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Abstract

We study compressive sensing with a deep generative network prior. Initial theoret-1

ical guarantees for efficient recovery from compressed linear measurements have2

been developed for signals in the range of a ReLU network with Gaussian weights3

and logarithmic expansivity: that is when each layer is larger than the previous one4

by a logarithmic factor. It was later shown that constant expansivity is sufficient for5

recovery. It has remained open whether the expansivity can be relaxed, allowing6

for networks with contractive layers (as often the case of real generators). In this7

work we answer this question, proving that a signal in the range of a Gaussian8

generative network can be recovered from few linear measurements provided that9

the width of the layers is proportional to the input layer size (up to log factors). This10

condition allows the generative network to have contractive layers. Our result is11

based on showing that Gaussian matrices satisfy a matrix concentration inequality12

which we term Range Restricted Weight Distribution Condition (R2WDC) and13

which weakens the Weight Distribution Condition (WDC) upon which previous14

theoretical guarantees were based. The WDC has also been used to analyze other15

signal recovery problems with generative network priors. By replacing the WDC16

with the R2WDC, we are able to extend previous results for signal recovery with17

expansive generative network priors to non-expansive ones. We discuss these18

extensions for phase retrieval, denoising, and spiked matrix recovery.19

1 Introduction20

The compressed sensing problem consists in estimating a signal y? 2 Rn from (possibly) noisy linear21

measurements22

b = Ay? + ⌘

where A 2 Rm⇥n is the measurements matrix, m < n and ⌘ 2 Rm is the noise.23

To overcome the ill-posedness of the problem, structural priors on the unknown signal y? need to24

be enforced. One now classical approach assumes that the target signal y? is sparse with respect25

to a given basis. In the last 20 years, efficient reconstruction algorithms have been developed that26

provably estimate s-sparse signals in Rn from m = O(s log n) random measurements [5, 12].27

Another approach recently put forward, leverages trained generative networks. These networks28

are trained, in an unsupervised manner, to generate samples from a target distribution of signals.29

Assuming y? belongs to the same distribution used to train a generative network G : Rk ! Rn with30

k ⌧ n, an estimate of y? can be found by searching the input x̂ (“latent code”) of G that minimizes31

the reconstruction error32

x̃ = arg min
x2Rx

fcs(x) :=
1

2
kb�AG(x)k22, (1)

y? ⇡ G(x̃).
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As empirically demonstrated in [3], the minimization problem (1) can be solved efficiently by gradient33

descent methods. Moreover, solving (1) can effectively regularize the solution of the compressed34

sensing problem, significantly outperforming sparsity-based algorithms in the low measurements35

regime[3]. Generative network based inversion algorithms have been subsequently developed for a36

variety of signal recovery problems, demonstrating their potential to outperform inversion algorithms37

based on non-learned (hand-crafted) priors [16, 31, 30, 20, 33, 28]. For a recent overview see [32].38

The optimization problem (1) is in general non-convex and gradient-based methods could get stuck39

in local minima. To better understand the empirical success of (1), in [18] the authors established40

theoretical guarantees for the noiseless compressed sensing problem (⌘ = 0) where G : Rk ! Rn is41

a d-layer ReLU network of the form:42

G(x) = ReLU(Wd · · ·ReLU(W2ReLU(W1x))) (2)

with Wi 2 Rni⇥ni�1 , n0 = k, nd = n, and ReLU(z) = max(z, 0) is applied entrywise. The authors43

of [18] used a probabilistic model for the generative network G and measurement matrix A. They44

assumed that each layer Wi has independent Gaussian entries and is strictly expansive. Specifically it45

holds that46

ni � ni�1 · log ni�1 · poly(d) for all i = 1, . . . , d. (3)
Moreover, they considered A to be a Gaussian matrix and m � k · log n · poly(d). Under this proba-47

bilistic model it was shown in [18] that, despite its non-convexity, fcs has a favorable optimization48

geometry and no spurious critical points exist apart from x? and a negative multiple of it �⇢dx?,49

where ⇢d is a function of the depth d of the network.50

The landscape analysis was later extended to recovery guarantees using a gradient based method in51

