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Abstract

Deep neural networks achieve remarkable performances on a wide range of tasks1

with the aid of large-scale labeled datasets. Yet these datasets are time-consuming2

and labor-exhaustive to obtain on realistic tasks. To mitigate the requirement for3

labeled data, self-training is widely used in semi-supervised learning by iteratively4

assigning pseudo labels to unlabeled samples. Despite its popularity, self-training is5

well-believed to be unreliable and often leads to training instability. Our experimen-6

tal studies further reveal that the bias in semi-supervised learning arises from both7

the problem itself and the inappropriate training with potentially incorrect pseudo8

labels, which accumulates the error in the iterative self-training process. To reduce9

the above bias, we propose Debiased Self-Training (DST). First, the generation and10

utilization of pseudo labels are decoupled by two parameter-independent classifier11

heads to avoid direct error accumulation. Second, we estimate the worst case12

of self-training bias, where the pseudo labeling function is accurate on labeled13

samples, yet makes as many mistakes as possible on unlabeled samples. We then14

adversarially optimize the representations to improve the quality of pseudo labels15

by avoiding the worst case. Extensive experiments justify that DST achieves an16

average improvement of 6.3% against state-of-the-art methods on standard semi-17

supervised learning benchmark datasets and 18.9% against FixMatch on 13 diverse18

tasks. Furthermore, DST can be seamlessly adapted to other self-training methods19

and help stabilize their training and balance performance across classes in both20

cases of training from scratch and finetuning from pre-trained models.21

1 Introduction22

Deep learning has achieved great success in many machine learning problems in the past decades,23

especially where large-scale labeled datasets are present. In real-world applications, however,24

manually labeling sufficient data is time-consuming and labor-exhaustive. To reduce the requirement25

for labeled data, semi-supervised learning (SSL) improves the data efficiency of deep models by26

learning from a few labeled samples and a large number of unlabeled samples [15, 25, 37, 6]. Among27

them, self-training is an effective approach to deal with the lack of labeled data. Typical self-training28

methods [25, 35] assign pseudo labels to unlabeled samples with the model’s predictions and then29

iteratively train the model with these pseudo labeled samples as if they were labeled examples.30

Although self-training has achieved great advances in benchmark datasets, they still exhibit large31

training instability and extreme performance imbalance across classes. For instance, the accuracy of32

FixMatch [35], one of the state-of-the-art self-training methods, fluctuates greatly when trained from33

scratch (see Figure 7). Though its performance will gradually recover after a sudden sharp drop, this34

is still not expected, since in most real-world applications, pre-trained models are more often adopted35

[12, 6, 19], and the performance of pre-trained models is difficult to recover after a drastic decline36

due to catastrophic forgetting [20]. Besides, although FixMatch improves the average accuracy, it37

also leads to the Matthew effect, i.e., the accuracy of well-behaved categories is further increased38
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while that of poorly-behaved ones is decreased to nearly zero (see Figure 4). This is also not expected,39

since most machine learning models prefer performance balance across categories, even when the40

class imbalance exists in the training data [51]. The above findings are caused by the bias between41

the pseudo labeling function with the unknown target labeling function. Training with biased and42

unreliable pseudo labels has the chance to accumulate errors and ultimately lead to performance43

fluctuations. And for those poorly-behaved categories, the bias of the pseudo labels is worse and will44

be further enhanced as self-training progresses, ultimately leading to the Matthew effect.45

To escape from the dilemma, we first delved into the bias issues arising from the self-training process46

and found that they can be briefly grouped into two kinds: (1) Data bias which is the bias inherent47

in the SSL tasks; (2) Training bias which refers to the bias increment brought by self-training with48

incorrect pseudo labels. Further, we present Debiased Self-Training (DST), a novel approach to49

decrease the above bias in self-training. Specifically, to reduce the training bias, the classifier head50

is only trained with clean labeled samples and no longer trained with unreliable pseudo-labeled51

samples. In other words, the generation and utilization of pseudo labels are decoupled to mitigate52

bias accumulation and boost the model’s tolerance to biased pseudo labels. Further, to decrease the53

data bias which cannot be calculated directly, we turn to estimate the worst case of training bias that54

implicitly reflects the data bias. Then we optimize the representations to decrease the worst-case bias55

