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ABSTRACT

Standard supervised learning breaks down under data distribution shift. However,
the principle of independent causal mechanisms (ICM, Peters et al. (2017)) can
turn this weakness into an opportunity: one can take advantage of distribution
shift between different environments during training in order to obtain more ro-
bust models. We propose a new gradient-based learning framework whose ob-
jective function is derived from the ICM principle. We show theoretically and
experimentally that neural networks trained in this framework focus on relations
remaining invariant across environments and ignore unstable ones. Moreover, we
prove that the recovered stable relations correspond to the true causal mechanisms
under certain conditions. In both regression and classification, the resulting mod-
els generalize well to unseen scenarios where traditionally trained models fail.

1 INTRODUCTION

Standard supervised learning has shown impressive results when training and test samples follow
the same distribution. However, many real world applications do not conform to this setting, so that
research successes do not readily translate into practice (Lake et al., 2017). The task of Domain
Generalization (DG) addresses this problem: it aims at training models that generalize well under
domain shift. In contrast to domain adaption, where a few labeled and/or many unlabeled examples
are provided for each target test domain, in DG absolutely no data is available from the test domains’
distributions making the problem unsolvable in general.

In this work, we view the problem of DG specifically using ideas from causal discovery. To make
the problem of DG well-posed from this viewpoint, we assume that there exists a feature vector
h?(X) whose relation to the target variable Y is invariant across all environments. Consequently,
the conditional probability p(Y | h?(X)) has predictive power in each environment. From a causal
perspective, changes between domains or environments can be described as interventions; and causal
relationships – unlike purely statistical ones – remain invariant across environments unless explicitly
changed under intervention. This is due to the fundamental principle of “Independent Causal Mech-
anisms” which will be discussed in Section 3. From a causal standpoint, finding robust models is
therefore a causal discovery task (Bareinboim & Pearl, 2016; Meinshausen, 2018). Taking a causal
perspective on DG, we aim at identifying features which (i) have an invariant relationship to the
target variable Y and (ii) are maximally informative about Y .

This problem has already been addressed with some simplifying assumptions and a discrete com-
binatorial search in Magliacane et al. (2018); Rojas-Carulla et al. (2018), but we make weaker as-
sumptions and use gradient based optimization. Gradient based optimization is attractive because it
readily scales to high dimensions and offers the possibility to learn very informative features, in-
stead of merely selecting among predefined ones. Approaches to invariant relations similar to ours
were taken in Ghassami et al. (2017), who restrict themselves to linear relations, and Arjovsky et al.
(2019); Krueger et al. (2020), who minimize an invariant empirical risk objective.

Problems (i) and (ii) are quite intricate because the search space has combinatorial complexity and
testing for conditional independence in high dimensions is notoriously difficult. Our main contribu-
tions to this problem are the following:

• By connecting invariant (causal) relations with normalizing flows, we propose a differen-
tiable two-part objective of the form I(Y ;h(X))+λILI , where I is the mutual information
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andLI enforces the invariance of the relation between h(X) and Y across all environments.
This objective operationalizes the ICM principle with a trade-off between feature informa-
tiveness and invariance controlled by parameter λI . Our formulation generalizes existing
work because our objective is not restricted to linear models.

• We take advantage of the continuous objective in three important ways: (1) We can learn
invariant new features, whereas graph-based methods can only select features from a pre-
defined set. (2) Our approach does not suffer from the scalability problems of combinato-
rial optimization methods as proposed in e.g. Peters et al. (2016) and Rojas-Carulla et al.
(2018). (3) Our optimization via normalizing flows, i.e. in the form of a density estimation
task, facilitates accurate maximization of the mutual information.

• We show how our objective simplifies in important special cases and under which con-
ditions its optimal solution identifies the true causal parents of the target variable Y . We
empirically demonstrate that the new method achieves good results on two datasets pro-
posed in the literature.

