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Abstract

Weakly-supervised whole-slide image (WSI) classification (WSWC) is a challeng-1

ing task where a large number of unlabeled patches (instances) exist within each2

WSI (bag) while only a slide label is given. Despite recent progress for the multiple3

instance learning (MIL)-based WSI analysis, the major limitation is that it usually4

focuses on the easy-to-distinguish diagnosis-positive regions while ignoring pos-5

itives that occupy a small ratio in the entire WSI. To obtain more discriminative6

features, we propose a novel weakly-supervised classification method based on7

cross-slide contrastive learning (called SCL-WC), which depends on task-agnostic8

self-supervised feature pre-extraction and task-specific weakly-supervised feature9

refinement and aggregation for WSI-level prediction. To enable both intra-WSI and10

inter-WSI information interaction, we propose a positive-negative-aware module11

(PNM) and a weakly-supervised cross-slide contrastive learning (WSCL) module,12

respectively. The WSCL aims to pull WSIs with the same disease types closer and13

push different WSIs away. The PNM aims to facilitate the separation of tumor-like14

patches and normal ones within each WSI. Extensive experiments demonstrate15

state-of-the-art performance of our method in three different classification tasks16

(e.g., over 2% of AUC in Camelyon16, 5% of F1 score in BRACS, and 3% of17

AUC in DiagSet). Our method also shows superior flexibility and scalability in18

weakly-supervised localization and semi-supervised classification experiments19

(e.g., first place in the BRIGHT challenge). Our code will be online.20

1 Introduction21

The gold standard for cancer diagnosis is derived by examining pathological slides. With the22

advance in scanning technology, tissue slides are scanned into whole-slide images (WSIs) for better23

management and processing, which facilitates the development of computational pathology [1; 2].24

Due to the gigapixel size of WSIs and their wide variations (e.g., tumor types and staining protocols)25

[3; 4], acquiring exhaustive pixel/patch-level annotations is very time-consuming and expensive.26

As the dataset size increases, such sufficient labels are obviously impractical. In practice, weak27

annotations at the WSI level are more readily available in clinical reports, which facilitates the28

emergence of weakly-supervised WSI classification (WSWC) studies.29

Existing WSWC studies are typically formulated based on multiple instance learning (MIL), which30

defines each WSI as a bag and patches cropped from the WSI as individual instances [5; 6; 7; 8;31

9; 10; 11; 12; 13; 14]. It is noted that a positive bag contains at least one positive instance while a32

negative bag contains all negatives [15]. The training process in the MIL paradigm encompasses33
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two steps: (i) feature encoding for patches cropped from a WSI and (ii) feature aggregation under34

the same WSI. For the feature encoding, the majority of recent methods directly adopt ImageNet-35

pretrained backbone as an off-the-shelf feature extractor [8; 9; 10; 11; 12; 14] and a few studies adopt36

self-supervised histopathology-pretrained features [13]. For the feature aggregation, deep attention37

pooling [10; 11; 12; 13], graph neural network [14], and sequence models [5; 8] are used for effective38

feature aggregation. The deep attention method drives the importance of each patch for the final WSI39

prediction, generating interpretable results. The graph neural network and sequence models fully40

consider the intra-WSI context and long-range dependencies.41

However, these methods still have two limitations. First, previous feature encoders are either trained42

on out-of-domain images in a supervised manner or pretrained on limited in-domain data in a self-43

supervised manner, which is not infeasible to extend to large datasets of histopathological images44

due to the difficulty in capturing sufficient variability across organs and diseases. Thus, there is a45

lack of a universal feature extractor trained on large and diverse histopathological images. Second,46

previous feature aggregators unfortunately fail to explore the inter-WSI separability and ignore the47

global feature comparisons across the training WSIs, resulting in limited generalizability for WSIs48

with a small proportion of disease-positive regions.49

To enhance the feature discriminative ability for each patch, we propose a novel WSWC method called50