and thereby improve the quality of pseudo labels.56

The contributions of this work are summarized as follows: (1) We systematically analyze the problem57

and the causes of self-training bias in SSL. (2) We propose DST, a novel approach to mitigate the58

self-training bias and boost the stability and performance balance across classes, as well as a universal59

add-on for mainstream self-training methods. (3) We conduct extensive experiments and validate60

that DST achieves an average improvement of 6.3% against state-of-the-art methods on standard SSL61

benchmarks datasets and 18.9% against FixMatch on 13 diverse tasks.62

2 Related Work63

Self-training [46, 32, 15, 25] is a widely-used approach to utilize unlabeled data. Pseudo Label [25],64

one popular self-training method, iteratively generates pseudo labels and utilizes them with the same65

model. However, this paradigm suffers from the problem of confirmation bias [1], where the learner66

struggles to correct its own mistakes when learning from inaccurate pseudo labels. The bias issue67

is also mentioned in DebiasMatch [40] where they define the bias as the quantity imbalance for68

each category. Note that the bias in our paper refers to the deviation between the pseudo labeling69

function and the ground truth labeling function, which is a more essential problem existing in most70

self-training methods. Recent works mainly tackle this bias issue from the following two aspects.71

Generate higher-quality pseudo labels. MixMatch [3] averages predictions from multiple aug-72

mentations as pseudo labels. ReMixMatch [2], UDA [43], and FixMatch [35] adopt confidence73

thresholds to generate pseudo labels on weakly augmented samples and utilize these pseudo-labels74

as annotations for strongly augmented samples. Dash [45] and FlexMatch [48] dynamically adjust75

the thresholds in a curriculum learning manner. Label Propagation methods [34, 18] assign pseudo76

labels with the density of the local neighborhood. Meta Pseudo Labels [30] proposes to generate77

pseudo labels with a meta learner. Different from the above methods that manually design specific78

criteria to improve the quality of pseudo labels, we estimate the worst case of self-training bias and79

adversarially optimize the representations to improve the quality of pseudo labels automatically.80

Improve tolerance to inaccurate pseudo labels. To mitigate confirmation bias, existing methods81

maintain a mismatch between the generation and utilization of pseudo labels. Temporal Ensembling82

[24] and Mean Teacher [37] generate pseudo labels from the average of previous predictions or an83

exponential moving average of the model, respectively. Noisy Student [44] assigns pseudo labels84

by a fixed teacher from the previous round. Co-training [4], MMT [14] and Multi-head Tri-training85

[33] introduce multiple models or classifier heads and learn in an online mutual-teaching manner. In86

these methods, each classifier head is still trained with potentially incorrect pseudo labels generated87

by other heads. In contrast, in our method, the classifier head that generates pseudo labels is never88

trained with pseudo labels, leading to better tolerance to inaccurate pseudo labels (see Table 3).89

Self-supervised methods [12, 16] are also used on unlabeled data to improve the model with few90

labeled samples, either in the pre-training stage [6] or in the downstream tasks [39]. However, the91

training of self-supervision usually relies on big data and heavy computation, which is not feasible in92
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most applications. Besides, although these methods avoid the use of unreliable pseudo labels, it is93

difficult for them to learn task-specific information from unlabeled data for better performance.94

3 Analysis of Bias in Self-Training95

In this section, we provide some analysis of where the bias in self-training comes from. Let P denote a96

distribution over input space X . For classification with K classes, let P k denote the class-conditional97

distribution of x conditioned on ground truth f∗(x) = k. Assume that pseudolabeler fpl is obtained98

via training a classifier on the n labeled data P̂n. Let M(fpl) ≜ {x : fpl(x) ̸= f∗(x)} denote the99

mistaken pseudolabeled samples. The bias in the self-training refers to the deviation between the100

learned decision hyperplanes and the true decision hyperplanes, which can be measured by the101

fraction of incorrectly pseudolabeled samples in any classes B(fpl) = {P k(M(fpl))}Kk=1 [41]. By102

analyzing self-training bias under different training conditions, we have the following findings.103

The sampling of labeled data will largely influence the self-training bias. As shown in Figure 1, when104

the data sampling is different, the accuracy of the same category may be very high or very low. The105

reason is that the distances between different data points and the true decision hyperplanes are not the106

same, with some supporting data points closer and others far away. When there are few labeled data,107

there may be a big difference in the distances between supporting data of each category and the true108

decision hyperplanes, thus the learned decision hyperplanes will be biased towards some categories.109