2 RELATED WORK

Different types of invariances have been considered in the field of DG. One type is defined on the
feature level, i.e. features h(X) are invariant across environments if they follow the same distri-
bution in all environments (e.g. Pan et al. (2010); Ganin et al. (2016); Ben-David et al. (2007)).
However, this form of invariance is problematic since for instance the distribution of the target vari-
able might change between environments. In this case we might expect that the distribution h(X)
changes as well. A more plausible and theoretically justified type of invariance is the invariance of
relations (Peters et al., 2016; Magliacane et al., 2018; Rojas-Carulla et al., 2018). A relation be-
tween a target Y and some features is invariant across environments, if the conditional distribution
of Y given the features is the same for all environments. Existing approaches model a conditional
distribution for each feature selection and check for the invariance property (Peters et al., 2016;
Rojas-Carulla et al., 2018; Magliacane et al., 2018). However, this does not scale well. We provide
a theoretical result connecting normalizing flows and invariant relations which in turn allows for
gradient-based learning of the problem. In order to exploit our formulation, we also use the Hilbert-
Schmidt-Independence Criterion that has been used for robust learning by Greenfeld & Shalit (2019)
in the one environment setting. Arjovsky et al. (2019) propose a gradient-based learning framework
which exploits a weaker notion of invariance. Their definition is only a necessary condition, but
does not guarantee the more causal definition of invariance we treat in this work. The connection
between DG, invariances and causality has been pointed out for instance by Meinshausen (2018);
Rojas-Carulla et al. (2018); Zhang et al. (2015). From a causal perspective, DG is a causal discovery
task (Meinshausen, 2018).

For studies on causal discovery in the purely observational setting see e.g. Spirtes & Glymour
(1991); Pearl (2009); Chickering (2002), but they cannot take advantage of variations across en-
vironments. The case of different environments has been studied by Hoover (1990); Tian & Pearl
(2001); Mooij et al. (2016); Peters et al. (2016); Bareinboim & Pearl (2016); Magliacane et al.
(2018); Ghassami et al. (2018); Huang et al. (2020). Most of these approaches rely on combinato-
rial methods based on graphical models or are restricted to linear mechanisms, whereas our model
defines a continuous objective for very general non-linear models. The distinctive property of causal
relations to remain invariant across environments in the absence of direct interventions has been
known since at least the 1930s (Frisch, 1938; Heckman & Pinto, 2013). However, its crucial role as
a tool for causal discovery was – to the best of our knowledge– only recently recognized by Peters
et al. (2016). Their estimator – Invariant Causal Prediction (ICP) – returns the intersection of all
subsets of variables that have an invariant relation w.r.t. Y . The output is shown to be the set of the
direct causes of Y under suitable conditions. However, their method assumes an underlying linear
model and must perform an exhaustive search over all possible variable sets XT , which does not
scale. Extensions to time series and non-linear additive noise models were studied in Heinze-Deml
et al. (2018); Pfister et al. (2019). Our treatment of invariance is inspired by these papers and also
discusses identifiability results, i.e. conditions when the identified variables are indeed the direct
causes. Key differences between ICP and our approach are the following: Firstly, we propose a
formulation that allows for a gradient-based learning without strong assumptions on the underlying
causal model such as linearity. Second, while ICP tends to exclude features from the parent set when
in doubt, our algorithm prefers to err in the direction of best prediction performance in this case.
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3 PRELIMINARIES

In the following we introduce the basics of this article as well as the connection between DG and
causality. Basics on causality are presented in Appendix A. We first define our notation as follows:
We denote the set of all variables describing the system under study as X̃ = {X1, . . . , XD}. One of
these variables will be singled out as our prediction target, whereas the remaining ones are observed
and may serve as predictors. To clarify notation, we call the target variable Y ≡ Xi for some
i ∈ {1, . . . , D}, and the remaining observations are X = X̃\{Y }. Realizations of a random variable
are denoted with lower case letters, e.g. xi. We assume that observations can be obtained in different
environments e ∈ E . Symbols with superscript, e.g. Y e, refer to a specific environment, whereas
symbols without refer to data pooled over all environments. We distinguish known environments
e ∈ Eseen, where training data are available, from unknown ones e ∈ Eunseen, where we wish our
models to generalize to. The set of all environments is E = Eseen ∪ Eunseen. We assume that all
random variables have a density pA with probability distribution PA (for some variable or set A).
We consider the environment to be a random variable E and therefore a system variable similar to
Mooij et al. (2016). This gives an additional view on casual discovery and the DG problem.

