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Abstract

Most existing methods for conditional average treatment effect estimation are1

designed to estimate the effect of a single cause — only one variable can be2

intervened on at one time. However, many applications involve simultaneous3

intervention on multiple variables, which leads to multi-cause treatment effect4

problems. The multi-cause problem is challenging due to severe data scarcity —5

we only observe the outcome corresponding to the treatment that was actually6

given but need to infer a large number of potential outcomes under different7

combinations of the causes. In this work, we propose Single-cause Perturbation8

(SCP), a novel two-step procedure to estimate the multi-cause treatment effect.9

SCP starts by augmenting the observational dataset with the estimated potential10

outcomes under single-cause interventions. It then performs covariate adjustment11

on the augmented dataset to obtain the estimator. SCP is agnostic to the exact12

choice of algorithm in either step. We show formally that the procedure is valid13

under standard assumptions in causal inference. We demonstrate the performance14

gain of SCP on extensive simulation and real data experiments.15

1 Introduction16

Estimating treatment effects from observational data is a central problem in causal inference and has17

many applications such as precision medicine [11]. In this work, we focus on estimating conditional18

average treatment effects (CATE) to reflect the heterogeneity within a population [1]. The vast19

majority of the CATE estimation methods consider the single-cause setting, where only one variable20

can be intervened on, e.g. the decision to give (or not to give) a particular drug. However, in many21

applications it is necessary to intervene on multiple variables simultaneously to achieve the desired22

outcome (the multi-cause setting). For example, multiple drugs are needed to treat patients with23

comorbid chronic diseases or systemic diseases such as cancer [20]. However, finding the best24

drug combination for each patient is very challenging and the current clinical practice is clearly25

sub-optimal [28]; studies have shown that nearly 50% of the elderly population in developed countries26

take one or more drugs that are not medically necessary [37]. Similar examples are abundant in the27

medical literature and beyond (Appendix A.5), which calls for a new methodology to estimate the28

combined effect of multiple causes (drugs), a challenge we undertake in this work.29

We make a distinction between the terminology cause and treatment. We refer to a cause as an30

atomic variable that can be intervened on, and a treatment as a configuration of all causes. Therefore,31

if the problem involves K causes and each cause is a binary variable, there will be 2K possible32

treatments. The exponential growth of the number of possible treatments aggravates the data scarcity33

issue in CATE estimation — we can only observe the outcome under the treatment that was given34

(factual outcome), but not the potential outcomes (PO) under all other treatments (2K − 1 in total,35
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Figure 1: (A) Illustration of the data scarcity challenge. A1: K = 3 causes and A2: the single-cause setting.
Each row contains one observation. Three green cells in each row will be filled in by SCP’s first step to form the
augmented dataset. (B) Interventions on an illustrative DAG. B1: observational data (no intervention), B2:
intervening on both causes, B3: intervening on A1 only. In B3, the intervention on A1 generates an effect on the
outcome and the cause A2. The covariate X is greyed out for visual clarity.

as illustrated in Figure 1 A). As the number of causes increases, the fraction of observed outcomes36

decreases exponentially, which challenges the reliable estimation of CATE.37

Most single-cause methods consider only two treatments (treated or untreated). In fact, many popular38

architectures and regularization methods do not scale computationally to large treatment spaces39

[54, 68, 55, 36]. As a remedy, one may make additional assumptions on the data generating process40

(DGP), for instance, assuming a linear model generates the outcome [26] or a low-dimensional latent41

variable generates the treatment [70]. However, such assumptions may limit the scope of application.42

In this work, we take a different direction: instead of making additional assumptions on the DGP, we43

exploit the connection between a single-cause intervention and a multi-cause intervention (Figure 144