SCL-WC that aims to achieve both intra-WSI local patch separation and inter-WSI global feature51

contrast. Specifically, we first apply the MoCo V3 framework [16] to pretrain a Swin Transformer [17]52

that is then adopted as an offline feature encoder for all patches, which provides a proper initialization53

to alleviate the over-fitting problem. Then, we design a novel aggregation algorithm that contains three54

modules, namely, class-specific deep attention (CDA), positive-negative-aware modeling (PNM), and55

weakly-supervised cross-slide contrastive learning (WSCL). The CDA follows the previous deep56

attention paradigm to assign a learnable weight for each patch to indicate its contribution to the WSI57

prediction. The PNM explicitly models the appearance of positive and negative patches within WSIs58

to capture discriminative feature representations, promoting normal/abnormal tissue separation. The59

WSCL constructs diverse feature comparisons across WSIs to refine task-specific features, where the60

WSI-level supervision enables more reliable separation capabilities for each class in the contrastive61

learning setting, helping capture informative features.62

Our contributions can be summarized as follows. (i) Pioneeringly, a novel WSCL module is proposed63

for global feature contrast across WSIs, which helps extract more distinguishable features to facilitate64

both inter-class separability and intra-class compactness. (ii) The PNM is designed to explicitly split65

each WSI feature space into positive and negative subspaces, thus helping exclude uninformative66

patches. (iii) Our proposed SCL-WC achieves a significant performance gain compared with other67

WSWC methods. By feasibly extending it to a semi-supervised classification task, our method won68

first place in the BRIGHT challenge.69

2 Related work70

2.1 Weakly-supervised WSI classification71

The WSWC task aims to select representative patches to trigger the corresponding WSI-level labels.72

Currently, MIL has been applied to formulate this problem with remarkable success [5; 6; 7; 8; 9;73

10; 11; 12; 13; 14], which requires two key techniques: patch-level feature encoding and feature74

aggregation for WSI representation.75

These feature encoders can be divided into online and offline models, where the online networks76

require real-time updates [5; 6; 7], resulting in more training epochs to converge compared to the77

well-pretrained offline models. The utilized offline feature extractors include supervised ImageNet-78

pretrained [8; 9; 10; 11; 12; 14] and unsupervised histopathological-image-pretrained models [13].79

However, the natural images (out-of-domain data) are difficult to accurately capture the textural80

and morphological characteristics of histopathological images without any fine-tuning. The used81
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Figure 1: The pipeline of our proposed SCL-WC method, which consists of two parts: feature
encoding and task-specific feature aggregation. In the feature encoding process, each WSI (bag) is
first cropped into patches that are then encoded by SSL-pretrained encoder (Swin Transformer). We
use an MLP projector to map the offline features into task-specific features that will be tuned later.
The feature aggregator contains three modules: CDA, PNM, and WSCL.

self-supervised model is pretrained on a small number of unlabeled samples, resulting in limited82

feature representation.83

The utilized feature aggregation algorithms can be divided into two lines: partial-instance-contributed84

and full-instance-contributed methods. The partial-instance-contributed methods keep a fixed number85

of patches in each WSI by randomly sampling from tissue regions [7], selecting the top-k patches86

with high confidence scores [5], or selecting a subset from each patch-level cluster [6; 9]. A small87

portion of patches may not fully capture the morphological features for each WSI, leading to88

misdiagnosis and missed diagnoses. The full-instance-contributed methods adopt deep attention89

pooling [10; 11; 12; 13], graph neural network [14], and sequence model [5; 8] to integrate all patches90

within a WSI, where patches can be assigned appropriate weight parameters by the network training91

to drive a WSI-level representation. These methods take into account the contributions of all patches92

and are more flexible and adaptable to other tasks than previous limited representative patches.93

2.2 Contrastive representation learning94

Contrastive representation learning aims to learn a universal feature by pulling samples belonging to95

the same class together and pushing samples belonging to different classes apart. The most popular96

unsupervised contrastive learning methods are SimCLR [18; 19] and MoCo [20; 21; 16], which take97

data augmentations from the same image as positives and those from different images as negatives. In98

later supervised contrastive learning, data annotations help to formulate the correct contrastive pairs,99

resulting in more representative features [22]. Based on previous studies, this work proposes a WSCL100

module in a MIL setting, aiming to extract class-specific distinguishable features in specific tasks.101

