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Abstract

In recent years, robust Markov decision processes (MDPs) have emerged as a1

prominent modeling framework for dynamic decision problems affected by un-2

certainty. In contrast to classical MDPs, which only account for stochasticity by3

modeling the dynamics through a stochastic process with a known transition kernel,4

robust MDPs additionally account for ambiguity by optimizing in view of the most5

adverse transition kernel from a prescribed ambiguity set. In this paper, we develop6

a novel solution framework for robust MDPs with s-rectangular ambiguity sets that7

decomposes the problem into a sequence of robust Bellman updates and simplex8

projections. Exploiting the rich structure present in the simplex projections corre-9

sponding to �-divergence ambiguity sets, we show that the associated s-rectangular10

robust MDPs can be solved substantially faster than with state-of-the-art commer-11

cial solvers as well as a recent first-order solution scheme, thus rendering them12

attractive alternatives to classical MDPs in practical applications.13

1 Introduction14

Markov decision processes (MDPs) are a flexible and popular framework for dynamic decision-15

making problems and reinforcement learning [33, 42]. A practical limitation of the standard MDP16

model is that it assumes the model parameters, such as transition probabilities and rewards, to be17

known exactly. In reinforcement learning and other applications, these parameters must be estimated18

from sampled data, which introduces estimation errors. Optimal MDP solutions, referred to as policies,19

are well known to be sensitive to errors and may fail catastrophically when deployed [25, 47].20

Robust MDPs (RMDPs) mitigate the sensitivity of MDPs to estimation errors by computing a policy21

that is optimal for the worst plausible realization of the transition probabilities. This set of plausible22

transition probabilities is known as the ambiguity set. Most prior work considers ambiguity sets that23

are rectangular. In this work, we focus on s-rectangular ambiguity sets, which assume that the worst24

transition probabilities are chosen independently in each state [25, 47]. While several other models25

of rectangularity have been studied [9, 14, 22, 27], s-rectangular ambiguity sets are popular due to26

their generality and the existence of polynomial-time algorithms based on dynamic programming27

concepts. However, even those algorithms may be too slow in practice. Solving RMDPs requires28

the solution of a convex optimization problem in every step of value or policy iteration, which can29

become prohibitively slow even in moderatly sized problems with 100s of states [5, 9, 15, 20].30

Motivated by the difficulty of solving RMDPs, several fast algorithms have been proposed for s-31

rectangular RMDPs [5, 9, 15, 20]. The preponderance of the earlier work has focused on ambiguity32

sets defined in terms of L1- and L1-norms. These ambiguity sets are polyhedral, and they can be33

analyzed using linear programming techniques which offer fruitful avenues to exploit the structure34

inherent to those sets. However, recent statistical studies point to the superior solution quality offered35

by nonlinear ambiguity sets defined in terms of the Kullback-Leibler (KL) divergence, the L2-norm36

and other metrics [18]. RMDPs with s-rectangular ambiguity sets defined in terms of non-polyhedral37
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ambiguity sets are currently solved using first-order methods [15] or general convex conic solvers38

such as MOSEK [3], which tend to be complex, closed-source and slow.39

As our main contribution, we propose a new suite of fast algorithms for solving RMDPs with �-40

divergence constrained s-rectangular ambiguity sets. �-divergences, also known as f-divergences,41

constitute a generalization of the KL divergence that encompasses the Burg entropy as well as the L1-42

and weighted L2-norms as special cases [4, 6]. Solving �-divergence RMDPs using value iteration43

requires the solution of seemingly unstructured min-max problems. Our main insight is that these44

min-max problems can be reduced to a small number of highly structured projection problems onto45

a probability simplex. We use this insight to develop tailored solution schemes for the projection46

problems corresponding to several popular �-divergence ambiguity sets, which in turn give rise to47

efficient solution methods for the respective RMDPs. Ignoring tolerances, our algorithms achieve48

an overall O(S2
· A logA) or O(S2 logS · A) time complexity to compute the robust Bellman49