B1-3). We establish that, under standard assumptions in causal inference, the single and multi-cause45

potential outcomes are equal in expectation under appropriate conditioning.46

Based on this finding, we propose single-cause perturbation (SCP), a novel two-step procedure to47

estimate CATE in the multi-cause setting. In the first step, SCP generates K additional datasets by48

predicting the potential outcomes resulting from perturbing each of the K causes to their opposite49

value. It then performs covariate adjustment on the combined dataset. By data augmentation, SCP50

directly mitigates data scarcity. Moreover, we show that the treatment assignment in the augmented51

dataset tends to be more balanced than the observational data, which is known to improve the52

generalization of a CATE estimator [54]. SCP is agnostic to the exact choice of algorithm in either53

step, which allows it to take advantage of the state-of-the-art algorithms in the literature.54

Contributions. We present SCP, a two-step multi-cause CATE estimator that leverages the connection55

between single and multi-cause interventions. SCP achieves performance gain by increasing the56

sample size as well as making the dataset more balanced via data augmentation. Compared with57

existing works, SCP does not make assumptions about the distributional or functional form of the58

DGP, making it suitable for complex problems in healthcare. We demonstrate and analyze the59

performance gain of SCP via extensive simulation and real-data experiments.60

2 Problem formulation and notations61

In this work, we focus on the CATE estimation problem with K binary causes.1 Let the causes62

A = (A1, . . . , AK) be a multi-dimensional random variable with sample space Ω = {0, 1}K , where63

Ak is the kth cause. Let A−k ∈ Ω−k = {0, 1}K−1 be the collection of all but the kth cause. Let64

X ∈ RD and Y ∈ R be the covariates and observed outcomes respectively. The causal relationship65

between these variables is illustrated in Figure 2 A, which is a direct generalization of the single66

cause setting [53]. We have access to an observational dataset D0 = {xi, yi,ai}i∈[N0] with N067

independent samples from the random variables defined above. Throughout the text we use capital68

letters for random variables and lower case letters for fixed constants. We use boldface for vectors69

1SCP also applies to multi-level categorical causes, i.e. Ak ∈ {0, 1, . . . , L}, L ∈ N+ and multi-dimensional
outcomes, i.e. Y ∈ RM . Here, we use the current setting for illustration.
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Figure 2: Illustrative causal graphs. (A) Intervention on all causes A. (B) Intervention on the single cause Ak.
The other causes are partitioned into descendants A↓−k and non-descendants A↑−k. Purple edges: confounding
to treatment assignment. Brown edges: effects on the (combined) outcomes. Some less important edges are
greyed out for visual clarity.

or multi-dimensional random variables. When the context is clear, we will simplify the conditional70

expressions, e.g. P(Y |X) := P(Y |X = x).71

2.1 Multi-cause intervention72

We formulate the CATE estimation problem using the potential outcome (PO) framework [53].273

Let Y (a) ∈ R denote the potential outcome in a world where the treatment a ∈ Ω was given. We74

would like to estimate the CATE between any two treatments given the covariates i.e. τ(a,a′,x) =75

E[Y (a)− Y (a′)|X = x], ∀a,a′ ∈ Ω, x ∈ RD. We can estimate CATE by estimating all potential76

outcomes E[Y (a)|X], ∀a ∈ Ω.77

The following three assumptions have been proposed to identify the multi-cause PO [53, 22]. (1)78

Consistency : ∀a ∈ Ω if A = a, Y (a) = Y . (2) Weak unconfoundedness: Y (a) ⊥⊥ A |X, ∀a ∈ Ω.79

(3) Overlap: P(A = a|X) > 0, ∀a ∈ Ω, if P(X) > 0. The assumptions stated above allow the80

expectation of multi-cause PO to be estimated from observational data: ∀a ∈ Ω, ∀x ∈ RD:81

E[Y (a)|X = x] = E[Y |X = x,A = a] (1)

2.2 Single-cause intervention82

Here we consider the intervention on a single-cause, e.g. adding a new drug A1 to the existing83

medications. Such intervention may affect the outcome and the other causes. For example, the84

inclusion of drug A1 may promote the usage of another drug A2 because A2 can mitigate the side85

effects of A1 [45].86

We denote Y (ak) ∈ R as the potential outcome where the cause Ak is set to be ak. We refer to Y (ak)87

as the single-cause PO. Note that the single-cause PO Y (ak) is different from the multi-cause PO88