3 Methods102
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3.1 Definition for the WSWC task103

Suppose we have a series of training WSIs {sn}Nn=1 and their corresponding slide-level labels104

{yn}Nn=1, where yn ∈ {0, 1, · · · , C} represents label of the nth slide, C denotes the number of105

classes (e.g., cancer subtypes) and 0 corresponds to the normal (negative) tissues. The nth slide can106

be represented as sn =
{

pn,l

}Ln

l=1
, where pn,l is the lth patches cropped from the slide by a sliding107

window, Ln denotes the number of patches within the slide, which may vary across slides of different108

image sizes. It is noted that only slide-level annotations exist and annotations for internal patches are109

not explicit. The WSWC task aims to train a model with weak labels to conduct WSI-level prediction.110

The overview of our proposed SCL-WC method is shown in Figure 1, which mainly includes a111

feature encoding process and a task-specific feature aggregation.112

3.2 Feature encoding113

Self-supervised learning (SSL) has the ability to train a universal feature encoder under the supervision114

of data itself, which has been widely used in computer vision and medical image analysis [18; 20;115

23; 24]. Benefiting from its remarkable success, this work applies MoCo V3 framework [20; 16]116

to pretrain a feature encoder (Swin-Transformer [17]) on 15 million unlabeled patches from TCGA117

[25] and PAIP [26] datasets. Then, the well-pretrained backbone is employed as an offline feature118

extractor to transform patches into a series of q-dimensional vectors. For example, the feature119

vectors of the nth slide can be represented as Xn = {xn,l}Ln

l=1, where xn,l ∈ Rq denotes the vector120

of the lth patch and Xn ∈ RLn×q is obtained by stacking all patches within the WSI. Due to the121

task-agnostic characteristic of these pretrained features, we map them into a task-specific space using122

fully connected layers and non-linear activation functions. Thus, the task-specific features in the nth123

slide can be represented as Fn = {fn,l}Ln

l=1 = ReLU (FC (Xn,θtask)), where Fn ∈ RLn×d, θtask is124

trainable parameters in the fully connected layers.125

3.3 Task-specific feature aggregation126

Our task-specific feature aggregator consists of three modules: CDA, PNM, and WSCL. The CDA127

aims to parameterize the contribution of each patch to the final WSI prediction, helping provide128

interpretable results. The PNM is composed of positive-aware loss and negative-aware loss, which129

is designed to mitigate the noise caused by the large proportion of normal (negative) subregions130

in each WSI. The WSCL considers global image information by pulling positive bags closer and131

pushing negative ones away. The combination of these three modules enables the feature aggregator132

to explore the intra- and inter-WSI complementary information, helping tune the task-specific feature133

layers for more discriminative patch-level representations and further improving weakly-supervised134

classification and localization performance.135

Class-specific deep attention. The CDA module acts as a main branch to aggregate these patch-136

level features Fn = {fn,l}Ln

l=1 into a slide-level vector F̃n using deep attention-based MIL pooling137

[15] that assigns a weight for each patch within WSI to specify its relative contribution to the final138

WSI prediction. This deep attention mechanism is complemented by several fully connected layers.139

We use Ai,l
n to denote the weight score of the lth patch in the nth slide for the ith class, which is140

calculated as141

Ai,l
n =

exp
{

Wi
n

(
tanh

(
θ1f
>
n,l

)
� sigm

(
θ2f
>
n,l

))}
∑Ln

j=1 exp
{

Wi
n

(
tanh

(
θ1f>n,j

)
� sigm

(
θ2f>n,j

))} , (1)

where θ1 ∈ RM×d, θ2 ∈ RM×d, Wi
n ∈ R1×M , and � denotes element-wise multiplication. The142

attention score Ai,l
n ranges from 0 to 1 and the final attention matrix for each class in each slide is143

normalized such that the sum of these weights is 1, i.e.,
∑Ln

l=1A
i,l
n = 1. And then, the weighted144

slide-level feature of the ith class can be represented as F̃i
n ∈ Rd, which is computed by145
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F̃i
n =