[21], under the same probabilistic assumptions of [18]. In particular, [21] has shown that there is52

an efficient gradient descent method (see Algorithm 1 in Section 3) that given as input A,G and b53

outputs a latent vector x̃ such that ky? �G(x̃)k2 = O(k⌘k2). This result demonstrated that efficient54

recovery is possible with a number of measurements which is information-theoretic optimal up to55

log-factors in n and polynomials in d (m = ⌦̃(k)).56

Generative networks used in practice though, have often contractive layers. For example, the output57

of the layers near the end of the StyleGAN generators have larger dimension than the generated58

images [25, 24]. Thus, one major drawback of the theory developed in [18] is constituted by the59

expansivity condition on the weight matrices (3). Relaxing the condition (3) and accommodating for60

generative networks with contractive layers was formulated as an open problem in the survey paper161

[32].62

An initial positive result on this problem came from [10]. Using a refined analysis of the concentration63

of Lipschitz functions, the authors proved that the results of [18, 21] hold true also for weight matrices64

satisfying ni � ni�1 · poly(d). While not allowing for contractive layers, this condition removed the65

logarithmic expansivity requirement of (3).66

More recently, [22, 23] have studied the denoising and compressive sensing problem with random67

generative network prior as in [18, 21, 20], and have shown that the expansivity condition can indeed68

be relaxed. In [23] they have provided an efficient iterative method that given as input A, b and G,69

assuming that up to log-factors each layer width satisfies70

ni & 5ik, (4)

and the number of measurement satisfies71

m & 2dk, (5)

outputs a latent vector x̃ such that for y? = G(x?) it holds that ky? � G(x̃)k2 = O(2d
q

k
mk⌘k2)72

with high probability. Notice that the condition (4) while requiring the width to grow with the depth,73

can allow for contractive layers ni < ni�1.74

1.1 Our contributions75

It is natural to wonder whether the price to pay to remove the expansivity assumption is indeed the76

exponential factors in the depth d of the network and the use of less-standard non-gradient based77

1This open problem was also proposed in the recent talk [11].
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iterative methods, as happens in [22, 23]. In this paper, we answer these questions. Our main result is78

summarized below and provides guarantees for solving compressed sensing with random generative79

network priors via a gradient descent method (Algorithm 1 in Section 3).80

Theorem 1.1 (Informal version of Theorem 5.4). Assume that A has i.i.d. N (0, 1/m) entries and81

each Wi has i.i.d. N (0, 1/ni) entries. Suppose that y? = G(x?). Furthermore assume that, up to82

log-factors,83

1. ni � k · poly(d);84

2. m � k · poly(d).85

Suppose that the noise error and the step size ↵ > 0 are small enough. Then with high probability,86

Algorithm 1 with input loss function fcs, step size ↵ and number of iterations T =poly(d), outputs an87

estimate G(xT ) satisfying kG(xT )� y?k2 = O(
q

k
mk⌘k2).88

Compared to [21] and [10], our result do not require strictly expanding generative networks and89

allows for contractive layers. Furthermore, we show that the same algorithm proposed in [21] has a90

denoising effect, leading to a reconstruction of the target signal y? of the order O(
q

k
mk⌘k2) rather91

than only O(k⌘k2). We show that this holds true even in case of deterministic noise, while [19]92

discuss only the case of Gaussian noise. Furthermore, the decrease in the reconstruction error with93

the number of measurements has also been observed for trained generative networks (see for example94

[3]), and here we give a partial theoretical explanation for this phenomenon.95

Compared to the results of [23] we show that it is sufficient for the width of the layers as well as the96

number of measurements to grow polynomially with the depth rather than exponentially. Similarly,97

compared to [23], we remove the exponential factor in the depth from the reconstruction error.98

The analysis of [18] was based on a deterministic condition on the weight matrices termed Weight99

Distribution Condition (WDC). This condition, together with a deterministic condition on A (see Sec100

4 for details), was shown to be sufficient for the absence of spurious local minima in (1) and to be101

satisfied by expansive Gaussian random generative networks as (2). The WDC was also used in the102

subsequent [21] to prove convergence of Algorithm 1. Our main technical contribution is to show103

that the WDC can be replaced by a weaker form of deterministic condition, termed Range Restricted104