Y (a) because the latter refers to a potential world where all causes are intervened on. We sometimes89

denote the multi-cause PO as Y (a) := Y (ak,a−k).90

We assume that, based on domain knowledge, we can partition the rest of the causes A−k into91

Ak’s causal descendants A↓−k and its non-descendants A↑−k as illustrated in Figure 2 B [42]. We92

denote A−k(ak), A↓−k(ak) and A↑−k(ak) as their potential outcomes respectively. By definition, the93

non-descendants should be unaffected by the intervention:94

A↑−k(0) = A↑−k(1) = A↑−k. (2)

As shown in Figure 2 B, it is convenient to aggregate all the variables affected by Ak into a combined95

outcome Y′k, and aggregate all the variables confounding Ak as a combined confounder X′k:96

Y′k := (Y,A↓−k); Y′k(ak) := (Y (ak),A↓−k(ak)); X′k := (X,A↑−k) (3)

To identify the combined PO Y′k(ak), we make the standard assumptions using Ak, Y′k, and X′k:97

(4) Single-cause Consistency : ∀k ≤ K, ∀a ∈ {0, 1} if Ak = ak, Y′k(ak) = Y′k. (5) Single-cause98

Unconfoundedness: Y′k(ak) ⊥⊥ Ak |X′k, ∀ak ∈ {0, 1}, ∀k ≤ K. The multi-cause overlap (Section99

2In Appendix A.4, we present an alternative formalism using do-operation [43]. We show that the same SCP
algorithm can be derived using either formalism.
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Table 1: Summary of the data augmentation task in SCP’s first step.

Equation Target Input Covariates Estimated Value Algorithm

Eq. 2 A↑−k(a
′
k) - a↑−k(a

′
k) = a↑−k -

Eq. 4 A↓−k(a
′
k) X′k a↓−k(a

′
k) ∼ P(A↓−k|X

′
k, Ak) DR-CFR

Eq. 4 Y (a′k) X′k,A
↓
−k y(a′k) = E(Y |X′k,A↓−k, Ak) DR-CFR

2.1) implies single-cause overlap, but the multi-cause consistency and unconfoundedness do not100

imply the single-cause counterparts (Appendix A.3). Appendix A.1 Proposition 2 shows that, under101

these assumptions, we can identify Y′k(ak) from observational data as: ∀k ≤ K, ∀ak ∈ {0, 1},102

P(Y′k(ak)|X′k) = P(A↓−k|X
′
k, Ak = ak) · P(Y |X′k,A

↓
−k, Ak = ak). (4)

Discussion on partitioning the causes. We can always partition the causes into descendants and103

non-decadents as long as the structure between the causes follows a DAG (hence no cycles). In104

practice, such structural knowledge is often available, e.g. we can use the clinical guidelines to105

identify the drugs whose prescription will be influenced by the usage of another drug. Note that106

we do not need to specify the causal graph of all individual variables (e.g. the link between two107

covariates Xi, Xj). However, when the full causal graph is available, we can adapt SCP to make108

use of the additional structural knowledge as discussed in Appendix A.6. On the other hand, we109

show empirically that SCP is not sensitive to misspecified partitioning (Section 5.1). Appendix A.3110

contains an extended discussion on all our assumptions.111

3 Single Cause Perturbation112

3.1 The algorithm113

In this section, we introduce our proposed method – single cause perturbation (SCP). Given an114

observational dataset D0 with N0 data points: D0 = {xi, yi,ai}i∈[N0], SCP proceeds in two steps:115

it first fits a set of models that can predict the effects of changing a single cause, and uses them to116

create K additional data sets Dk = {xi, ỹki , ãki }
N0
i=1, for k ∈ [K], each corresponding to the potential117

scenario of perturbing a single cause. It then fits a final model on this enlarged dataset, which is used118

to estimate the multi-cause CATE. The pseudocode is detailed in Appendix A.7 Algorithm 1.119