operator, where S and A denote the numbers of states and actions, respectively. Since the evaluation50

of a non-robust Bellman operator requires a runtime of O(S2
· logA), our algorithms only incur51

an additional logarithmic overhead to account for robustness in the transition probabilities. This52

computational complexity compares favorably with the larger time complexity of a recent first-order53

solution scheme for KL divergence-constrained s-rectangular RMDPs (which we will elaborate on54

later in the paper) as well as a minimum complexity of O(S4.5
· A) for the naïve solution with55

state-of-the-art interior-point algorithms. Our framework is general enough to readily accommodate56

for �-divergences that have not been studied previously in the context of s-rectangular ambiguity57

sets, such as the Burg entropy and the �2-distance. For other �-divergences, such as the L1-norm,58

our framework results in the same complexity at substantially simplified proofs.59

The algorithms developed in this paper can be used in combination with a variety of RMDP solution60

schemes. In particular, they can be used to accelerate the standard robust value iteration, policy61

iteration, modified policy iteration [23] and partial policy iteration [20]. They can also be combined62

with a first order gradient method [15] that has been introduced recently. In addition, fast algorithms63

for computing the Bellman operator also play a crucial role when scaling robust algorithms to value64

function optimization [44] and robust policy gradients [43].65

The remainder of the paper proceeds as follows. Section 2 reviews relevant prior work and Section 366

describes our basic RMDP setting. Then, Section 4 shows how the robust Bellman operator for a large67

class of ambiguity sets can be reduced to a sequence of structured projections onto a simplex. We68

describe novel algorithms for efficiently computing the simplex projections for several �-divergences69

in Section 5. Finally, Section 6 presents experimental results that compare the runtime of our70

algorithms with general conic solvers as well as a recent first-order optimization algorithm [15].71

Notation. We denote by e the vector of all ones, whose context determines its dimension. We72

refer to the probability simplex in Rn by �n = {p 2 Rn
+ : e>p = 1}. For x 2 Rn, we let73

min{x} = min{xi : i = 1, . . . , n} (similar for the maximum operator), and we define [x]+ 2 Rn
+74

component-wise as ([x]+)i = max{xi, 0}, i = 1, . . . , n. We refer to the conjugate of a function75

f : Rn
! R by f?(y) = sup{y>x� f(x) : x 2 Rn

}. Random variables are indicated by a tilde.76

2 Related Work77

While RMDPs have been studied since the seventies [39], they have witnessed significant recent78

interest due to their widespread adoption in applications ranging from assortment optimization [37],79

medical decision-making [13, 53] and hospital operations management [17], production planning [49]80

and energy systems [21] to model predictive control [11], aircraft collision avoidance [24], wireless81

communications [48] and the robustification against approximation errors in aggregated MDPs [31].82

Efficient implementations of the robust value iteration have been first proposed by [12, 22, 29]83

for RMDPs with (s, a)-rectangular ambiguity sets, where the worst transition probabilities are84

considered separately for each state and action. The authors study ambiguity sets that bound the85

distance of the transition probabilities to some nominal distribution in terms of finite scenarios,86

interval matrix bounds, ellipsoids, the relative entropy, the KL divergence and maximum a posteriori87

models. Subsequently, similar methods have been developed by [48] for interval matrix bounds as88

well as likelihood uncertainty models, by [31] for 1-norm ambiguity sets as well as by [53] for interval89

matrix bounds intersected with a budget constraint. All of these contributions have in common that90

they focus on (s, a)-rectangular ambiguity sets where the existence of optimal deterministic policies91
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is guaranteed, and it is not clear how they could be extended to the more general class of s-rectangular92

ambiguity sets where all optimal policies may be randomized.93

In contrast to (s, a)-rectangular ambiguity sets, s-rectangular ambiguity sets restrict the conservatism94

among transition probabilities corresponding to different actions in the same state, which tends to95

lead to a superior performance in data-driven settings. [47] solve the subproblems arising in the96

robust value iteration of an s-rectangular RMDP as linear or conic optimization problems using97

commercial off-the-shelf solvers. Despite their polynomial-time complexity, general-purpose solvers98

cannot exploit the structure present in these subproblems, which renders them suitable primarily99

for small problem instances. More efficient tailored solution methods for s-rectangular RMDPs100

have subsequently been developed by [5, 19, 20]. [19] develop a homotopy continuation method for101