Weight Distribution Condition (R2WDC), and still, obtain the absence of spurious local minima and105

recovery guarantees via Algorithm 1. We will then show that random Gaussian networks satisfying106

the Assumption 1. of Theorem 1.1 satisfy the R2WDC.107

The framework introduced in [18] was used in a number of recent works to analyze other signal108

recovery problems with generative network priors, from one-bit recovery to blind demodulation109

[34, 27, 16, 15, 35, 8]. These works considered expansive generative network priors, using the WDC110

and the results of [18] in their analysis. Replacing the WDC with our R2WDC we can extend the111

previous results in the literature to more realistic (non-expansive) generative networks. This paper112

details these extensions for three representative signal recovery problems.113

Theorem 1.2. Suppose G is random generative network as in (2), satisfying Assumption 1. of114

Theorem 1.1. Then Algorithm 1 with appropriate loss functions, step sizes, and number of steps,115

succeed with high probability for Phase Retrieval, Denoising, and Spiked Matrix Recovery.116

Our result on the denoising problem, implies a similar result on the inversion of a generative network.117

The problem of inverting a generative neural network has important applications [39, 1, 33], and118

has been recently analyzed theoretically [26, 22, 2]. Our result shows that a random generative119

network can be efficiently inverted by gradient descent, even when containing contractive layers.120

This motivates the empirical use of gradient-based methods for inverting generative networks.121

1.2 Organization of the paper122

This paper is organized as follows. In Section 2 we introduce some notation used in the rest of the123

paper. In Section 3 we formalize the compressed sensing problem with a generative network prior124

and describe an algorithm for the recovery. In Section 4 we describe our novel deterministic condition125

on the weights of the network (R2WDC) and provide theoretical guarantees for solving compressed126
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sensing with a generative network prior satisfying this condition via the algorithm described in127

Section 3. Then in Section 5 we demonstrate that random non-expansive generative networks satisfy128

the R2WDC with high probability. The appendix contains the full proof of the results described in the129

main text. Appendix F contains the extension of the theoretical guarantees for compressed sensing130

with a generative network prior to other signal recovery problems.131

2 Preliminaries132

We use In to denote the n⇥ n identity matrix. For j � 0, we define the j-th sub-network Gj : Rk !133

Rnj as Gj(x) = ReLU(Wj · · ·ReLU(W2ReLU(W1x))), with the convention that G0(x) = Ikx = x.134

For a matrix W 2 Rn⇥k, let diag(Wx > 0) be the diagonal matrix with i-th diagonal element135

equal to 1 if (Wx)i > 0 and 0 otherwise, and W+,x = diag(Wx > 0)W . We then define136

W1,+,x = (W1)+,x = diag(W1x > 0)W1 and137

Wj,+,x = diag(WjWj�1,+,x · · ·W2,+,xW1,+,x)Wj .

Finally, we let ⇤0,x = Ik and for j � 1 ⇤j,x =
Qj

`=1 W`,+,x with ⇤x = ⇤d,x =
Qd

`=1 W`,+,x.138

Notice in particular that Gj(x) = ⇤j,xx and G(x) = ⇤xx.139

For r, s nonzero vectors in R`, we define the matrix140

Qr,s =
⇡ � ✓r,s

2⇡
I` +

sin ✓r,s
2⇡

Mr̂$ŝ (6)

where ✓r,s = \(r, s), r̂ = r/krk2, ŝ = s/ksk2, I` is the ` ⇥ ` identity matrix and Mr̂$ŝ is the141

matrix that sends r̂ 7! ŝ, ŝ 7! r̂, and with kernel span({r, s})?. If r or s are zero, then we let142

Qr,s = 0. The operator Qr,s is used to define the WDC in the next sections, and allows to143

control how a random ReLU layer distorts its inputs. Specifically, for very r, s 2 R` we have144

E
⇥
ReLU(Wr)TReLU(Ws)

⇤
= r

T
Qr,ss when W 2 Rn⇥` has i.i.d. N (0, 1/n).145

3 Problem statement and recovery algorithm146

Consider a generative network G : Rk ! Rn as in (2). The compressive sensing problem with a147

generative network prior can be formulated as follows.148

COMPRESSED SENSING WITH A DEEP GENERATIVE PRIOR
Let: G : Rk ! Rn generative network, A 2 Rm⇥n measurement matrix.
Let: y? = G(x?) for some unknown x? 2 Rk.