Training single-cause models. Based on Equation 4, we will train two separate models to estimate120

the combined PO Y′k(ak): one for A↓−k(ak) and one for Y (ak). The models are trained on the121

observational data D0. Note that for CATE estimation, we only need to estimate the expectation122

E(Y |X′k,A
↓
−k, Ak) rather than the full probability distribution. We can use any single-cause CATE123

estimator for this purpose since only one cause is intervened on.124

We choose to use the state of the art single-cause CATE estimator, Disentangled Representations for125

Counterfactual Regression algorithm (DR-CFR) [21]. DR-CFR achieves higher estimation accuracy126

by learning to distinguish between true confounders, adjustment variables and instruments contained127

in X′k. We provide a self-contained description of DR-CFR in Appendix A.8.128

Data augmentation. As illustrated in Table 1, once the single-cause models are fitted, sampling129

perturbed data points from observations (x, y,a) ∈ D0 involves three steps: (1) obtain a↑−k(a′k)130

directly from the observations, (2) obtain a↓−k(a′k) using x′k, and (3) obtain y(a′k) using x′k and131

a−k(a′k). Here a′k = 1 − ak corresponds to perturbing the cause Ak (recall that ak ∈ {0, 1}). To132

generate a new data point (x, ỹk, ãk), we define ỹk := y(a′k) and ãk := (a′k,a−k(a′k)). Denote133

Dk = {xi, ỹki , ãki }
N0
i=1 as the perturbed data for Ak. We combine all perturbed datasets Dk, k ∈ [K]134

and the original dataset D0 to create the augmented training data DTr = {Dk}k∈[0,K]. For each135

unique x, DTr contains K + 1 different treatments a, ãk, . . . , ãK and their corresponding outcomes.136

Covariate adjustment on augmented data. We can estimate CATE by learning the conditional137

expectation in Equation 1 using the augmented data DTr. We use a standard feed-forward neural138

network, fθ : RD × Ω→ R with trainable weights θ.139
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3.2 Validity of SCP: linking single and multi-cause PO140

One may wonder why the augmented data points (single-cause POs) would help estimate the multi-141

cause PO: they correspond to different interventions, i.e. intervention on a single cause versus142

intervention on all causes simultaneously. Proposition 1 shows that given our assumptions the single143

and multi-cause POs are equal in expectation under appropriate conditioning – therefore, (imputed)144

single cause POs can be used for multi-cause estimation. The proof is shown in A.1.145

Proposition 1 (Equivalence of the single and multi-cause PO’s conditional expectation). Under the146

sequential ignorability assumption [50], ∀k ≤ K,147

E(Y (ak,a−k)|X) = E(Y (ak)|X,A−k(ak) = a−k). (5)

Note that the Y (ak) and A−k(ak) on the right hand side (RHS) is precisely what we estimated148

and added to the augmented dataset Dk in the first step. Thus if we train a supervised learning149

model on Dk to estimate the RHS, the trained model can also estimate the multi-cause PO on the150

LHS. Moreover, since the relationship in Equation 5 holds for all k, we can pool all the augmented151

datasets into one training dataset DTr, which is K + 1 times the size of the observational data i.e.152

|DTr| = (K + 1)|D0|. The increased sample size mitigates the data scarcity issue and allows the153

estimator to generalize better.154

Proposition 1 also highlights the necessity of estimating A−k(ak) in addition to Y (ak) in the first155

step. This is because Equation 5 is conditioned on A−k(ak) rather than the observed cause A−k.156

Note that A−k(ak) = A−k, ∀ak ∈ {0, 1} only when Ak has no descendants.157

3.3 SCP creates a more balanced dataset via data augmentation158

In addition to increased sample size, there is also a less obvious (but equally important) reason159

why SCP would achieve performance gain: the augmented data tend to be more balanced than the160

observational data. This is because SCP perturbs every single cause of all the observations. For161

instance, by combining D0 and D1, the empirical distribution P̂(A1|X = xi) = 0.5, ∀xi ∈ D0.162