RMDPs with (s, a)-rectangular and s-rectangular weighted 1-norm ambiguity sets, while [5] adapt102

the algorithm of [19] to unweighted1-norm ambiguity sets. [20] embed the algorithms of [19] in a103

partial policy iteration, which generalizes the robust modified policy iteration proposed by [23] for104

(s, a)-rectangular RMDPs to s-rectangular RMDPs.105

While the present paper focuses on the robust value iteration for ease of exposition, we note that our106

algorithms can also be combined with the partial policy iteration of [20] to obtain further speedups.107

[9] establish a relationship between s-rectangular RMDPs and twice regularized MDPs, which they108

subsequently use to propose efficient Bellman updates for a modified policy iteration. While their109

approach can solve RMDPs in almost the same time as a classical non-robust MDPs, the obtained110

policies can be conservative as the worst-case transition probabilities are not restricted to reside in a111

probability simplex and, therefore, may be negative and/or add up to more or less than 1. Finally,112

[15] propose a first-order framework for RMDPs with s-rectangular KL and spherical ambiguity sets113

that interleaves primal-dual first-order updates with approximate value iteration steps. The authors114

show that their algorithms outperform a robust value iteration that solves the emerging subproblems115

using state-of-the-art commercial solvers. We compare our solution method for KL ambiguity sets116

with the approach proposed by [15] in terms of its theoretical complexity and numerical runtimes.117

While this paper exclusively studies s-rectangular uncertainty sets, alternative generalizations of (s, a)-118

rectangular ambiguity sets have been proposed in the literature as well. For example, [27] consider119

k-rectangular ambiguity sets where the transition probabilities of different states can be coupled, [14]120

study factor ambiguity model ambiguity sets where the transition probabilities depend on a small121

number of underlying factors, and [45] construct ambiguity sets that bound marginal moments of state-122

action features defined over entire MDP trajectories. We also note the papers [7, 16, 51] which study123

the related problem of distributionally robust MDPs whose transition probabilities are themselves124

regarded as random objects that are drawn from distributions which are only partially known. The125

connections between RMDPs and multi-stage stochastic programs as well as distributionally robust126

problems are explored further by [38, 40, 41].127

3 Preliminaries128

Robust MDPs We study RMDPs with a finite state space S = {1, . . . , S} and a finite action space129

A = {1, . . . , A}. We assume an infinite planning horizon, but all of our results immediately extend130

to a finite time horizon. Without loss of generality, we assume that every action a 2 A is admissible131

in every state s 2 S . The RMDP starts in a random initial state s̃0 that follows the known probability132

distribution p0 from the probability simplex �S in RS . If action a 2 A is taken in state s 2 S , then133

the RMDP transitions randomly to the next state according to the conditional probability distribution134

psa 2 �S . We condense the transition probabilities psa to the tensor p 2 (�S)S⇥A. The transition135

probabilities are only known to reside in a non-empty, compact ambiguity set P ✓ (�S)S⇥A. For136

a transition from state s 2 S to state s0 2 S under action a 2 A, the decision maker receives an137

expected reward of rsas0 2 R+. As with the transition probabilities, we condense these rewards to138

the tensor r 2 RS⇥A⇥S
+ . Without loss of generality, we assume that all rewards are non-negative.139

