUROC.

Number(propotion) Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

50(1.4%) 82.48 92.22 95.19 96.10 89.96 90.58 91.09
100(2.8%) 82.19 92.50 96.83 97.02 92.43 91.20 92.03
200(5.6%) 81.72 92.59 96.25 97.64 94.52 94.33 92.84
300(8.4%) 82.21 92.97 96.83 97.42 94.07 94.33 92.97
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Figure 2: Effect of different hyperparameters on the transfer from NIH-CXR14, CheXpert, MIMIC-
CXR to Open-i. Baseline: source only(M).

Effects of proportion of labeled target data. Table 5 shows the influence of the amount of labeled282

data in the target domain on the transfer scenario of NIH-CXR14, CheXpert, MIMIC-CXR to Open-i.283

The experimental results show that the performance slowly improves as the amount of labeled data284

increases; a small number of labeled target domain samples can achieve good results.285

Parameter analysis. We conduct parameter analysis experiment on the transfer scenario of NIH-286

CXR14, CheXpert, MIMIC-CXR to Open-i. The basic strategy is to change a parameter while other287

parameters are fixed. Our method MetaTeacher has three hyperparameters, i.e., α and β in Eq. (3),288

and γ in Eq.(11). Fig.(2)(a) shows performance changing with the parameter α. When α = 0, the289

coordinating weight mapping is not trained effectively resulting in the inability to determine the290

optimization direction of each teacher. When α gradually increases to around 0.5, the result achieve291

optimal performance. Fig.(2)(b) shows the influences of the parameters β. When the β is too large, it292

means that the coordinating weight learning part is ineffective and cannot express the relationship293

between the source domains. When β is set to 0, coordinating weight learning may overfit, which may294

cause coordinating weights to work well on some instances but poorly on other instances. Fig.(2)(c)295

shows the influences of the parameters γ. When γ is set to 0.01, the performance reaches the best,296

but with the continuous increase of γ, the performance decreases obviously. It is worth to note that297

our performance is about 0.55% better than the case not adding the divergence loss, which shows its298

rationality. We can also see that our method is also quite stable for the parameters α, β and γ in a299

large interval.300

5 Conclusion301

In this paper, we proposed a new framework, termed as MetaTeacher, for semi-supervised multi-302

source-free domain adaptation of medical image classification. The transfer learning process is303

modeled as a multi-teacher and one-student scheme. We not only optimize student, but also optimize304

teachers through student’s feedback in the target domain. The optimization is based on meta-learning,305

which consists of two main part: coordinating weight learning, and bilevel optimization. The first306

part obtains the coordinating weight mapping which is used to coordinate the teacher outputs and307

updates. Bilevel optimization updates the student base on the pseudo-labeled data produced by308

teachers and updates each teacher base on the feedback signal generated by student and other teachers.309

Extensive experiments on multi-label chest x-ray datasets empirically demonstrated the superiority of310

our method over many state-of-the-art approaches.311
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