Independence and dependence of two variables A and B is written as A ⊥ B and A 6⊥ B respec-
tively. Two random variables A,B are conditionally independent given C if P (A,B | C) = P (A |
C)p(B | C). This is denoted with A ⊥ B | C. Intuitively, it means A does not contain any infor-
mation about B if C is known (for details see e.g. Peters et al., 2017). Similarly, one can define
independence and conditional independence for sets of random variables.

3.1 INVARIANCE AND THE PRINCIPLE OF ICM

DG is in general unsolvable because distributions between seen and unseen environments could
differ arbitrarily. In order to transfer knowledge from Eseen to Eunseen, we have to make assumptions
on how seen and unseen environments relate. These assumptions have a close link to causality.

We assume certain relations between variables remain invariant across all environments. A subset
XS ⊂ X of variables elicits an invariant relation or satisfies the invariance property w.r.t. Y over a
subset W ⊂ E of environments if

∀e, e′ ∈W : P (Y e | Xe
S = u) = P (Y e

′
| Xe′

S = u) (1)

for all u where both conditional distributions are well-defined. Equivalently, we can define the in-
variance property by Y ⊥ E | XS and I(Y ;E | XS) = 0 for E restricted to W . The invariance
property for computed features h(X) is defined analogously by the relation Y ⊥ E | h(X).

Although we can only test for (equation 1) in Eseen, taking a causal perspective allows us to derive
plausible conditions – expressed by Assumptions 1 and 2 – for an invariance to remain valid in all
environments E . In brief, we assume that environments correspond to interventions in the system and
invariance arises from the principle of independent causal mechanisms (Peters et al., 2017, ICM).

At first, consider the joint density pX̃(X̃). The chain rule offers a combinatorial number of ways to
decompose this distribution into a product of conditionals. Among those, the causal factorization

pX̃(x1, . . . , xD) =

D∏
i=1

pi(xi | xpa(i)) (2)

is singled out by conditioning each Xi onto its causal parents or direct causes Xpa(i), where
pa(i) denotes the appropriate index set. The special properties of this factorization are discussed
in Peters et al. (2017). The conditionals pi of the causal factorization are called causal mecha-
nisms. An intervention onto the system is defined by replacing one or several factors in the de-
composition with different (conditional) densities p. Here, we distinguish soft-interventions where
pj(xj | xpa(j)) 6= pj(xj | xpa(j)) and hard-interventions where pj(xj | xpa(j)) = pj(xj) is a
density which does not depend on xpa(j) (e.g. an atomic intervention where xj is forced to take a
specific value x). The resulting joint distribution for a single intervention is

pX̃(x1, . . . , xD) = pj(xj | xpa(j))
D∏

i=1,i6=j

pi(xi | xpa(i)) (3)
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and extends to multiple simultaneous interventions in the obvious way. The principle of independent
causal mechanisms (ICM) states that every mechanism acts independently of the others (Peters et al.,
2017). Consequently, an intervention replacing pj with pj has no effect on the other factors pi 6=j ,
as indicated by equation 3. This is a crucial property of the causal decomposition – alternative
factorizations do not exhibit this behavior. Instead, a coordinated modification of several factors is
generally required to model the effect of an intervention in a non-causal decomposition.

We utilize this principle as a tool to train robust models. To do so, we make two additional assump-
tions, similar to Peters et al. (2016) and Heinze-Deml et al. (2018):
Assumption 1. Any differences in the joint distributions pe

X̃
from one environment to the other are

fully explainable as interventions: replacing factors pei (xi | xpa(i)) in environment e with factors
pe

′

i (xi | xpa(i)) in environment e′ (for some subset of the variables) is the only admissible change.
Assumption 2. The mechanism p(y | xpa(Y )) for the target variable is invariant under changes of
environment. In other words, we require conditional independence Y ⊥ E | Xpa(Y ).

Assumption 2 implies that Y must not directly depend on E. In addition, it has important con-
sequences when there exist omitted variables H , which influence Y but have not been measured.
Specifically, if the omitted variables depend on the environment (hence H 6⊥ E) or H contains a
hidden confounder of Xpa(Y ) and Y (the system is not causally sufficient and Xpa(Y ) becomes a
“collider”, hence H 6⊥ E | Xpa(Y )), then Y and E are no longer d-separated by Xpa(Y ) and As-
sumption 2 is unsatisfiable. Then our method will be unable to find an invariant mechanism (see
Appendix B for more details).