We denote by ⇧ = (�A)S the set of all stationary (i.e., time-independent) randomized policies. A140

policy ⇡ 2 ⇧ takes action a 2 A in state s 2 S with probability ⇡sa. The transition probabilities141

p 2 P and the policy ⇡ 2 ⇧ induce a stochastic process {(s̃t, ãt)}1t=0 on the space (S ⇥A)1 of142

sample paths. We refer by Ep,⇡ to expectations with respect to this process. The decision maker is143

risk-neutral but ambiguity-averse and wishes to maximize the worst-case expected total reward under144
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Divergence da(psa,psa) �(t) Complexity of J State-of-the-Art

Kullback-Leibler
P

s0 psas0 log
⇣

psas0
psas0

⌘
t log t� t+ 1 O(S2

·A logA) O(`2 · S2
·A)

Burg Entropy
P

s0 psas0 log
⇣

psas0
psas0

⌘
� log t+ t� 1 O(S2

·A logA) no poly-time guarantee
Variation Distance

P
s0 |psas0 � psas0 | |t� 1| O(S2 logS ·A) O(S2 logS ·A)

�2-Distance
P

s0
(psas0�psas0 )

2

psas0
(t� 1)2 O(S2 logS ·A) O(S4.5

·A)

Table 1: Summary of the �-divergences studied in this paper, together with the complexity of our
robust Bellman operator J (applied across all states s 2 S) as well as the best known results from the
literature. The complexity estimates omit constants and tolerances that are reported in Section 5 of
the paper. ‘`’, where present, refers to the number of Bellman iterations conducted so far.

a discount factor � 2 (0, 1),145

max
⇡2⇧

min
p2P

Ep,⇡

" 1X

t=0

�t
· rs̃t,ãt,s̃t+1

��� s̃0 ⇠ p0

#
. (1)

Note that the maximum and minimum in (1) are both attained by the Weierstrass theorem since ⇧146

and P are non-empty and compact, while the objective function is finite since � < 1.147

Rectangular Ambiguity Sets For general ambiguity sets P , evaluating the inner minimization148

in (1) is NP-hard even if the policy ⇡ 2 ⇧ is fixed [47]. For these reasons, much of the research on149

RMDPs and their applications has focused on rectangular ambiguity sets. Among the most general150

rectangular ambiguity sets are the s-rectangular ambiguity sets P satisfying151

P =
�
p 2 (�S)

S⇥A : ps 2 Ps 8s 2 S
 
, where Ps ✓ (�S)

A, s 2 S,

see [25, 47, 50, 52]. In contrast to the simpler class of (s, a)-rectangular ambiguity sets, s-rectangular152

ambiguity sets restrict the choice of transition probabilities ps1, . . . ,psA corresponding to different153

actions a applied in the same state s. This limits the conservatism of the resulting RMDP (1) and154

typically leads to a better performance of the optimal policy [47]. Although Bellman’s optimality155

principle extends to s-rectangular RMDPs and there is always an optimal stationary policy, all optimal156

policies of an s-rectangular RMDP may be randomized.157

We study a new general class of s-rectangular ambiguity sets that can be expressed as158

Ps =

(
ps 2 (�S)

A :
X

a2A
da(psa,psa)  

)
, (2)

where  2 R+ is the uncertainty budget and the distance functions da(psa,psa), a 2 A, are159

�-divergences (also known as f-divergences) satisfying160

da(psa,psa) =
X

s02S
psas0�

✓
psas0

psas0

◆
.

Here, � : R+ ! R+ is a convex function satisfying �(1) = 0. Intuitively, a �-divergence measures161

the distance between two probability distributions. With an appropriate choice of �, it generalizes162

other metrics including the KL divergence, the Burg entropy, L1- and L2-norms and others [4, 6].163

Table 1 reports some popular �-divergences that we study in this paper. Note that the variation164

distance coincides with the L1-based s-rectangular ambiguity sets studied in earlier work [19, 20].165

Robust Value Iteration A standard approach for computing the optimal value and the optimal166

policy of an RMDP (1) is the robust value iteration [22, 29, 25, 47]: Starting with an initial estimate167

v0
2 RS of the state-wise optimal value to-go, we conduct robust Bellman iterations of the form168

vt+1
 J(vt), t = 0, 1, . . ., where the robust Bellman operator J is defined component-wise as169