Balancing is important because prior research has shown that CATE estimators trained on a balanced163

dataset tend to generalize better [54]. In fact, many existing causal inference methods employ164

balancing techniques to improve performance (see Section 4). In Section 5.1, we demonstrate165

experimentally that SCP consistently improves the balancing of the observational dataset.166

3.4 Trade off between sample size, balancing, and first step error167

SCP’s data augmentation increases sample size and improves balancing, both of which are beneficial168

to CATE estimation. However, there is a caveat: the augmented dataset will also carry the finite-169

sample estimation error made in the first step. There is a risk that this additional source of noise will170

reduce or even cancel out the benefits of data augmentation.171

In the simulation study in Section 5.1 we investigate this empirically, and observe that SCP’s actual172

error in the first step is usually much smaller than the error required to offset the benefits of data173

augmentation. We conjecture that this is because SCP only perturbs one cause at a time. The effect174

of such a localized perturbation can be efficiently estimated by the existing methods tailored for the175

single-cause setting.176

One can envision an alternative way where we bundle together any two (or even more) causes Aj and177

Ak and perturb both of them simultaneously. This will further increase the sample size and improve178

the balancing, but the first step error will also increase because the effect of a joint perturbation is179

harder to estimate. After all, if we were able to do this well, there is no need for data augmentation in180

the first place.181

A complete theoretical analysis of the trade off is challenging because all three interacting factors182

contribute to the overall estimation error. Moreover, an important feature of SCP is that it does183

not make any assumption about the DGP (functional form or error distribution). However, such184

assumptions are usually necessary to establish statistical efficiency bounds [41]. For these reasons,185

we will defer the theoretical analysis of the trade off to future works.186
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Table 2: Comparison with the related works. The ATE methods are listed for completeness.

Method Ref Estimand Balancing method Sample size Intermediate estimand

SCP This work CATE Data augmentation ↑↑ Y′k(a
′
k)

Cov. Adjustment [30] CATE None = None
Deconfounder/VSR [70, 67] CATE Weighting = P(A|Z), P(Z|X)
Weighting [32] ATE Weighting = P(A|X)
Matching [35] ATE Matching ↓↓ P(A|X)
G computation [51] ATE Marginalization NA P(X)

4 Related works187

4.1 Multi-cause and single-cause CATE estimation188

Table 2 summarizes the causal inference methods related to SCP. The covariate adjustment method189

uses supervised learning to estimate the PO from the “feature vector” (x,a) by Equation 1 [57, 24].190

In the single-cause setting, recent works have proposed various architectures and regularization191

methods [54, 36, 2, 68, 55, 69, 21]. Unfortunately, these methods often fail to scale with the number192

of treatments. For instance, the popular multi-head neural network architecture requires one output193

head for each of the 2K treatment levels [54], which will be infeasible even with moderate-sized K.194

In the multi-cause setting, Variational Sample Re-weighting (VSR) [70] and Deconfounder [67]195

improve estimation accuracy under additional assumptions about the DGP. Both methods assume196

that the propensity score (PS) is determined by low-dimensional latent variables Z, i.e. P(A|X) =197 ∑
Z P(A|Z)P(Z|X). This assumption also makes Deconfounder robust to a certain type of hidden198

confounders [67]. In comparison, SCP does not make this assumption and it improves balancing by199

data augmentation as discussed in Section 3.3.200

4.2 Multi-cause average treatment effect (ATE) estimation201

The methods for multi-cause ATE estimation broadly fall into two categories: weighting and matching202

[23, 35]. The weighting methods assign an importance weight to each data point in order to create203

a balanced dataset for ATE estimation [15, 32]. To adapt these methods for CATE estimation, we204

could perform covariate adjustment on the weighted data. In comparison, matching methods achieve205

balancing by removing unmatched data points and will end up with a smaller dataset [35, 7, 59].206

Since CATE is a much more complex estimand than ATE (and thus requires more samples), matching207

methods designed for ATE are unlikely to achieve good performance for multi-cause CATE estimation.208