If we knew the causal decomposition, we could use these assumptions directly to train a robust model
for Y – we would simply regress Y on its parents Xpa(Y ). However, we only require that a causal
decomposition with these properties exists, but do not assume that it is known. Instead, our method
uses the assumptions indirectly – by simultaneously considering data from different environments –
to identify a stable regressor for Y .

We call a regressor stable if it solely relies on predictors whose relationship to Y remains invariant
across environments, i.e. is not influenced by any intervention. By assumption 2, such a regressor
always exists. However, predictor variables beyond Xpa(Y ) may be used as well, e.g. children of
Y or parents of children, provided their relationships to Y do not depend on the environment. The
case of children is especially interesting: Suppose Xj is a noisy measurement of Y , described by
the causal mechanism Pj(Xj | Y ). As long as the measurement device works identically in all
environments, including Xj as a predictor of Y is desirable, despite it being a child. We discuss
and illustrate Assumption 2 in Appendix B. In general, prediction accuracy will be maximized
when all suitable predictor variables are included into the model. Accordingly, our algorithm will
asymptotically identify the full set of stable predictors for Y . In addition, we will prove under which
conditions this set contains exactly the parents of Y . Note that there are different ideas on whether
most supervised learning tasks conform to this setting (Schölkopf et al., 2012; Arjovsky et al., 2019).

3.2 DOMAIN GENERALIZATION

In order to exploit the principle of ICM for DG, we formulate the DG problem as follows

h? := argmax
h∈H

{
min
e∈E

I(Y e;h(Xe))
}

s.t. Y ⊥ E | h(X) (4)

where h ∈ H denotes a learnable feature extraction function h : RD → RM where M is a hyper-
parameter. This optimization problem defines a maximin objective: The features h(X) should be as
informative as possible about the response Y even in the most difficult environment, while conform-
ing to the ICM constraint that the relationship between features and response must remain invariant
across all environments. In principle, our approach can also optimize related objectives like the av-
erage mutual information over environments. However, very good performance in a majority of the
environments could then mask failure in a single (outlier) environment. We opted for the maximin
formulation to avoid this.

As it stands, equation 4 is hard to optimize, because traditional independence tests for the constraint
Y ⊥ E | h(X) cannot cope with conditioning variables selected from an infinitely large spaceH. A
re-formulation of the DG problem to solve this problem is our main theoretical contribution.
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3.3 NORMALIZING FLOWS

Normalizing flows form a class of probabilistic models that has recently received considerable at-
tention, see Papamakarios et al. (2019) for an in-depth review. They model complex distributions
by means of invertible functions T (chosen from some model space T ) which map the densities of
interest to latent normal distributions. The inverses F = T−1 then act as generative models for the
target distributions. Normalizing flows are typically built with specialized neural networks that are
invertible by construction and have tractable Jacobian determinants.

In our case, we represent the conditional distribution P (Y | h(X)) using a conditional normalizing
flow. To this end, we seek a mapping R = T (Y ;h(X)) that is diffeomorphic in Y such that R ∼
N (0, 1) ⊥ h(X) when Y ∼ P (Y | h(X)). This is a generalization of the well-studied additive
Gaussian noise model R = Y − f(h(X)), see section 4.2. The inverse Y = F (R;h(X)) assumes
the role of a structural equation for the mechanism p(Y | h(X)) with R being the corresponding
noise variable.1 However, in our context it is most natural to learn T (rather than F ) by minimizing
the negative log-likelihood (NLL) of Y under T (Papamakarios et al., 2019), which takes the form

LNLL(T, h) := Eh(X),Y

[
‖T (Y ;h(X)‖2/2− log |det∇yT (Y ;h(X))|

]
+ C (5)

where det∇yT is the Jacobian determinant and C = dim(Y ) log(
√
2π) is a constant that can be

dropped. If we consider the NLL on a particular environment e ∈ E , we denote this with LeNLL.
Lemma 1 shows that normalizing flows optimized by NLL are indeed applicable to our problem:
Lemma 1. (proof in Appendix C) Let h?, T ?:= argminh∈H,T∈T LNLL(T, h) be the solution of the
NLL minimization problem on a sufficiently rich function space T . Then the following properties are
guaranteed for arbitrary setsH of feature extractors:

(a) h? also maximizes the mutual information, i.e. h? = g? with g? = argmaxg∈H I(g(X);Y )

(b) h? is independent of the flow’s latent variable: h?(X) ⊥ R with R = T ?(Y ;h?(X)).