The pre-trained representations also affect the self-training bias. Figure 2 shows that different110

pre-trained representations lead to different category bias, even if the pre-trained dataset and the111

downstream labeled dataset are both identical. One possible reason is that the representations learned112

by different pre-trained models focus on different aspects of the data [50]. Therefore, the same113

data could also have different distances to the decision hyperplanes in the representation level with114

different pre-trained models.115

Training with pseudo labels aggressively in turn enlarges the self-training bias on some categories.116

Figure 3 shows that after training with pseudo labels (e.g., using FixMatch), the performance gap117

for different categories greatly enlarges, with the accuracy of some categories increasing from 60%118

Sample 2Sample 1 Sample 3 Sample 4

Figure 1: Effect of data sampling. Top-1 accuracy of 7 randomly selected categories when trained
with different labeled data sampled from CIFAR-100. The same category (such as cattle) may have
completely different accuracy in different samples. Following FixMatch [35], 4 labeled data are
sampled for each category by default in our analysis.

(a) Supervised Pre-Train (b) Unsupervised Pre-Train

Figure 2: Effect of pre-trained representations.
Accuracy of 7 randomly selected categories
with different pre-trained models on CIFAR-100.
Different pre-trained models show different cat-
egory preferences.

(a) Baseline (b) FixMatch

Figure 3: Effect of self-training algorithm. Ac-
curacy of 7 randomly selected categories with
different training methods on CIFAR-100. Fix-
Match largely increases the bias of poorly-
behaved categories.
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to 80% and that of some categories dropping from 15% to 0%. The reason is that for well-behaved119

categories, the pseudo labels are almost accurate, thus using them for training could further reduce120

the bias. Yet for many poorly-behaved categories, the pseudo labels are not reliable, and the common121

self-training mechanism that uses these incorrect pseudo labels to train the model will further increase122

the bias, and fail to correct it back in the follow-up training.123

Based on the above observations, we divide the bias in self-training into two categories.124

Figure 4: Error rate of pseudo labels in any classes
on CIFAR-100 (ResNet50, 4 labels per category).
FixMatch decreases the bias on well-behaved cat-
egories while increasing that of poorly-behaved
categories. In contrast, DST effectively balances
the performance between different categories.

Data bias: the bias inherent in SSL tasks, such125

as the bias of sampling and pre-trained represen-126

tations on unlabeled data. Formally, data bias127

is defined as B(fpl(P̂n, ψ0))−B(f∗) (blue area128

in Fig. 4), where the pseudolabeler fpl(P̂n, ψ0)129

is obtained from a biased sampling P̂n with a130

biased parameter initialization ψ0.131

Training bias: the bias increment brought by132

some unreasonable training strategies. For-133

mally, training bias is B(fpl(P̂n, ψ0,S)) −134

B(fpl(P̂n, ψ0)) (yellow area in Fig. 4) where135

fpl(P̂n, ψ0,S) is a pseudolabeler obtained with136

self-training strategy S.137

Next we will introduce how to reduce training bias and data bias in self-training (red area in Fig. 4).138

4 Debiased Self-Training139

In SSL, we have a labeled dataset L = {(xli, yli}
nl
i=1 of nl labeled samples and an unlabeled dataset140

U = {(xuj )}
nu
j=1 of nu unlabeled samples, where the size of the labeled dataset is usually much141

smaller than that of the unlabeled dataset, i.e., nl ≪ nu. Denote ψ the feature generator, and h the142

task-specific head. The standard cross-entropy loss on weakly augmented labeled examples is143

LL(ψ, h) =
1

nl

nl∑
i=1

LCE
(
(h ◦ ψ ◦ α)(xli), yli

)
, (1)

where α is the weak augmentation function. Since there are few labeled samples, the feature generator144

and the task-specific head will easily over-fit, and typical SSL methods use these pseudo labels on145

plenty of unlabeled data to decrease the generalization error. Different SSL methods design different146

pseudo labeling function f̂ [25, 45, 31]. Take FixMatch [35] for an instance. FixMatch first generates147

predictions p̂ = (h ◦ ψ ◦ α)(x) on a weakly augmented version of given unlabeled images, and148

adopts a confidence threshold τ to filter out unreliable pseudo labels149

f̂ψ,h(x) =

{
argmax p̂, max p̂ ≥ τ,

−1, otherwise,
(2)

where f̂ψ,h refers to the pseudo labeling by model h ◦ ψ, hyperparameter τ specifies the threshold150

above which a pseudo label is retained and −1 indicates that this pseudo label is ignored in training.151