Given: G and A.
Given: Measurements b = Ay? + ⌘ 2 Rm with m⌧ n and ⌘ 2 Rm noise.

Estimate: y?.
149

To solve the compressed sensing problem with deep generative prior G, in [21], the authors propose150

the gradient descent method described in Algorithm 1 with objective function f = fcs. This algorithm151

attempts to minimize the objective function fcs in (1). Because of the ReLU activation function, the152

loss function fcs is nonsmooth. Algorithm 1 therefore resorts to the notion of Clarke subdifferen-153

tial. Indeed, being continuous and piecewise smooth, fcs is differentiable almost everywhere (by154

Rademacher’s theorem) and admits a Clarke subdifferential given by2:155

@fcs(x) = conv
�

lim
p!1

rfcs(xp) : xp ! x, xp 2 dom(rfcs)
 
, (7)

where with conv(·) we denote the convex hull and with dom(rf) the subset of Rk where f is156

differentiable. The vectors vx 2 @fcs(x) are called the subgradients of fcs at x, and at a point x157

where fcs is differentiable it holds that @fcs(x) = {rfcs(x)}.158

2For details see for example [7].
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Algorithm 1: SUBGRADIENT DESCENT [21]
Input: Objective function f , initial point x0 2 Rk \ {0} and step size ↵

Output: An estimate of the target signal y? = G(x?) and latent vector x?

1 for t = 0, 1, . . . do
2 if f(�xt) < f(xt) then x̃t  �xt

3 else x̃t  xt

4 Compute vx̃t 2 @f(x̃t)
5 xt+1  x̃t � ↵vx̃t

6 end
7 return xt, G(xt)

Notice that, as described in line 5, Algorithm 1 corresponds to a subgradient descent method with159

constant step size ↵. Before taking a step in the direction of the subgradient though, the algorithm160

checks whether the objective function at the current state xt has a larger value than the value at its161

negative�xt, and if so it updates the current state with its negative (line 3-4). This negation step allows162

the algorithm to escape the spurious critical point in a neighborhood of�⇢dx? where ⇢d 2 (0, 1), and163

it is motivated by the landscape analysis of fcs under the deterministic and probabilistic assumptions164

that we describe in the coming sections.165

4 Recovery guarantees under deterministic conditions166

The strategy taken in [18] and [21] to analyze the landscape of the minimization problem (1) and167

the convergence of Algorithm 1, consists in identifying a set of deterministic conditions on the168

measurements matrix A and the generative network G, that ensure that the objective function fcs is169

well behaved and Algorithm 1 converges efficiently to an estimate of x? and y?. These conditions are170

then shown to hold with high probability under probabilistic models for A and G. This is akin to the171

results on compressed sensing with sparsity where, for example, recovery guarantees were developed172

under the Restricted Isometry Property [4].173

The first condition, introduced in [18], is on the measurement matrix A and ensures that AT
A behaves174

like an isometry over differences of points in the range of a generative network G.175

Definition 4.1 (RRIC [18]). A matrix A 2 Rm⇥n satisfies the Restricted Isometry Condition with176

respect to G with constant ✏ if for all x1, x2, x3, x4 2 Rk, it holds that177
���h
�
A

T
A� In

��
G(x1)�G(x2)

�
, G(x3)�G(x4)i

���  ✏kG(x1)�G(x2)kkG(x3)�G(x4)k

The second deterministic condition introduced in [18] is on the weight matrices of G, ensures that178

they are approximately distributed like a Gaussian, and allows the control of how the layers of the179

network distort angles.180

Definition 4.2 (WDC [18]). We say that a generative network G as in (2), satisfies the Weight181