Statement (a) guarantees that h? extracts as much information about Y as possible. Hence, the
objective (4) becomes equivalent to optimizing (5) when we restrict the space H of admissi-
ble feature extractors to the subspace H⊥ satisfying the invariance constraint Y ⊥ E | h(X):
argminh∈H⊥

maxe∈E minT∈T LeNLL(T ;h) = argmaxh∈H⊥
mine∈E I(Y

e;h(Xe)) (Appendix
C). Statement (b) ensures that the flow indeed implements a valid structural equation, which re-
quires that R can be sampled independently of the features h(X). More details about normalizing
flows can be found in Appendix C.

4 METHOD

In the following we propose a way of indirectly expressing the constraint in equation 4 via normal-
izing flows. Thereafter, we combine this result with Lemma 1 to obtain a differentiable objective for
solving the DG problem. We also present important simplifications for least squares regression and
softmax classification and discuss relations of our approach with causal discovery.

4.1 LEARNING THE INVARIANCE PROPERTY

The following theorem establishes a connection between invariant relations, prediction residuals
and normalizing flows. The key consequence is that a suitably trained normalizing flow translates
the statistical independence of the latent variable R from the features and environment (h(X), E)
into the desired invariance of the mechanism P (Y | h(X)) under changes of E. We will exploit this
for an elegant reformulation of the DG problem (4) into the objective (7) below.
Theorem 1. Let h be a differentiable function and Y,X, E be random variables. Furthermore, let
R = T (Y ;h(X)) be a continuous, differentiable function that is a diffeomorphism in Y . Suppose
that R ⊥ (h(X), E). Then, it holds that Y ⊥ E | h(X).

Proof. The decomposition rule for the assumption R ⊥ (h(X), E) (1) implies R ⊥ h(X) (2). To
simplify notation, we define Z := h(X). Because T is invertible in Y and due to the change of

1F is the concatenation of the normal CDF with the inverse CDF of P (Y | h(X)), see Peters et al. (2014).
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variables (c.o.v.) formula, we obtain

pY |Z,E(y | z, e)
(c.o.v.)
= pR|Z,E(T (y, z) | z, e)

∣∣∣∣det ∂T∂y (y, z)
∣∣∣∣ (1)= pR(r)

∣∣∣∣det ∂T∂y (y, z)
∣∣∣∣

(2)
= pR|Z(r | z)

∣∣∣∣det ∂T∂y (y, z)
∣∣∣∣ (c.o.v.)= pY |Z(y | z).

This implies Y ⊥ E | Z.
The theorem states in particular that if there exists a suitable diffeomorphism T such that R ⊥
(h(X), E), then h(X) satisfies the invariance property w.r.t. Y . Note that if Assumption 2 is violated,
the condition R ⊥ (h(X), E) is unachievable in general and therefore the theorem is not applicable
(see Appendix B). We use Theorem 1 in order to learn features h that meet this requirement. In
the following, we denote a conditional normalizing flow parameterized via θ with Tθ. Furthermore,
hφ denotes a feature extractor implemented as a neural network parameterized via φ. We can relax
condition R ⊥ (hφ(X), E) by means of the Hilbert Schmidt Independence Criterion (HSIC), a
kernel-based independence measure (see Appendix D for the mathematical definition and Gretton
et al. (2005) for details). This loss, denoted as LI , penalizes dependence between the distributions
of R and (hφ(X), E). The HSIC guarantees that

LI
(
PR, Phφ(X),E

)
= 0 ⇐⇒ R ⊥ (hφ(X), E) (6)

where R = Tθ(Y ;hφ(X)) and PR, Phφ(X),E are the distributions implied by the parameter choices
φ and θ. Due to Theorem 1, minimization of LI(PR, Phφ(X),E) w.r.t. φ and θ will thus approximate
the desired invariance property Y ⊥ E | hφ(X), with exact validity upon perfect convergence.