Then FixMatch utilizes selected pseudo labels to train on strongly augmented unlabeled images,152

LU (ψ, h, f̂) =
1

nu

nu∑
j=1

LCE
(
(h ◦ ψ ◦ A)(xuj ), f̂(x

u
j )
)
, (3)

where f̂ is a notation of general pseudo labeling function and A is the strong augmentation function.153

As shown in Figure 5(a), the optimization objective for FixMatch is154

min
ψ,h

LL(ψ, h) + λLU (ψ, h, f̂ψ,h), (4)

where λ is the trade-off between the loss on labeled data and that on unlabeled data. FixMatch155

filters out low-confidence samples during the pseudo labeling process, yet two issues remain: (1) The156
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pseudo labels are generated and utilized by the same head, which leads to the training bias, i.e., the157

errors of the model might be amplified as the self-training progresses. (2) When trained with extreme158

few labeled samples, the problem of unreliable pseudo labeling caused by data bias cannot be ignored159

anymore even with the confidence threshold mechanism. To tackle the above issues, we propose two160

important designs to decrease training bias and data bias in Section 4.1 and 4.2 respectively.161

4.1 Generate and utilize pseudo labels independently162

The training bias of FixMatch stems from the way of training on the pseudo labels generated by163

itself. To alleviate this bias, some methods turn to generate pseudo labels from a better teacher model,164

such as the moving average of the original model [37] in Figure 5(b) or the model obtained from the165

previous round of training [44] in Figure 5(c), and then utilize these pseudo labels to train both the166

feature generator ψ and the task-specific head h. However, there is still a tight relationship between167

the teacher model that generates pseudo labels and the student model that utilizes pseudo labels in168

the above methods, and the decision hyperplanes of the student model h ◦ ψ strongly depend on the169

biased pseudo labeling f̂ . As a result, training bias is still large in the self-training process.

Forward Propagation

EMA EMA

head

(a) Pseudo Labeling / FixMatch (b) Mean Teacher (c) Noisy Student (d) Ours (DST)

student

teacher

generator generator

head

pseudo head

Backward Propagation

Labeled Data Pseudo Label

student

teacher

Parameter Replacement

T+1

T

T-1

Independent Model

Copied ModelUnlabeled Data

Figure 5: Comparisons on how different self-training methods generate and utilize pseudo labels.
(a) Pseudo Labeling and FixMatch generate and utilize pseudo labels on the same model. (b) Mean
Teacher generates pseudo labels from the Exponential Moving Average (EMA) of the current model.
(c) Noisy Student generates pseudo labels from the teacher model which is obtained from the previous
round of training. (d) DST generates pseudo labels from head h and utilizes pseudo labels on a
parameter independent pseudo head hpseudo.

170

To further decrease the training bias when utilizing the pseudo labels, we optimize the task-specific171

head h, only with the clean labels on L and without any unreliable pseudo labels from U . To prevent172

the deep models from over-fitting to the few labeled samples, we still use pseudo labels, but only173

for learning a better representation. As shown in Figure 5(d), we introduce a pseudo head hpseudo,174

which is connected to the feature generator ψ and only optimized with pseudo labels from U . Then175

the training objective is176

min
ψ,h,hpseudo

LL(ψ, h) + λLU (ψ, hpseudo, f̂ψ,h), (5)

where the pseudo labels are generated by head h and utilized by a completely parameter independent177

pseudo head hpseudo. Although h and hpseudo are fed with features from the same backbone network,178

their parameters are independent, thus training the pseudo head hpseudo with some wrong pseudo179

labels will not accumulate the bias of head h directly in the iterative self-training process. Note that180

the pseudo head hpseudo is only responsible for gradient backpropagation to the feature generator ψ181

during training and will be discarded during inference, and thus will introduce no inference cost.182