G-Computation is also a technique for ATE estimation [51, 8]. To compute the average effect,209

G-computation marginalizes over the confounders X. The standard implementation estimates the210

covariate distribution P(X) and uses Monte Carlo sampling for marginalization [49, 60]. This makes211

G-computation conceptually very different from SCP because SCP’s data augmentation is unrelated212

to marginalization – its purpose is to increase sample size and balancing for covariate adjustment.213

We discuss several other less related works in Appendix A.9.214

4.3 Causal data augmentation215

Causal data augmentation uses known or learned causal structure to generate augmented datasets (in216

contrast to heuristic data augmentation [56, 34]). Several recent works apply this approach to domain217

adaptation [61, 25], robustness [33, 62] and reinforcement learning [44]. To our knowledge, SCP is218

the first method that applies causal data augmentation to multi-cause CATE estimation.219

5 Experiments220

5.1 Simulation study221

Dataset. We created a range of synthetic datasets to examine the performance of SCP under different222

scenarios. Each dataset contains N0 samples for training, 200 samples for validation and 4000 for223
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Figure 3: Simulation Results (best viewed in color). RMSE is plotted with the 95% confidence interval
shaded (the lower the better). Algorithms include NN, NN-IPW, OP, DEC, VSR and SCP. CFR and DR-CFR’s
RMSE is an order of magnitude bigger and is shown in Appendix A.10 separately.

testing. The training and validation sets contain observations (xi, yi,ai) whereas the testing set224

contains (xi, yi(a)), ∀a ∈ Ω. To generate an observation, we first sampleD covariates independently:225

∀d ≤ D,xid∼N(0, 1). Then we obtain the causes aik,∀k ≤ K and the outcome yi:226

aik ∼ B
[
σ(

D∑
m=1

vmxim +

k−1∑
n=1

unain + εik)
]
; yi = φ(

L∑
l=1

slx
′
il +

L∑
l=1

L∑
j=l

dljx
′
ilx
′
ij + εi), (6)

where x′i = (xi,ai, 1) ∈ RL, v, u, s, d are weights, B[·] denotes a Bernoulli random variable, σ227

denotes the sigmoid function, φ is either identity or the sigmoid function depending on the simulation228

setting. To generate various response surfaces, only a fraction ps of the weights s are non-zero and229

sampled i.i.d from N(0, 1), resulting in not all covariates and causes contributing to the outcome.230

The weights d are generated in the same way with the sparsity controlled by pd, resulting in varying231

degrees of interaction between covariates and causes. The weights v, u’s are obtained similarly232

with sparsity pv = pu = 0.3. ε and ε are white noises sampled from N(0, 0.01). We evaluate the233

models using the Root Mean Squared Error (RMSE) on all potential outcomes, which is defined as234 √
1
Nt

∑Nt

i=1

∑
ai∈Ω(y(ai)− ŷ(ai))2. The simulation parameters of all the experiments below are235

listed in Appendix A.10 Table 4.236

Benchmarks. We included seven benchmarks to compare with SCP. As a baseline, we used covariate237

adjustment with feed-forward neural networks (NN). We compared with VSR and Deconfounder238

(DEC), the SOTA methods in multi-cause CATE estimation [70, 67]. For completeness, we also239

included Counterfactual Regression (CFR) and DR-CFR from the single-cause CATE literature240

[54, 21] as well as the propensity score (NN-IPW) and overlap score (OP) methods from the ATE241

literature [23, 32]. Appendix A.10 describes training and hyper-parameter tuning procedure in detail.242

Main results. In total, we performed 168 simulations with different sets of parameters. The main243

results are presented in Figure 3 (additional results in Appendix A.12). In each panel, one simulation244

parameter is varied while the rest are fixed (see Appendix A.10). SCP consistently outperforms245

the benchmarks across different number of causes K, covariate dimensionality D, sample sizes246