When R ⊥ (hφ(X), E) is fulfilled, the decomposition rule implies R ⊥ E as well. However, if
the differences between environments are small, empirical convergence is accelerated by adding a
Wasserstein loss which explicitly enforces the latter, see Appendix D and section 5.2 for details.

4.2 EXPLOITING INVARIANCES FOR PREDICTION

Equation 4 can be re-formulated as a differentiable loss using a Lagrange multiplier λI on the HSIC
loss. λI acts as a hyperparameter to adjust the trade-off between the invariance property of hφ(X)
w.r.t. Y and the mutual information between hφ(X) and Y . See Appendix E for algorithm details.

Normalizing Flows Using Lemma 1(a), we maximize mine∈E I(Y
e;hφ(X

e)) by minimizing
maxe∈E{LNLL(Tθ, hφ)} w.r.t. φ, θ. To achieve the described trade-off between goodness-of-fit and
invariance, we therefore optimize

argmin
θ,φ

(
max
e∈E

{
LNLL(Tθ, hφ)

}
+ λILI(PR, Phφ(X),E)

)
(7)

whereRe = Tθ(Y
e, hφ(X

e)) and λI > 0. The first term maximizes the mutual information between
hφ(X) and Y in the environment where the features are least informative about Y and the second
term aims to ensure an invariant relation.

Additive Noise Let fθ be a regression function. Solving for the noise term gives R = Y − fθ(X)
which corresponds to a diffeomorphism in Y , namely Tθ(Y ;X) = Y − fθ(X). If we make two
simplified assumptions: (i) the noise is gaussian with zero mean and (ii) R ⊥ fφ(X), then we obtain

I(Y ; fθ(X)) = H(Y )−H(Y | fθ(X)) = H(Y )−H(R | fθ(X))

(ii)
= H(Y )−H(R)

(i)
= H(Y )− 1/2 log(2πeσ2)

where σ2 = E[(Y −fθ(X))2]. In this case maximizing the mutual information I(Y ; fθ(X)) amounts
to minimizing E[(Y − fθ(X))2] w.r.t. θ, i.e. the standard L2-loss. From this, we obtain a simplified
version of equation 4 via

argmin
θ

(
max
e∈Eseen

{
E
[
(Y e − fθ(Xe))2

]}
+ λILI(PR, Pfθ(X),E)

)
(8)

where Re = Y − fθ(Xe) and λI > 0. Under the conditions stated above, the objective achieves the
mentioned trade-off between information and invariance.
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Alternatively we can view the problem as to find features hφ : RD → Rm such that I(hφ(X), Y )
gets maximized under the assumption that there exists a model fθ(hφ(X)) + R = Y where R
is independent of h(X) and R is gaussian. In this case we obtain similarly as above the learning
objective

argmin
θ,φ

(
max
e∈Eseen

{
E
[
(Y e − fθ(hφ(Xe)))2

]}
+ λILI(PR, Phφ(X),E)

)
(9)

Classification The expected cross-entropy loss is given through

−EX,Y

[
f(X)Y − log

(∑
c

exp(f(X)c

)]
where f : X → Rm returns the logits. Minimizing the expected cross-entropy loss amounts to
maximizing the mutual information between f(X) and Y (Qin & Kim, 2019; Barber & Agakov,
2003, eq. 3). Let T (Y ; f(X)) = Y · softmax(f(X)) with component-wise multiplication, then T
is invertible in Y conditioned on the softmax output. Now we can apply the same invariance loss as
above in order to obtain a solution to equation 4.

4.3 RELATION TO CAUSAL DISCOVERY

Under certain conditions, solving equation 4 leads to features which correspond to the direct causes
of Y (identifiability). In this case, we obtain the causal mechanism by computing the conditional
distribution of Y given the direct causes. Therefore equation 4 can also be seen as approximation of
the causal mechanism when the identifiability conditions are met. The following Proposition states
under which assumptions the direct causes of Y can be recovered by exploiting Theorem 1.