4.2 Reduce generation of erroneous pseudo labels183

Section 4.1 presents a solution to reduce the training bias, yet the data bias still exists in the pseudo184

labeling f̂ . As shown in Figure 6(a), due to the data bias, labeled samples of each class have different185

distances to the decision hyperplanes in the representation space, which leads to a deviation between186

the learned hyperplanes and the real decision hyperplanes, especially when the size of labeled samples187
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Different Classes Unlabeled DataTrue Hyperplane Learnt Hyperplane Worst Hyperplane

(a) (b) (c) 

Figure 6: Concept explanations. (a) Shift between the hyperplanes learned on limited labeled data
and the true hyperplanes. (b) The worst hyperplanes are hyperplanes that correctly distinguish labeled
samples while making as many mistakes as possible on unlabeled samples. (c) Feature representations
are optimized to improve the performance of the worst hyperplanes.

is very small. As a result, pseudo labeling f̂ is very likely to generate incorrect pseudo labels on188

unlabeled data points that are close to these biased decision hyperplanes. And our objective now is to189

optimize the feature representations to reduce the data bias, and finally improve the quality of pseudo190

labels.191

Since we have no labels for U , we cannot directly measure and thereby reduce data bias. Yet training192

bias has some correlations with data bias. Recall in Section 4.1, the task-specific head h is only193

optimized with clean labeled data, since optimization with incorrect pseudo labels will push the194

learned hyperplanes in a more biased direction and lead to the training bias. Therefore, training bias195

can be considered as the accumulation of data bias with inappropriate utilization of pseudo labels,196

which is training algorithm dependent. And the worst training bias that can be achieved by some197

self-training methods is a good measure of data bias. Specifically, the worst training bias corresponds198

to the worst possible head h′ learned by pseudo labeling, such that h′ predicts correctly on all the199

labeled samples L while making as many mistakes as possible on unlabeled data U ,200

hworst(ψ) = argmax
h′

LU (ψ, h
′, f̂ψ,h)− LL(ψ, h

′), (6)

where the mistakes of h′ on unlabeled data are estimated by its discrepancy with the current pseudo201

labeling function f̂ . Equation 6 aims to find the worst-case of task-specific head h that might be202

learned in the future when trained with pseudo labeling on the current feature generator ψ and the203

current data sampling. It is also the worst hyperplanes as shown in Figure 6(b), which deviates as204

much as possible from the currently learned hyperplanes while ensuring that all labeled samples are205

correctly distinguished. Note that Equation 6 measures the degree of data bias, which depends on the206

feature representations generated by ψ, thus we can adversarially optimize feature generator ψ to207

indirectly decrease the data bias,208

min
ψ
LU (ψ, hworst(ψ), f̂ψ,h)− LL(ψ, hworst(ψ)). (7)

As shown in Figure 6(c), Equation 7 encourages the feature of unlabeled samples to be distinguished209

correctly even by the worst hyperplanes, i.e., be generated far away from the current hyperplanes,210

thereby reducing the data bias in feature representations.211

5 Experiments212

Following [35, 45], we evaluate the proposed DST with random initialization on common SSL213

datasets, including CIFAR-10 [23], CIFAR-100 [23], SVHN [27] and STL-10 [9]. Following [39], we214

also evaluate DST with both supervised pre-trained models and unsupervised pre-trained models on 11215

downstream tasks, including (1) superordinate-level object classification: CIFAR-10 [23], CIFAR-100216

[23], Caltech-101 [13]; (2) fine-grained object classification: Food-101 [5], CUB-200-2011 [38],217

Stanford Cars [22], FGVC Aircraft [26], OxfordIIIT Pets [29], Oxford Flowers [28]; (3) texture218

classification: DTD [8]; (4) scene classification: SUN397 [42]. The complete training dataset size219

ranges from 2, 040 to 75, 750 and the number of classes ranges from 10 to 397. Following [21], we220
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report mean accuracy per-class on Caltech-101, FGVC Aircraft, OxfordIIIT Pets, Oxford Flowers,221

and top-1 accuracy for other datasets. Following [35], we construct a labeled subset with 4 labels222

per category to verify the effectiveness of DST in extremely label-scarce settings. To make a fair223

comparison, we keep the labeled subset for each dataset the same throughout our experiments.224

For experiments with random initialization, we follow [35] and adopt Wide ResNet variants [47].225