Distribution Condition (WDC) with constant ✏ > 0 if for all i = 1, . . . , d, for all r, s 2 Rni�1 :182

k(Wi)
T
+,r(Wi)+,s �Qr,sk2  ✏, (8)

Strictly speaking, in [18] the authors define the WDC as a property of a single weight matrix W , and183

then assume that the WDC is satisfied at each layer Wi of G. This is equivalent to the definition above184

and simplifies the introduction of a novel, weaker, condition on the weight matrices, the R2WDC185

below.186

Definition 4.3 (R2WDC). We say that a generative network G as in (2), satisfies the Range Restricted187

Weight Distribution Condition (R2WDC) with constant ✏ > 0 if for all i = 1, . . . , d, and for all188

x, y, x1, x2, x3, x4 2 Rk , it holds that189
��h
�
(Wi)

T
+,r(Wi)+,s �Qr,s

�
u, vi

��  ✏kukkvk,
where r = Gi�1(x),

s = Gi�1(y),

u = Gi�1(x1)�Gi�1(x2),

and v = Gi�1(x3)�Gi�1(x4).

(9)
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Notice that the R2WDC is weaker than the WDC. Indeed, (8) and (9) are equivalent for i = 1, but for190

i � 2 equation (8) requires (Wi)t+,r(Wi)+,s to be close to the matrix Qr,s for any vector r, s 2 Rni�1191

and when acting on any vector u, v 2 Rni�1 , while equation (9) requires (Wi)t+,r(Wi)+,s to be close192

to the matrix Qr,s only for vectors r, s on the range of Gi�1 and when acting on vectors u, v 2 Rni�1193

given by the difference of points on the range of Gi�1. Notice that contrary to (8), defining the194

R2WDC (9) for layer i requires considering the input/ouput pairs of the layers up to i� 1.195

Our first technical result provides theoretical guarantees for efficiently estimating a target signal y? on196

the range of a generative network from few linear measurements under the RRIC and the R2WDC .197

Theorem 4.4. Suppose d � 2, and A and G satisfy the RRIC and the R2WDC with constant198

✏ < K1/d
90

. Assume that k⌘k2  K2kx?k2

d422d/2
. Let {xt} be the iterates generated by Algorithm 1 with199

loss function fcs, initial point x0 2 Rk \ {0} and step size ↵ = K3
2d

d2 . Then there exists a number of200

steps T satisfying T  K4f(x0)2
d

d4✏kx?k2
2

such that201

kxT � x?k2  K5d
9kx?k2

p
✏+K6d

62d/2!k⌘k2.

In addition, for all t � T , we have202

kxt+1 � x?k2  C
t+1�T kxT � x?k2 +K72

d/2k⌘k2,

kG(xt+1)� y?k2 
1.2

2d/2
C

t+1�T kxT � x?k2 + 1.2K7k⌘k2,

where C = 1� 7
8

↵
2d 2 (0, 1). Here, K1, . . . ,K7 are universal positive constants.203

Remark 1. The exponential factors 2d appearing in the conditions and theses of the theorem are204

artifacts of the scaling of the weights of the generative network. For example, the output G(x) of the205

network scales like kxk2/2d/2 and the loss function fcs(x) as kxk22/2d (see for example Proposition206

C.1). Hence, for new constants K
0
2,K

0
4 the bounds for ⌘ and T could be equivalently written as207

k⌘k2  K
0
2ky?k2/d42 and T  K

0
4f(x0)/(d4✏ky?k22). Choosing the weights of the network to be208

{
p
2Wi}i2[d] would remove the 2d factors in the above theorem (and scale the definition of R2WDC).209

This theorem shows that, despite the nonconvexity of the minimization problem (1), if the RRIC210

and the R2WDC hold with constant ✏, after T = O(✏�1) number of iterations the iterates of the211

subgradient descent method described in Algorithm 1 enter in a region of local convergence around212

x?. Moreover, after a large enough number of steps, G(xt) gives an estimate of the target signal y?213

up to the noise level O(k⌘k).214

Theorem 3.1 in [21] shows that Theorem 4.4 holds assuming that the RRIC and the WDC hold. Our215

first technical contribution is to show that the WDC in Theorem 3.1 of [21], can be relaxed into the216