Ln∑
l=1

Ai,l
n fn,l, (2)

Next, these features are fed into the ith classifier to drive the corresponding predicted probability146

for the class. Then, softmax is applied over each class to normalize the probability distribution. We147

use pin to represent the probability that the slide belongs to the ith category and yin to denote the148

ground-truth label of the nth slide in the one-hot form. They are used to calculate the MIL-based149

slide classification loss Lmil in the min-batch size of B as follows.150

Lmil = −
1

B

B∑
n=1

C∑
i=0

yin log
(
pin
)
, (3)

In addition to the Lmil, we also consider adding an auxiliary instance discrimination loss to further151

enhance the class-specific features. In specific, we aim to discriminate these high-attention patches152

(top-k with pseudo labels of 1) from low-attention patches (bottom-k with pseudo labels of 0) within153

each WSI, which contains a total of 2k samples for the classification task using a linear classifier154

with binary cross-entropy loss as follows.155

Lins = −
1

2k

2k∑
j=1

(yj log (pj)− (1− yj) log (1− pj)), (4)

where yj and pj denote the pseudo label and predicted probability of the jth instance, respectively.156

The final CDA-based loss LCDA is the summed as follows: LCDA = λ1Lmil + λ2Lins.157

Positive-negative-aware modeling. We propose a PNM module to consider the presence of a158

large number of normal (negative) tissues within positive WSIs, which should be separated from159

the abnormal (positive) regions as much as possible. To achieve this, we split the feature space of160

positive WSI into positive and negative subspaces to enable distinguishable feature learning. In161

specific, we first characterize the relevance of the lth patch to the slide-level prediction by calculating162

its class-agnostic weight score Ãl. Then we use 1− Ãl to weight the slide-level feature that focuses163

on the negative subregions. These new weighted slide features are calculated by164

F
pos

n =
1

Ln

Ln∑
l=1

Ãlfn,l, F
neg

n =
1

Ln

Ln∑
l=1

(1− Ãl)fn,l, (5)

where Fpos

n and Fneg

n are the weighted slide-level feature for the prediction of positive and negative165

samples, respectively. Ãl is the weight score for the lth patch within the WSI, which ranges from 0166

and 1. Then the slide-level prediction probability for positive pposn and negative pnegn features can be167

obtained by feeding Fpos

n and Fneg

n into a fully connected layer with a softmax function. Then, the168

PNM-based classification loss can be calculated as169

LPNM = − 1

B

B∑
n=1

(log pposn − log pnegn ), (6)

where LPNM is a summation of two cross-entropy loss functions: positive-aware classification loss170

and negative-aware classification loss.171

Weakly-supervised cross-slide contrastive learning. Previous contrastive learning methods ap-172

plied on histopathological images adopt patches as positive/negative units [13], which ignores the173

information interaction across slides and captures only local feature representation. Different from174

them, we propose a WSCL that aims to generate more discriminative class-specific features by com-175

paring feature representations across slides, i.e., pulling slides belonging to the same class closer and176

pushing slides belonging to different classes away. Due to the huge heterogeneity within each WSI,177

direct comparisons between WSIs are susceptible to interference from noise, which is instead harmful178
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to network training. Thus, we construct a new series of bags by selecting the most representative179

patches within each WSI based on the class-specific attention obtained above. Specifically, we use180

three types of sub-memory banks to store positive, negative, and hard negative bags, respectively.181

we take the top-k patches within each positive WSI into the positive bags. Similarly, the top-k182

and bottom-k patches within each negative WSI are inserted into hard negative and negative bags,183

respectively. It is noted that samples belonging to different positive categories should be stored in184

separate positive bags. Based on the above definition, our WSCL-based loss can be defined by185

LWSCL =
∑
i∈B

−1
k × |P|

∑
pr∈P

∑
zj∈pr

log
exp (zi · zj/τ)∑

a∈Q exp (zi · za/τ)
, (7)

where B is an anchor bag, zi (i ∈ B) is the ith anchor patch from the anchor bag. For an anchor bag,186