For experiments with pre-trained models, we adopt ResNet50 [17] with an input size of 224× 224226

and pre-trained on ImageNet [11]. We adopt MoCo v2 [7] as unsupervised pre-trained models. We227

compare our method with many state-of-the-art SSL methods, including Pseudo Label [25], Π-Model228

[24], Mean Teacher [37], UDA [43], MixMatch [3], ReMixMatch [2], FixMatch [35], Dash [45],229

Self-Tuning [39], FlexMatch [48] and DebiasMatch [40].230

When training from scratch, we adopt the same hyperparameters as FixMatch [35], with learning231

rate of 0.03, mini-batch size of 512. For other experiments, we use SGD with momentum 0.9232

and weight-decay in {0.0005, 0.001}, learning rates in {0.001, 0.003, 0.01, 0.03}. The mini-batch233

size is set to 64 following [36]. For each image, we first apply random-resize-crop and then use234

RandAugment [10] for strong augmentation A and random-horizontal-flip for weak augmentation α.235

The trade-off hyperparameter λ is set to 1 for all datasets. More details on hyperparameter selection236

can be found in Appendix A.2. Each experiment is repeated three times with different random seeds.237

We submit our code in the supplemental material and will release the codebase for all the methods.238

5.1 Main results239

Table 1 shows that DST yields consistent improvement on all tasks. On the challenging CIFAR-240

100 and STL-10 tasks, DST boosts the accuracy of FixMatch and FlexMatch by 8.3% and 10.7%,241

respectively. Figure 7 depicts the top-1 accuracy during the training procedure on CIFAR-100. We242

observe that the performance of FixMatch suffers from significant fluctuations during training. In243

contrast, the accuracy of DST (FixMatch) increases steadily and surpasses the best accuracy of244

FixMatch by 10.9%, relatively. Note that the accuracy of FlexMatch also drops by over 6% in245

the final stages of training while DST (FlexMatch) suffers from a much smaller drop by reducing246

erroneous pseudo labels during the self-training process. Besides, DST also improves the performance247

balance across categories (see Appendix B.2).248

Table 1: Top-1 accuracy on CIFAR-10/100, SVHN, and
STL-10 datasets (Wide ResNet, train from scratch, 4
labels per category).

Method CF-10 CF-100 SVHN STL-10 Avg

Psuedo Label [25] 25.4 12.6 25.3 25.3 22.2
MixMatch [3] 52.6 32.4 57.5 45.1 46.9
UDA [43] 71.0 40.7 47.4 62.6 55.4
ReMixMatch [2] 80.9 55.7 96.6 64.0 74.3
Dash [45] 86.8 55.2 97.0 64.5 75.9

FixMatch [35] 87.2 50.6 96.5 67.1 75.4
DST (FixMatch) 89.3 56.1 96.7 71.0 78.3

FlexMatch [48] 94.7 59.5 89.6 71.3 78.8
DST (FlexMatch) 95.0 65.4 94.2 79.6 83.6

Figure 7: Top-1 accuracy on CIFAR-100
(train from scratch, 4 labels per category).
DST accelerates convergence and improves
stability.
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5.2 Transfer from a pre-trained model249

Supervisied pre-training. Table 2 reveals that typical self-training methods, e.g. FixMatch, lead to250

relatively mild improvements with supervised pre-trained models, which is consistent with previous251

findings [36, 39]. In contrast, incorporating DST into FixMatch significantly boosts the performance252

and surpasses FixMatch by 19.9% on all datasets on average, relatively. Compared with recent253

advances, DST outperforms FlexMatch in 10 out of 11 tasks and achieves comparable accuracy on254

SUN397. DST also outperforms DebiasMatch in 10 out of 11 tasks and yields a 6.3% improvement255

on average, relatively. With a pre-trained model, self-training has better training stability. Yet once256

the performance degradation occurs, the process is also irreversible (Appendix B.1), partly due to257