R2WDC. Relaxing the WDC into the R2WDC, will enable the relaxing of the expansivity assumption217

needed to show that the WDC holds for Gaussian generative networks as we demonstrate in Section218

5.219

We next describe the role of these deterministic conditions in the analysis of the problem (1). The220

full proof of Theorem 4.4 is given in Appendix C.221

4.1 Global landscape analysis via the R2WDC222

The analysis of [18] and [21] follows the approach recent line of works that analyze the global223

landscape geometry of non-convex optimization problems arising in statistical and signal recovery224

problems (see for example [36, 37, 14, 13] and [6] for an overview). The analysis roughly consists of225

two steps:226

i) Showing that fcs(x) ⇡ fE(x) and @fcs(x) ⇡ hx uniformly over x.227

ii) Analyzing the global properties of fE(x) and hx, and transfer them to fcs(x) and hx using the228

first step.229

Here fE(x) and hx are continuous functions of x, corresponding to the expected value of fcs(x) and230

@fcs(x) under Gaussian weights and measurement matrix A (see next section for details) and zero231
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noise. The RRIC and the WDC are used in [18] and [21] to obtain the uniform concentration in the232

first step, as well as directly proving convexity-like properties of @fcs(x) in the vicinity of x?.233

To illustrate how the WDC and the R2WDC come into play, consider for simplicity the noiseless234

case ⌘ = 0. Then at a point x 2 Rk where G is differentiable, the gradient of fcs is given by235

rfcs(x) = ⇤T
d,xA

T (A⇤d,xx�A⇤d,x?x?),

⇡ ⇤T
d,x(⇤d,xx� ⇤d,x?x?)

where ⇤d,x and ⇤d,x? ar defined in Section 2 and the approximation uses the fact that A satisfies the236

RRIC with respect to G. Then if G satisfies the WDC we have that237

rfcs(x) ⇡ ⇤T
d,x(⇤d,xx� ⇤d,x?x?)

= ⇤T
d�1,x(Wd)

T
+,Gd�1(x)

(Wd

�
+,Gd�1(x)

⇤d�1,xx� ⇤T
d�1,x(Wd)

T
+,Gd�1(x)

(Wd

�
+,Gd�1(x?)

⇤d�1,x?x?

= ⇤T
d�1,x

h
QGd�1(x),Gd�1(x) +O(✏)

i
⇤d�1,xx� ⇤T

d�1,x

h
QGd�1(x),Gd�1(x?) +O(✏)

i
⇤d�1,x?x?

where the last line used the WDC to control the concentration of (Wd)T+,Gd�1(x)
(Wd

�
+,Gd�1(x)

and238

(Wd)T+,Gd�1(x)
(Wd

�
+,Gd�1(x?)

. The resulting terms are then controlled again applying the WDC to239

the the other d� 1 weights of G, so that proceeding by induction over d one obtains240

rfcs(x) ⇡ hx :=
1

2d
x� 1

2d
h̃x,x? , (10)

where h̃ is a deterministic vector field defined in Appendix C.241

In Appendix C we show that the R2WDC can be used to control directly the concentration of the242

terms243

⇤T
d�1,x(Wd)

T
+,Gd�1(x)

(Wd

�
+,Gd�1(x)

⇤d�1,xx

and244

⇤T
d�1,x(Wd)

T
+,Gd�1(x)

(Wd

�
+,Gd�1(x?)

⇤d�1,x?x?,

around their expectation (with respect to Wd) obtaining in this way245

rfcs(x) ⇡ ⇤T
d,x(⇤d,xx� ⇤d,x?x?)

= ⇤T
d�1,x

⇥
QGd�1(x),Gd�1(x)

⇤
⇤d�1,xx� ⇤T

d�1,x

⇥
QGd�1(x),Gd�1(x?)

⇤
⇤d�1,x?x?