P, N, and H are used to represent its corresponding sets of positive, negative, and hard negative187

bags, and |P|, |N|, and |H| are used to represent their corresponding bag number, respectively. pr is188

used to represent the rth bag in the positive set P. Q = P ∪N ∪H denotes the total bags used in189

the WSCL calculation process.190

The final loss function is the summation of the CDA-based loss, PNM-based loss, and WSCL-191

based loss, which is computed as Ltotal = αLCDA + βLPNM + γLWSCL, where α, β, and γ are192

hyper-parameters used to adjust the contribution of each loss.193

4 Experiments194

In this section, we construct a series of experiments on four public histopathological image datasets195

to verify state-of-the-art performance of our proposed method. The four datasets are collected from196

two different organs, including prostate (PANDA [27] and DiagSet [28]) and breast (Camelyon16197

[29] and BRACS [30]), which are detailed in Table 1.198

Datasets. Camelyon16 is released for the classification of benign tissue (159 WSIs) and metastatic199

breast cancer (240 WSIs). These WSIs are split into a training set of 270 WSIs and a test set of 129200

WSIs by the provider. Although pixel-level annotations are available in the dataset, they are only201

used to evaluate our weakly-supervised localization performance.202

BRACS is released at the BRIGHT challenge for the classification of breast tumor subtyping. We203

follow the challenge for a 3-class WSI classification: non-cancerous (Non. with 288 WSIs), pre-204

cancerous (Pre. with 155 WSIs), and cancerous (Can. with 260 WSIs). The challenge organizer splits205

the total of 703 WSIs into a training set of 423 WSIs, a test-1 set of 80 WSIs, and a test-2 set of 200206

WSIs. It is noted that some well-annotated patches (3566) are also provided for training, which are207

ignored in our WSWC task and are utilized in the training process of semi-supervised classification208

when participating in the challenge.209

PANDA is the largest publicly available WSI data for 2-class prostate cancer classification, which210

releases a total of 10,616 WSIs (7,724 Can. and 2,892 Non.). We split them into training, validation,211

and test sets with a ratio of 7:1:2.212

DiagSet contains three subsets of histopathological images for 2-class prostate cancer classification:213

DiagSet-A, DiagSet-B, and DiagSet-C. These subsets are adopted as three external test sets to214

demonstrate the model generalizability to unseen data. DiagSet-A, DiagSet-B, and DiagSet-C contain215

430 WSIs (Can: 228 WSIs and Non.: 202 WSIs), 4675 WSIs (Can: 2090 and Non.: 2585 WSIs), and216

46 WSIs (Can: 37 WSIs and Non.: 9 WSIs), respectively.217

Evaluation metrics. For a fair comparison with previous methods, we adopt accuracy (ACC), area218

under the curve (AUC), and F1 score as metrics to evaluate our weakly-supervised classification219

performance. Following the Camelyon16 challenge, free response operating characteristic curves220

(FROC) is used to assess the tumor localization performance [29]. The experimental setups can be221

seen in supplementary materials.222
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Table 1: Datasets (No.: number)

WSI No. Patch No.

CAMELYON16 399 920,119
BRIGHT 703 1,552,263

PANDA 10616 1,843,968
DiagSet-A 430 513,274
DiagSet-B 4675 4,819,345
DiagSet-C 46 50,845

Total 15676 9,699,814

Table 2: Weakly-supervised classification results
on Camelyon16 dataset

Methods ACC AUC FROC

Full-sup 0.9302 0.9762 0.6543
Human [29] / 0.9660 0.7325

Mean-pooling 0.7984 0.7620 0.1162
Max-pooling 0.8295 0.8641 0.3313
MIL-RNN [5] 0.8062 0.8064 0.3048
ABMIL [15] 0.8450 0.8653 0.4056
DSMIL [13] 0.8992 0.9165 0.4371
CLAM [10] 0.8682 0.9121 0.4104
TransMIL [8] 0.8992 0.9337 /
Ours 0.9147 0.9566 0.5659