the catastrophic forgetting of pre-trained representation. Also, self-training suffers from a more258
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Table 2: Comparison between DST and various baselines (ResNet50, supervised and unsupervised
pre-trained, 4 labels per category). ↓ indicates a performance degradation compared with the baseline.
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Baseline ↓81.4↓↓65.2↓↓48.2↓↓39.9↓↓47.7↓↓25.4↓↓46.5↓↓85.2↓↓78.1↓↓33.3↓↓33.8↓ 53.2
Pseudo Label [25] 86.3 83.3 54.7 41.0 50.2 27.2 54.3 92.3 87.8 41.4 38.0 59.7
Π-Model [24] 83.5 73.1 49.2 ↓39.7↓ 50.3 ↓24.3↓ 47.1 90.7 82.2 30.9 33.9 55.0
Mean Teacher [37] 83.7 82.1 56.0 ↓37.9↓ 51.6 30.7 49.6 91.0 82.8 39.1 40.3 58.6
UDA [43] 85.8 83.6 54.7 41.3 49.0 27.1 52.1 92.0 83.1 45.6 41.7 59.6
FixMatch [35] 86.3 84.6 53.1 41.3 48.6 ↓25.2↓ 52.3 93.2 83.7 46.4 37.1 59.3
Self-Tuning [39] 87.2 76.0 57.1 41.8 50.7 35.2 58.9 92.6 86.6 58.3 41.9 62.4
FlexMatch [48] 87.1 89.0 63.4 48.3 52.5 34.0 54.9 94.5 88.3 57.5 49.5 65.4
DebiasMatch [40] 88.6 91.0 65.7 46.6 52.4 37.5 58.6 95.6 86.4 60.5 53.5 66.9
DST (FixMatch) 89.6 94.9 70.4 48.1 53.5 43.2 68.7 94.8 89.8 71.0 58.5 71.1
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Baseline 79.5 66.6 46.5 38.1 47.9 28.7 37.5 87.7 60.0 38.1 32.9 51.2
Pseudo Label [25] 86.2 70.8 49.8 38.6 50.0 ↓26.6↓ 41.8 93.0 68.4 ↓37.3↓↓32.8↓ 54.1
Π-Model [24] 80.1 76.2 44.8 ↓37.8↓ 50.0 ↓23.5↓↓31.6↓ 93.1 62.8 ↓25.6↓↓30.4↓ 50.5
Mean Teacher [37] 80.4 80.8 51.3 ↓34.2↓ 48.8 33.8 41.6 92.9 67.0 50.5 39.1 56.4
UDA [43] 85.0 87.4 53.6 42.3 ↓46.2↓ 35.7 41.4 94.1 69.3 51.5 39.3 58.7
FixMatch [35] 83.1 82.2 51.4 39.2 ↓43.9↓ 30.1 ↓36.8↓ 94.3 65.7 48.6 36.8 55.6
Self-Tuning [39] 81.6 ↓63.6↓ 47.8 38.8 ↓45.5↓ 31.4 41.6 91.0 66.9 52.0 34.0 54.0
FlexMatch [48] 86.4 96.7 60.2 45.3 53.9 42.0 49.2 95.8 72.9 69.0 37.5 64.4
DebiasMatch [40] 86.4 96.3 66.3 44.5 53.9 44.8 51.2 95.4 70.9 72.5 53.6 66.9
DST (FixMatch) 90.1 95.0 68.2 46.8 54.2 47.7 53.6 95.6 75.4 72.0 57.1 68.7

severe performance imbalance across classes (Appendix B.2). DST effectively tackles these issues,259

indicating the importance of reducing bias.260

Unsupervised pre-training. Table 2 shows that with unsupervised pre-trained models, more methods261

suffer from performance degradation after self-training on the unlabeled data. The difficulty comes262

from that the unsupervised pre-training task has a larger task discrepancy with the downstream263

classification tasks than the supervised pre-training task. Thus, the representations learned by264

unsupervised pre-trained models usually exhibit stronger data bias, and inappropriate usage of pseudo265

labels will lead to rapid accumulation errors and increase the training bias. By eliminating training bias266

and reducing data bias, DST brings improvement on all datasets and relatively outperforms FixMatch267

by 23.5% on average, superior to FlexMatch and DebiasMatch in 9 and 10 tasks, respectively.268

5.3 Ablation studies269

We examine the design of our method on CIFAR-100 in Table 3 and have the following findings. (1)270

Compared with Mutual Learning [49, 14], where two heads provide pseudo labels to each other, the271

independent mechanism in our method where one head is only responsible for generating pseudo272

labels and the other head only uses them can better reduce the training bias. (2) A nonlinear pseudo273

head is always better than a linear pseudo head. We conjecture that nonlinear projection can reduce274

the degeneration of representation with biased pseudo labels. (3) The worst-case estimation of pseudo275

labeling improves the performance by large margins.