[J(v)]s = max
⇡s2�A

min
ps2Ps

X

a2A
⇡sa · psa

>(rsa + �v) 8s 2 S. (3)
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Figure 1: The generalized da-projection problem (4) in S = 3 dimensions (a) and two-dimensional
projections for the variation distance (b), the �2-distance (c) and the KL divergence (d). The gray
shaded areas represent the probability simplex �S , the red dashed lines show the boundary of the
intersection of the halfspace b>psa  � with the probability simplex, and the white shapes illustrate
contour lines centered at the nominal transition probabilities psa.

This yields the optimal value p0>v?, where the limit v? = limt!1 vt is approached component-wise170

at a geometric rate. The optimal policy ⇡?
2 ⇧, finally, is recovered state-wise via171

⇡?
s 2 argmax

⇡s2�A

min
ps2Ps

X

a2A
⇡sa · psa

>(rsa + �v?) 8s 2 S.

4 Robust Bellman Updates via Simplex Projections172

In this section, we show that the robust Bellman operator J reduces to a generalized projection173

problem. This reduction is important because it underlies our fast algorithms for computing J.174

At the core of the robust value iteration is the solution of the max-min problem (3). We now show175

that for ambiguity sets of the form (2), this problem can be solved efficiently whenever the following176

generalized da-projection of the nominal transition probabilities psa can be computed efficiently:177

P(psa; b,�) =

2

4
minimize da(psa,psa)
subject to b>psa  �

psa 2 �S

3

5 . (4)

Here, psa 2 �S are the decision variables and psa 2 �S , b 2 RS
+ and � 2 R+ are parameters. Note178

that problem (4) is infeasible if and only if min{b} > �. Moreover, problem (4) is trivially solved179

by psa with an optimal objective value of 0 whenever b>psa  �. To avoid these trivial cases, we180

assume throughout the paper that min{b}  � and b>psa > �. We illustrate the feasible region and181

optimal solution to problem (4) for different �-divergences in Figure 1.182

Our generalized da-projection (4) relates to the rich literature on projections onto simplices, which183

we review in the next section. In fact, our algorithms in the next section solve a variant of the simplex184

projection problem that is restricted by an additional inequality constraint. We therefore believe that185

our algorithms may find additional applications outside the RMDP literature.186

In the following, we say that for a given estimate vt
2 RS of the optimal value function, the robust187

Bellman iteration (3) is solved to ✏-accuracy by any vt+1
2 RS satisfying kvt+1

� J(vt)k1  ✏.188

We seek ✏-optimal solutions because our ambiguity sets are nonlinear and hence the exact Bellman189

iterate J(vt) may be irrational even if vt is rational. To simplify the exposition, we define R =190

[1� �]�1
·max{rsas0 : s, s0 2 S, a 2 A} as an upper bound on all [J(v)]s, v  v? and s 2 S .191

For divergence-based ambiguity sets, the projection problem (4) is generically nonlinear and can192

hence not be expected to be solved to exact optimality. To account for this additional complication,193

we say that for a given psa 2 �S , b 2 RS
+ and � 2 R+, the generalized da-projection P(psa; b,�)194

is solved to �-accuracy by any pair (d, d) 2 R2 satisfying P(psa; b,�) 2 [d, d] and d� d  �.195

Theorem 1. Assume that the generalized da-projection (4) can be computed to any accuracy � > 0196

in time O(h(�)). Then the robust Bellman iteration (3) can be computed to any accuracy ✏ > 0 in197

time O(AS · h(✏/[2AR+A✏]) · log[R/✏]).198

Theorem 1 reduces the evaluation of the robust Bellman iterator J, which involves the solution of a199

max-min optimization problem over an s-rectangular ambiguity set that couples all actions a 2 A, to200
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a sequence of much simpler and highly structured projection problems that are no longer coupled201

across different actions a 2 A. The next section describes efficient solution schemes for the projection202

problem (4) in the context of several �-divergence ambiguity sets. The runtimes of these solution203

schemes are summarized in Table 1. Note that the evaluation of a non-robust Bellman operator204

requires a runtime of O(S2
· logA), which implies that our algorithms only incur an additional205

logarithmic overhead to account for robustness in the transition probabilities.206