Table 3: Weakly-supervised classification results
on BRACS

ACC AUC F1
Mean pooling 0.7333 0.7294 0.2932
Max pooling 0.7458 0.7992 0.4386
ABMIL [15] 0.7291 0.8055 0.4842
TransMIL [8] 0.7208 0.7863 0.5602
CLAM [10] 0.7583 0.8158 0.5611
DSMIL [13] 0.7644 0.8314 0.6349
Ours 0.8208 0.8650 0.6886

Table 4: Semi-supervised classification results on
BRIGHT challenge (F1 score)

Rank Ave. Non. Pre. Can.

1 (Ours) 0.716 0.725 0.623 0.800
2 0.643 0.564 0.580 0.786
3 0.599 0.675 0.455 0.667
4 0.520 0.637 0.244 0.680
5 0.480 0.530 0.331 0.580
6 0.459 0.388 0.416 0.571

4.1 Results on Camelyon16 dataset223

This subsection validates our weakly-supervised classification and localization capacities on the224

Camelyon16 dataset by comparing it with state-of-the-art related methods. Detailed results are225

shown in Table 2, where the best result is bolded, and the second best is underlined. It is noted that,226

except for the CLAM and TransMIL algorithms, previous methods are all reported in [13], which227

are implemented using their corresponding official codes along with the SSL-pretrained features by228

[13]. The CLAM and TransMIL algorithms are implemented by us using their released code and our229

pretrained features. Thus we can directly compare our aggregation algorithm with these methods.230

As shown in Table 2, our method outperforms other WSWC algorithms to a large extent. For231

example, our method outperforms the previous best-performing TransMIL by around 2% in ACC and232

2% in AUC. The reason can be analyzed as follows. In the Camelyon16 dataset, the percentage of233

anomalous regions within each WSI is typically below 10%. Thus, previous methods are particularly234

susceptible to noise, resulting in possibly missed detection. Our proposed SCL-WC enables distinctive235

categorical feature extraction by intra-WSI and inter-WSI complementary information converging,236

helping alleviate the problem of a small percentage of lesions within WSIs.237

The CDA module assigns a learnable weight for each patch to represent its importance for the WSI238

prediction, which is combined with the feature refinement process in the WSCL and PNM modules239

to promote better lesion localization ability. The detailed diagnosis-positive localization results are240

shown in Table 2, Figure 2, and supplementary materials. As shown in Table 2, our method achieves241

an FROC of 0.5659, which outperforms over 10% than other methods and shows the potential to242

be close to fully-supervised performance with an FROC of 0.6543. In Figure 2 and supplementary243

materials, the warmer colored subregions imply a higher probability of abnormal tissues, which244

visually demonstrates our superior localization performance even for tiny lesions.245
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Figure 2: The visualization of weakly-supervised localization results. These six samples are taken
from the Camelyon16 dataset. In the image pair, left image represents the ground truth with green
lines to mark lesion regions and right image is predicted results by our model where these lesion
regions are highlighted by warm color.

4.2 Results on BRACS, PANDA, and DiagSet datasets246

In this subsection, we first conduct 3-class weakly-supervised classification experiments on the247

BRACS dataset in Table 3. The results of these compared methods are obtained according to their248

released official codes. The 3-class classification task is very challenging due to the indistinguishable249

features between some non-cancerous and pre-cancerous regions (e.g., pathological benign V.S.250

flat epithelial atypia) or between some pre-cancerous and cancerous tissues (e.g., atypical ductal251

hyperplasia V.S. ductal carcinoma in situ). Thus, the overall classification performance is less than252

90% in the current state-of-the-art methods. The previous best-performed method is the DSMIL253

method in the BRACS dataset, however, it shows suboptimal performance in other datasets (e.g.,254