+O(✏k⇤d�1,xkk⇤d�1,xxk) +O(✏k⇤d�1,xkk⇤d�1,x?x?k)
Then again applying the R2WDC to the other layers of G, we can show that (10) still holds. We can246

then borrow the analysis of hx from [21] and obtain the same convergence guarantees.247

The advantage of using the R2WDC over the original WDC, is that it is satisfied by random generative248

networks with contractive layers as we demonstrate in the next section.249

5 Recovery guarantees under probabilistic assumptions250

In this section we give probabilistic models for the measurement matrix A, generative network G,251

and noise vector ⌘ that will ensure that the RRIC and the R2WDC are satisfied with high probability252

and Algorithm 1 efficiently estimate the target signal y? up to an error of the order Õ(
p

k/mk⌘k).253

We make the following assumption on the sensing matrix A 2 Rm⇥n.254

Assumptions A.255

A.1 A is independent from {Wi}di=1.256

A.2 A has i.i.d. N (0, 1/m) entries.257

A.3 There are sufficient number of linear measurements:258

m � bC✏ · k · log
dY

j=1

e ni

k
, (11)

where bC✏ depends polynomially on ✏
�1

.259
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Under Assumptions A, the measurement matrix satisfies the RRIC with respect to G with high260

probability.261

Lemma 5.1 (Consequence of Proposition 6 in [18]). Let Assumptions A be satisfied. Then A satisfies262

the RRIC with constat ✏ > 0 with respect to G, with probability at least263

1� �̂e
�ĉ✏m

where �̂ and ĉ are positive universal constants.264

Proof. This result is proved in Proposition 6 in [18] for a number of measurements m satisfying265

m � C
0
✏ · k · d · log

Qd
j=1 nj where C 0

✏ depends polynomially on ✏. To imporove the lower bound on266

m to (11) it is enough to follow the proof of Proposition 6 in [18] and use the sharper upper bound on267

the number of affine subspaces in the range of a gnerative network given in Lemma D.1.268

We then provide a probabilistic model for a generative network G : Rk ! Rn as in (2).269

Assumptions B.270

B.1 Each weight matrix Wi 2 Rni⇥ni�1 have i.i.d. N (0, 1/ni) entries.271

B.2 The first layer satisfies n1 � eC✏ · k, and for any i = 2, . . . , d:272

ni � eC✏ · k · log
i�1Y

j=1

e nj

k
, (12)

where C̃✏ depends polynomially on ✏
�1

.273

B.3 The {Wj}dj=1 are independent.274

Under Assumptions B, the generative network G satisfies the R2WDC .275

Lemma 5.2. Fix 0 < ✏ < 1. Consider a d-layer ReLU network G with weight matrices {Wi}di=1.276

Assume that the {Wi}di=1 satisfy Assumptions B. Then G satisfies the R2WDC with constant ✏ with277

probability at least278

1� �

⇣
en1

k

⌘2k
e
�c✏n1 � �

dX

i=2

⇣
e ni

k + 1

⌘4k
e
�c✏ni/2

where c✏ depends polynomially on ✏
�1

and � is a positive absolute constant.279

We finally conclude with some assumptions on the noise vector ⌘ 2 Rm.280

Assumption C. The noise vector ⌘ is independent from A and the weights {Wi}di=1281

The next lemma is used to bound the perturbation of the objective function fcs and its gradient due to282

the presence of the noise term ⌘. These bounds are then used to show that Algorithm 1 leads to a283

reconstruction of y? of the order O(
p
k/mk⌘k).284

Lemma 5.3. Suppose G : Rk ! Rn
satisfies the R2WDC with ✏ < 1/(16⇡d2)2 and d � 2. Let285

A 2 Rm⇥n
be a matrix with i.i.d. entries N (0, 1/m) and ⌘ 2 Rm

satisfies Assumption C. Let286

! :=
2

2d/2

r
13

12

vuut k

m
log

⇣
5

dY

j=1

e ni

k

⌘
. (13)

Then with probability at least287

1� e
� k

2 log(5
Qd

i=1
e ni
k )

for every x 2 Rk
we have that288

hx,⇤T
xA

T
⌘i  !k⌘kkxk, (14)

if in addition G is differentiable at x we also have that289

k⇤T
xA

T
⌘k  !k⌘k. (15)
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Given the previous assumptions, we are now ready to state the main result of this section.290