5 Fast Projections on �-Divergence Simplices207

We next describe fast algorithms for computing generalized projections onto the probability simplex.208

Combined with the results from Section 4, these algorithms can be used to efficiently compute209

the robust Bellman operator. Note that some �-divergences, such as the KL divergence and the210

�2-distance, imply that if psas0 = 0 for some s, s0 2 S and a 2 A, then psas0 = 0 for all psa 2 �S211

with da(psa,psa) <1, and thus we can remove indices s0 with psas0 = 0. For other �-divergences,212

such as the Burg entropy and the variation distance, one can readily verify that our results remain213

valid no matter whether psa > 0 or not, but the formulations and proofs require additional case214

distinctions and/or limit arguments. To simplify the exposition, we therefore assume that psa > 0.215

Proposition 1. For the distance function da(psa,psa) =
P

s02S psas0 · �
⇣

psas0
psas0

⌘
, the optimal value216

of the projection problem (4) equals the optimal value of the bivariate convex problem217

maximize ��↵+ ⇣ �
X

s02S
psas0�

?(�↵bs0 + ⇣)

subject to ↵ 2 R+, ⇣ 2 R.
(5)

Proposition 1 reduces the S-dimensional projection problem (4) to a two-dimensional optimization218

problem over the dual variables ↵ and ⇣. In the following, we show that for the �-divergences from219

Table 1, problem (5) can be further simplified to univariate convex optimization problems that can be220

solved efficiently via bisection, binary search or sorting.221

5.1 Kullback-Leibler Divergence222

We first show that for the KL divergence �(t) = t log t� t+ 1, the reduced projection problem (5)223

can be further simplified to a univariate convex optimization problem.224

Proposition 2. For the KL divergence �(t) = t log t � t + 1, the optimal value of the projection225

problem (4) equals the optimal value of the univariate convex problem226

maximize ��↵� log

 
X

s02S
psas0 · e

�↵bs0

!

subject to ↵ 2 R+.

(6)

We next show that the univariate optimization problem (2) admits an efficient solution via bisection.227

Theorem 2. If � � min{b}+ ! for some ! > 0, then the projection problem (4) can be solved to228

any �-accuracy in time O(S · log[max{b} · log(min{p}�1)/(�!)]).229

Note that the projection problem (4) is infeasible whenever � < min{b}. The condition in the230

statement of Theorem 2 can thus be interpreted as a strict feasibility requirement. It is worth231

contrasting the result of Theorem 2 with the solution of the projection problem (4) as an exponential232

cone program. The latter would result in a practical complexity of O(S3), assuming that—which is233

often observed in practice—the number of iterations of the employed interior-point solver does not234

grow with the problem dimensions. A theoretically guaranteed complexity, on the other hand, does235

not seem to be available at present as the commercial state-of-the-art solvers for exponential conic236

programs are not proven to terminate in polynomial time.237

Corollary 1. The robust Bellman iteration (3) over a KL divergence ambiguity set can be computed238

to any accuracy ✏ > 0 in time O(S2
·A logA · log[R

2
· log(min{p}�1)/(✏2)] · log[R/✏]).239

[15] propose a first-order framework for RMDPs over s-rectangular KL divergence ambiguity sets240

whose robust Bellman update enjoys a complexity of O(`2 ·S2
·A · log(✏�1)), where ` is the iteration241
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number. A careful analysis results in an overall convergence rate for the optimal MDP policy of242

O(S3
·A2

· ✏�1 log[✏�1]). In contrast, the convergence rate of our robust value iteration amounts to243