Table 3: Ablation study on CIFAR-100 with different pre-trained models (4 labels per category).

Method Multiple
Heads

Linear
Pseudo Head

Nonlinear
Pseudo Head

Worst Case
Estimation

Supervised Unsupervised
Pre-training Pre-training

FixMatch 53.1 51.4
Mutual Learning ✓ 53.4 52.5
DST w/o worst ✓ ✓ 58.2 59.0
DST w/o worst ✓ ✓ 60.6 60.9
DST ✓ ✓ ✓ 70.4 68.2

276
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5.4 Analysis277

To further investigate how DST improves pseudo labeling and self-training performance, we conduct278

some analysis on CIFAR-100. For simplicity, we only give the results with supervised pre-trained279

models. More comparisons can be found in Appendix B.4.280
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Figure 8: The quantity and quality of pseudo labels on CIFAR-100 (ResNet50, supervised pre-trained).

DST improves both the quantity and quality of pseudo labels. As shown in Figure 8(a) and 8(b),281

FixMatch exploits unlabeled data aggressively, on average producing more than 70% pseudo labels282

during training. But the cost is that the accuracy of pseudo labels continues to drop, eventually falling283

below 60%, which is consistent with our motivation in Section 3 that inappropriate utilization of284

pseudo labels will in turn enlarges the training bias. On the contrary, the accuracy of pseudo labels in285

DST suffers from a smaller drop. Rather, it keeps rising afterward and exceeds 70% throughout the286

training. Besides, DST generates more pseudo labels in the later stages of training.287

DST generates better pseudo labels for poorly-behaved classes. To measure the quantity of288

pseudo labels on poorly-behaved classes, we calculate the class imbalance ratio I on a class-balanced289

validation set, I = maxcN(c)/minc′N(c′), where N(c) denotes the number of predictions that fall290

into category c. As shown in Figure 8(c), the class imbalance ratio of FixMatch rises rapidly and291

reaches infinity after 5000 iterations, indicating that the model completely ignores those poorly-292

learned classes. To measure the quality of pseudo labels on poorly-behaved classes, we calculate293

the average accuracy of 10 or 20 worst-behaved classes in Figure 8(d). The average accuracy on the294

worst 20 classes of FixMatch is only 1.0%. By reducing training bias with the pseudo head, data bias295

with the worst-case estimation, the average accuracy balloons to 28.5% and 34.5%, respectively.296

5.5 DST as a general add-on297

Table 4: DST as a general add-on to 4 self-training
methods on CIFAR-100.

Pre-training Supervised Unsupervised

Label Amount 400 1000 400 1000

Mean
Teacher

Base 56.0 67.0 51.3 63.5
DST 62.7 70.7 60.7 69.3

Noisy
Student

Base 52.8 64.3 55.6 65.8
DST 68.9 74.8 66.6 75.2

FixMatch Base 53.1 67.8 51.4 64.2
DST 70.4 75.6 68.2 76.8

FlexMatch Base 63.4 71.2 60.2 71.1
DST 70.8 77.3 68.9 77.5

To explore incorporating DST into different298

state-of-the-art self-training methods, we con-299

sider three mainstream paradigms of self-300

training shown in Figure 5, including FixMatch301

[35], Mean Teacher [37] and Noisy Student [44],302

as well as an incremental work FlexMatch [48].303

Implementation details of DST versions of these304

methods can be found in Appendix A.3. Table 4305

compares the original and DST versions of these306

methods on CIFAR-100 with both supervised307

pre-trained and unsupervised pre-trained models.308

Results show that the proposed DST yields large309

improvement on all these self-training methods,310

indicating that self-training bias widely exists311

in existing self-training methods and DST can312

serve as a universal add-on to reduce bias.313

6 Conclusion314

To mitigate the requirement for labeled data, pseudo labels are widely used on the unlabeled data, yet315

they suffer from severe confirmation bias. In this paper, we systematically delved into the bias issues316

and present DST, a novel approach to decrease bias in self-training. Experimentally, DST achieves317

state-of-the-art performance on 13 tasks and can serve as a universal add-on.318
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