Theorem 5.4. Suppose d � 2, ✏ < K1/d
90

and !k⌘k2  K2kx?k2

d422d/2
where ! is defined in (13).291

Assume that A, G and ⌘ satisfy Assumptions A, B and C. Then with probability at least292

1� �

⇣
e n1

k

⌘2k
e
�c✏n1 � �

dX

i=2

⇣
e ni

k + 1

⌘4k
e
�c✏ni/2 � �̂e

�ĉ✏m � e
� k

2 log(5
Qd

i=1
e ni
k )

, (16)

where �, �̂ and ĉ are positive universal constants, the following holds. Let {xt} be the iterates293

generated by Algorithm 1 with loss function fcs, initial point x0 2 Rk \ {0} and step size ↵ = K3
2d

d2 .294

There exists a number of steps T satisfying T  K4f(x0)2
d

d4✏kx?k2
such that295

kxT � x?k2  K5d
9kx?k2

p
✏+K6d

62d/2!k⌘k2.
In addition, for all t � T , we have296

kxt+1 � x?k2  C
t+1�T kxT � x?k2 +K72

d/2
!k⌘k2,

kG(xt+1)� y?k2 
1.2

2d/2
C

t+1�T kxT � x?k2 + 1.2K7!k⌘k2,

where C = 1� 7
8

↵
2d 2 (0, 1). Here, K1, . . . ,K7 are universal positive constants.297

Proof. Combining Lemma 5.1, Lemma 5.2 and Theorem 4.4 we obtain Theorem 5.4 with ! = 1 and298

probability at least299

1� �

⇣
e n1

k

⌘2k
e
�c✏n1 � �

dX

i=2

⇣
e ni

k + 1

⌘4k
e
�c✏ni/2 � �̂e

�ĉ✏m
.

Inspecting the proof of Theorem 3.1 in [21], it is easy to see that if Lemma 5.3 holds, then the300

conclusions of Theorem 5.4 hold with ! given by (13) and probability at least (16).301

Remark 2. As for Theorem 4.4, the exponential factors 2d are artifacts of the scaling of the weights302

of the network. Had the entries of Wi been drawn from N (0, 2/ni) the 2d factors would not be303

present.304

Remark 3. Notice that 4k log(en/(k + 1)
�
 4klog(n)/log(2) for every n � 2. Thus if for every305

i = 1, . . . , d, it holds that306

ni

log(ni)
� 16 · k · c�1

✏

log(2)
(17)

the conclusions of the theorem hold with nontrivial probability bounds. In Appendix G we provide an307

example of a generative network G with contractive layers satisfying both (12) and (17).308

Theorem 5.4 provides guarantees for the efficient recovery of a signal y? in the range of a generative309

network G from few noisy linear measurements, using a nonconvex (sub)gradient descent method.310

Notice that the intrinsic dimension of the signal y? is k (the dimension of the latent space) and the311

number of measurements required m is proportional to k and information-theoretically optimal up312

to log factors in the widths of the network and polynomials in the depth. Notice moreover, that up313

to these factors, the width ni of each layer of the network is also required to be linear in k. This314

is necessary to ensure that each subnetwork Gi : Rk ! Rni is invertible, and it is weaker than315

the assumptions in the previous works that required ni to be linear in ni�1 in order to ensure the316

invertibility of every single layer.317

In Appendix H we empirically verify the predictions of Theorem 5.4, demonstrating how (a practical318

variant of) Algorithm 1 recover signals y? in the range of non-expansive generative networks from319

undersampled noisy measurements. We show that the recovery is linear in k/m and that in practice320

the dependence on the depth d of the networks is milder than that predicted by our theory. We leave321

for future works the establishing of sharper bounds in the depth d.322

Limitations of the current and previous works on theoretical guarantees for signal recovery with323

generative networks are the Gaussian assumption on the weights and the absence of biases. Important324

directions of future research are the inclusion of biases in the generative network and the departure325

from the Gaussian weights assumptions for more realistic probabilistic models.326
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