Table 2 and Table 5). Our proposed SCL-WC remains most effective on all of these datasets, which255

reflects its stability.256

Then, in Table 4, we show our results when participating in the 2022 BRIGHT challenge, which is257

achieved using a semi-supervised classification scheme extended from our SCL-WC, with the little258

difference in whether a small number of well-annotated patches are used. As shown in Table 4, our259

method ranked first in the BRIGHT challenge, which shows the high flexibility and scalability of our260

proposed SCL-WC method.261

Next, we validate our algorithm on two larger prostate datasets. Also, extensively external tests262

are performed to further confirm the robustness and generalization performance of our algorithm.263

The detailed results are summarized in Table 5, where the PANDA dataset is used for algorithm264

development and inner validation, and the remaining three subsets of DiagSet are used for external265

tests. The results of these compared methods are obtained using their released codes. As shown266

in Table 5, our method consistently performs better on these datasets. Specifically, our method267

outperforms the CLAM method by around 3% ACC and 2% AUC in the PANDA dataset. In the268
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Table 5: Results on the prostate datasets

PANDA DiagSet-A DiagSet-B DiagSet-C

ACC AUC ACC AUC ACC AUC ACC AUC

Mean pooling 0.8407 0.9386 0.8313 0.9237 0.8197 0.8914 0.8478 0.9159
Max pooling 0.8847 0.9508 0.7330 0.9315 0.7377 0.9371 0.8695 0.9489
ABMIL [15] 0.8804 0.9514 0.7845 0.9145 0.8032 0.9105 0.8695 0.9609
TransMIL [8] 0.8715 0.9408 0.8290 0.9290 0.8246 0.9334 0.9130 0.9669
DSMIL [13] 0.8751 0.9444 0.7072 0.9242 0.8146 0.9431 0.8876 0.9489
CLAM [10] 0.8874 0.9532 0.7822 0.9033 0.8035 0.9051 0.8913 0.9579
Ours 0.9194 0.9753 0.8960 0.9560 0.9191 0.9730 0.9565 0.9939

Table 6: Results of ablation study

Camelyon16 BRACS

ACC AUC ACC AUC

ImageNet + LCDA 0.8370 0.8730 0.7523 0.8114
SSL + LCDA 0.8759 0.9080 0.7635 0.8335
SSL + LCDA + LPNM 0.8814 0.9190 0.7725 0.8403
SSL + LCDA + LPNM + LWSCL (P+N) 0.9069 0.9330 0.7926 0.8512
SSL + LCDA + LPNM + LWSCL (P+N+HN) 0.9147 0.9560 0.8208 0.8650

largest external test set DiagSet-B, our method surpasses DSMIL by around 10% and 3% in ACC269

and AUC, respectively.270

4.3 Ablation study271

We construct a set of ablation experiments in Table 6 to demonstrate the effectiveness of key272

components in our proposed SCL-WC method, including SSL-based feature extractor, LCDA, LPNM,273

and LWSCL (with and without hard negatives).274

As shown in Table 6, the results in the first two rows show that, compared to the ImageNet-275

pretrained network, the SSL-based histopathology-pretrained feature extractor improves around 3%276

on Camelyon16 and 2% on BRACS in terms of AUC. As shown in the second and third rows of Table277

6, our positive-negative-aware loss brings a consistent 1% performance gain across all datasets and278

metrics, which verifies the importance of the PNM module. The effectiveness of the WSCL module279

can be seen in the last three rows of Table 6. When hard-negative samples are not considered, the280

performance is improved by around 2% in both datasets compared to the results on the third row, and281

the performance improves further when hard negative samples are added as shown in the last row of282

Table 6.283

5 Conclusion284

We propose a novel WSWC method called SCL-WC, which is constructed based on a domain-specific285

SSL feature extractor and a task-specific feature aggregator. The feature aggregator includes three286

effective modules: CDA, PNM, and WSCL, which are combined for discriminative patch-level feature287

refinement, providing not only interpretable results but also fine lesion localization. The proposed288

SCL-WC method outperforms state-of-the-art WSWC studies over four publicly available datasets289

for the binary/multiple classification tasks, which also shows good feasibility and scalability in the290

weakly-supervised localization and semi-supervised classification tasks. However, our method should291

be extensively validated in larger cohorts from real-world clinical settings before its deployment, and292

we will explore this in future work.293
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