Proposition 1. We assume that the underlying causal graph G is faithful with respect to PX̃,E . We
further assume that every child of Y inG is also a child ofE inG. A variable selection h(X) = XT

corresponds to the direct causes if the following conditions are met: (i) T (Y ; (X)) ⊥ E, h(X)
is satisfied for a diffeomorphism T (·;h(X)), (ii) h(X) is maximally informative about Y and (iii)
h(X) contains only variables from the Markov blanket of Y .

The Markov blanket of Y is the only set of vertices which are necessary to predict Y (see Appendix
A). We give a proof of Proposition 1 as well as a discussion in Appendix F.

For reasons of explainability and for the task of causal discovery, we employ a gating function hφ in
order to obtain a variable selection. We use the same gating function as in Kalainathan et al. (2018).
The gating function hφ represents a 0-1 mask of the input. A complexity loss L(φ) represents how
many variables are selected and therefore penalizes to include variables. Intuitively speaking, if we
search for a variable selection that conforms to the conditions in Proposition 1, the complexity loss
would exclude all non-task relevant variables. Therefore, ifH is the set of gating functions, then h?
in equation 4 would correspond to the direct causes of Y under the conditions listed in Proposition
1. The complexity loss as well as the gating function can be optimized by gradient descent.

5 EXPERIMENTS

5.1 SYNTHETIC CAUSAL GRAPHS

To evaluate our methods for the regression case, we follow the experimental design of Heinze-
Deml et al. (2018). It rests on the causal graph in Figure 1. Each variable X1, ..., X6 is cho-
sen as the regression target Y in turn, so that a rich variety of local configurations around Y is
tested. The corresponding structural equations are selected among four model types of the form
f(Xpa(i), Ni) =

∑
j∈pa(i) mech(ajXj) + Ni, where ‘mech’ is either the identity (hence we get a

linear SCM), Tanhshrink, Softplus or ReLU, and one multiplicative noise mechanism of the form
fi(Xpa(i), Ni) = (

∑
j∈pa(i) ajXj) · (1 + (1/4)Ni) + Ni, resulting in 1365 different settings. For

each setting, we define an observational environment (using exactly the selected mechanisms) and
three interventional ones, where soft or do-interventions are applied to non-target variables accord-
ing to Assumptions 1 and 2 (full details in Appendix G). Each inference model is trained on 1024
realizations of three environments, whereas the fourth one is held back for DG testing. The tasks are
to identify the parents of the current target variable Y , and to train a transferable regression model
based on this parent hypothesis. We measure performance by the accuracy of the detected parent sets
and by the L2 regression errors relative to the regression function using the ground-truth parents.
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Figure 2: Detection accuracy of the direct
causes for baselines and our gating architec-
tures, broken down for different target vari-
ables (left) and mechanisms (right: Linear,
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Figure 1: Directed graph
of our SCM. Target vari-
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X1, . . . , X6 in turn.

We evaluate four models derived from our theory: two normalizing flows
as in equation 4 with and without gating mechanisms (FlowG, Flow)
and two additive noise models, again with and without gating mecha-
nism (ANMG, ANM), using a feed-forward network with the objective
in equation 9 (ANMG) and equation 8 (ANM). For comparison, we train
three baselines: ICP (a causal discovery algorithm also exploiting ICM,
but restricted to linear regression, Peters et al. (2016)), a variant of the
PC-Algorithm (PC-Alg, see Appendix G.4) and standard empirical-risk-
minimization ERM, a feed-forward network minimizing the L2-loss,
which ignores the causal structure by regressing Y on all other variables.
We normalize our results with a ground truth model (CERM), which is
identical to ERM, but restricted to the true causal parents of the respec-
tive Y .

The accuracy of parent detection is shown in Figure 2. The score indi-
cates the fraction of the experiments where the exact set of all causal parents was found and all
non-parents were excluded. We see that the PC algorithm performs unsatisfactorily, whereas ICP
exhibits the expected behavior: it works well for variables without parents and for linear SCMs, i.e.
exactly within its specification. Among our models, only the gating ones explicitly identify the par-
ents. They clearly outperform the baselines, with a slight edge for ANMG, as long as its assumption
of additive noise is fulfilled.