N0, and sparsity of the causal structure ps, pd. The performance gain becomes more pronounced247

as the number of causes increase, e.g. K = 10. Note that VSR and DEC’s DGP assumption is248

approximately valid here because the vm and un that govern treatment assignment are sparse vectors249

(Equation 6).250

Why is SCP working? SCP’s performance gain roots from the increase in sample size and the251

improvement in balancing. In Figure 4, we show that SCP’s prediction accuracy improves consistently252

as each augmented dataset Dk, k ∈ [0,K] is added to the training data DTr (this simulation involves253

K = 10 causes). The benchmark NN ensemble refers to an ensemble of NN models trained using254

the bootstrapped observational data D0 [47]. The performance improvements of NN ensemble is255

much slower and smaller than SCP because it only bootstraps D0 without augmenting it with new256

data points. The other benchmarks in the figure will be discussed later.257
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Figure 4: The inclusion of augmented data points reduces error. RMSE as more datasets Dk are added to
DTr or more models are added to the NN ensemble. In total, there are K = 10 causes in this simulation.

(B)(A)

Figure 5: (A): SCP consistently improves the balancing of the observational data. Error bars represent the
standard deviation of five runs. (B): Relationship between the step one and the final prediction error. A first
step error of 0.4 will degrade SCP’s overall performance to the NN baseline (dotted horizontal line). However,
the actual step one error is only half of that value (around 0.2).

To measure the improvements in balancing, we use the sum of the distributional distances between the258

treatment groups, i.e. b =
∑

a∈Ω MMD(P(X|A = a),P(X|A 6= a)), where MMD is the maximum259

mean discrepancy [4]. The value b appears in the generalization bound of a CATE estimator [54]260

(also see Appendix A.2). Hence, achieving smaller b (more balancing) is highly desirable. We261

generated a range of observational datasets with varying confounding levels, and use SCP to augment262

each dataset (the confounding level is controlled by the vm in Equation 6). Figure 5 (A) shows that263

SCP’s augmented data is consistently more balanced than the observational data (the improvements264

in RMSE is shown in Appendix A.12).265

Relationship between step one error and overall error. Next, we study how the step one error266

affects the overall error. We set the augmented data points to be the true expected PO corrupted by267

Gaussian noise: ỹk = E(Y (a′k)|X′k,A
↓
−k) + ξ. The standard deviation of ξ is a proxy for step one268

error. As expected, Figure 5 B shows that the overall error increases with the step one error. SCP’s269

performance becomes similar to the NN baseline (black line) when the step one error reaches 0.4,270

which is twice as much as SCP’s actual step one error 0.2 (dotted orange line).271

Sensitivity to mis-specified partitioning and step one error. To better understand the sensitivity,272

we compare the SCP with an ablated version (Ablation) where there is no prior knowledge about the273

non-descendants of a single cause, i.e. A↑−k = ∅. As a reference, we also consider Oracle PO, a274

SCP with error-free data augmentation step. Figure 4 shows that the correct partitioning of causes275

is indeed important because the ablation incurred noticeable performance loss compared with other276

SCP versions. However, even the ablated version consistently outperforms the ensemble of NN. This277

suggests that the increase in sample size and balancing tend to bring more benefit than the noise278

introduced in the first step. In fact, the Oracle PO achieves more than 60% performance improvement279

over the NN, which gives a wide “safety margin” for step one error.280

Further experiments. In Appendix A.12, we present additional simulation studies that further281

illustrate SCP’s source of performance gain under different settings. Our results consistently suggest282

that the increase in sample size and the improvement in balancing are the two key drivers of the gain.283
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Table 3: Results of the real data experiment using different data sizes N0.

RMSE Ranking Error
Method N0 =500 1000 1500 N0 =500 1000 1500

NN 1.257 (.004) 1.383 (.006) 1.116 (.004) 282.3 (0.9) 321.6 (1.0) 228.1 (1.5)
VSR 1.246 (.004) 1.186 (.004) 1.140 (.005) 270.3 (1.2) 253.4 (1.4) 233.6 (1.6)
DEC 1.268 (.004) 1.200 (.004) 1.118 (.005) 283.9 (0.8) 259.1 (1.3) 236.4 (1.5)
CFR 2.028 (.006) 1.924 (.007) 1.856 (.008) 393.2 (1.0) 380.8 (1.1) 335.4 (1.3)
DR-CFR 2.118 (.006) 2.005 (.008) 1.929 (.008) 401.1 (1.0) 391.2 (1.1) 379.6 (1.4)
NN-IPW 1.354 (.005) 1.244 (.003) 1.123 (.004) 295.4 (0.8) 253.0 (1.0) 225.9 (1.4)
OP 1.365 (.005) 1.426 (.006) 1.215 (.005) 287.8 (0.8) 316.1 (1.0) 238.1 (1.4)
SCP 1.117 (.004) 1.098 (.004) 1.044 (.004) 230.5 (1.3) 221.3 (1.4) 217.9 (1.4)

5.2 Real data experiment284

Dataset. We used the de-identified COVID-19 Hospitalization in England Surveillance System285

(CHESS) data, which contains individual-level risk factors, treatments and outcomes of N = 3, 090286

ICU patients admitted during the first peak of the pandemic. Based on the prior research on COVID-287

19 [19, 46], we extracted D = 17 covariates X (e.g. age and multi-morbidity) and K = 5 causes A288

(e.g. ventilation and anti-viral treatments). The full list of covariates, causes and the assumed causal289

structure are shown in Appendix A.11. The outcome of interest is the patient’s length of stay (LoS) in290

ICU [48]. Achieving shorter LoS is crucial for handling the large influx of patients during the peak of291

pandemic. We simulate the potential LoS for all treatments based on the state-of-the-art LoS model292

proposed in [65], which is a generalized linear model with interactions:293

logY (a) =
∑

j,k∈[D+K+1]

βjkx
′
jx
′
k + ξ, (7)

where x′ = (x,a,1) is the concatenation of the covariates, causes and a vector of ones, βij is the294

coefficient sampled from N(0, 0.5) and ξ is white noise N(0, 0.1).295

Training and evaluation. We use the same benchmarks as in the simulation study. After sorting296

the data chronologically according to the date of admission, we train and tune the algorithms on the297

first N0 patients, and perform evaluation on the rest of the patients. Compared with random splitting,298

this evaluation strategy preserves the temporality of the data and better mimics the actual training299

and deployment of the algorithm. For decision support, we would like the CATE estimator to rank300

higher the treatments that lead to better potential outcomes. Therefore, in addition to RMSE, we301

also report the ranking error, measured by the Spearman’s Footrule distance between the treatment302

rankings induced by the true and the estimated POs [29]. A detailed explanation of the distance is303

given in Appendix A.11.304

Results. The experimental results are presented in Table 3. We find that SCP consistently outperforms305

the benchmarks in both evaluation metrics. Achieving smaller ranking error means that SCP is better306

at creating a short list of plausible treatment plans for the clinicians to choose from. In practice,307

narrowing down the large number of treatments into a short list might help streamline the clinician’s308

decision process and improve efficiency. Moreover, SCP also consistently achieves the best accuracy309

in terms of RMSE and its performance is relatively stable and improving when N0 increases.310

It is worth highlighting that SCP is more data efficient than the benchmarks: it achieves better RMSE311

with N0 = 500 samples than the benchmarks trained with N0 = 1500 samples. Being data efficient312

is crucial for urgent applications such as pandemic control, where the practitioners would like to313

perform inference with limited amount of data.314

6 Conclusion and future works315

SCP is a principled way to leverage existing single cause CATE estimation algorithms in the multi-316

cause setting. It increases sample size and balancing by augmenting the observational dataset with317

the estimated potential outcomes. In principle, SCP may be used jointly with other data augmentation318

procedures in the first step to produce an even richer training dataset [64]. Although we make the319

unconfoundedness assumption in this work, it may also be possible to modify SCP to overcome320

certain types of hidden confounders [67]. We will leave these extensions to future works.321
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