Figure 3 and Table 1 report regression errors for seen and unseen environments, with CERM indi-
cating the theoretical lower bound. The PC algorithm is excluded from this experiment due to its
poor detection of the direct causes. ICP wins for linear SCMs, but otherwise has largest errors, since
it cannot accurately account for non-linear mechanisms. ERM gives reasonable test errors (it even
overfits the training data), but generalizes poorly to unseen environments, as expected. Our models
perform quite similarly to CERM. We again find a slight edge for ANMG, except under multiplica-
tive noise, where ANMG’s additive noise assumption is violated and Flow is superior. All methods
(including CERM) occasionally fail in the domain generalization task, indicating that some DG
problems are more difficult than others, e.g. when the differences between seen environments are
too small to reliably identify the invariant mechanism or the unseen environment requires extrapo-
lation beyond the training data boundaries. Models without gating (Flow, ANM) seem to be slightly
more robust in this respect. A detailed analysis of our experiments can be found in Appendix G.

5.2 COLORED MNIST

To demonstrate that our model is able to perform DG in the classification case, we use the same
data generating process as in the colored variant of the MNIST-dataset established by Arjovsky
et al. (2019), but create training instances online rather than upfront. The response is reduced to two
labels – 0 for all images with digit {0, . . . , 4} and 1 for digits {5, . . . 9} – with deliberate label noise

8
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Models Linear Tanhshrink Softplus ReLU Mult. Noise

FlowG (ours) 1.05...4.2 1.08...4.8 1.09...5.52 1.08...5.7 1.55...8.64
ANMG (ours) 1.02...1.56 1.03...2.23 1.04...4.66 1.03...4.32 1.46...4.22
Flow (ours) 1.08...1.61 1.14...1.57 1.14...1.55 1.14...1.54 1.35...4.07
ANM (ours) 1.05...1.52 1.15...1.47 1.14...1.47 1.15...1.54 1.48...4.19
ICP (Peters et al., 2016) 0.99...25.7 1.44...20.39 3.9...23.77 4.37...23.49 8.94...33.49
ERM 1.79...3.84 1.89...3.89 1.99...3.71 2.01...3.62 2.08...5.86

CERM (true parents) 1.06...1.89 1.06...1.84 1.06...2.11 1.07...2.15 1.37...5.1

Table 1: Medians and upper 95% quantiles for domain generalization L2 errors (i.e. on unseen
environments) for different model types and data-generating mechanisms (lower is better).
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Figure 5: Performance of the model in the
three environments, depending on the hyper-
parameter λ1.

that limits the achievable shape-based classification accuracy to 75%. To confuse the classifier, digits
are additionally colored such that colors are spuriously associated with the true labels at accuracies
of 90% resp. 80% in the first two environments, whereas the association is only 10% correct in the
third environment. A classifier naively trained on the first two environments will identify color as the
best predictor, but will perform terribly when tested on the third environment. In contrast, a robust
model will ignore the unstable relation between colors and labels and use the invariant relation,
namely the one between digit shapes and labels, for prediction. We supplement the HSIC loss with
a Wasserstein term to explicitly enforce R ⊥ E, i.e. LI = HSIC + L2(sort(Re1), sort(Re2)) (see
Appendix D). This gives a better training signal as the HSIC alone, since the difference in label-
color association between environments 1 and 2 (90% vs. 80%) is deliberately chosen very small
to make the task hard to learn. Experimental details can be found in Appendix H. Figure 4 shows
the results for our model: Naive training (λ1 = 0, i.e. invariance of residuals is not enforced) gives
accuracies corresponding to the association between colors and labels and thus completely fails
in test environment 3. In contrast, our model performs close to the best possible rate for invariant
classifiers in environments 1 and 2 and still achieves 67% in environment 3. The recently proposed
REx method from (Krueger et al., 2020) even got 68.7% accuracy on the unseen environment. It
will be interesting to investigate whether this is a deeper consequence of their objective or just an
insignificant effect of better network tuning and minor differences in experimental protocols. Figure
5 demonstrates the trade-off between goodness of fit in the training environments 1 and 2 and the
robustness of the resulting classifier: the model’s ability to perform DG to the unseen environment
3 improves as λI increases. If λI is too large, it dominates the classification training signal and
performance breaks down in all environments. However, the choice of λI is not critical, as good
results are obtained over a wide range of settings.
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