O(S2
·A logA·log[R

2
·log(min{p}�1)/(✏2)]·log[R/✏]·log[✏�1]). Treating the problem parameters244

R, p and  as constants, our convergence rate simplifies to O(S2
· A logA · log[✏�2] · log2[✏�1]),245

which compares favourably against the convergence rate of the first-order scheme. Our numerical246

results in Section 6 show that this theoretical difference appears to carry over to a favourable empirical247

performance on test instances as well.248

We finally note the related work [1], which optimizes a linear function over the intersection of a249

probability simplex with a constraint on the KL divergence to a nominal distribution. While one250

could in principle modify that algorithm to solve our projection problem (4), the resulting algorithm251

would require an additional bisection and would thus be significantly slower than ours.252

5.2 Burg Entropy253

Similar to the KL divergence, the reduced projection problem (5) can be further simplified to a254

univariate convex optimization problem for the Burg entropy �(t) = � log t+ t� 1.255

Proposition 3. For the Burg entropy �(t) = � log t+ t� 1, if � > min{b}, then the optimal value256

of the projection problem (4) equals the optimal value of the univariate convex problem257

maximize
X

s02S
psas0 · log

✓
1 + ↵

bs0 � �

� �min{b}

◆

subject to ↵  1
↵ 2 R+.

(7)

Similar to the KL divergence, the univariate optimization problem (7) can be solved efficiently.258

Theorem 3. If � � min{b}+ ! for some ! > 0, then the projection problem (4) can be solved to259

any �-accuracy in time O(S · log[max{b}/(�!)]).260

As with the KL divergence, the projection problem (4) corresponding to the Burg entropy can be261

solved in a practical complexity of O(S3) as an exponential cone program, whereas we are not aware262

of any state-of-the-art solvers equipped with theoretical guarantees. To our best knowledge, RMDPs263

with s-rectangular Burg entropy ambiguity sets have not been studied previously in the literature.264

Corollary 2. The robust Bellman iteration (3) over a Burg entropy ambiguity set can be computed to265

any accuracy ✏ > 0 in time O(S2
·A logA · log[R

2
/(✏2)] · log[R/✏]).266

Similar to the previous subsection, we note that the related paper [1] optimizes a linear function over267

the intersection of a probability simplex with a bound on the Burg entropy to a nominal distribution.268

While that algorithm could in principle be employed to solve our projection problem (4), the resulting269

solution scheme would not be competitive due to the inclusion of an additional bisection.270

5.3 Variation Distance271

We first provide an equivalent univariate optimization problem for the reduced projection problem (5)272

corresponding to the variation distance �(t) = |t� 1|.273

Proposition 4. For the variation distance �(t) = |t � 1|, the optimal value of the projection274

problem (4) equals the optimal value of the univariate convex problem275

maximize 2 + ↵(min{b}� �)�
X

s02S
psas0 · [2 + ↵ · (min{b}� bs0)]+

subject to ↵ 2 R+.
(8)

Once more, the univariate optimization problem (8) admits an efficient solution.276

Theorem 4. The projection problem (4) can be solved exactly in time O(S logS).277

Note that in contrast to the previous results, Theorem 4 employs a binary search and thus offers an278

exact solution to the projection problem (4). Our result of Theorem 4 matches the complexity of the279

homotopy continuation method proposed by [20]. The correctness and runtime of their algorithm,280
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however, relies on lengthy ad hoc arguments, whereas Theorem 4 relies on the groundwork laid by281

Theorem 1 and Proposition 1. Problem (4) can also be solved as a linear program with a practical282

complexity of O(S3) and a theoretical complexity of O(S3.5).283

Corollary 3. The robust Bellman iteration (3) over a variation distance ambiguity set can be284

computed to any accuracy ✏ > 0 in time O(S2 logS ·A · log[R/✏]).285

[34] study the related problem of optimizing a linear function over the intersection of a probability286

simplex with an unweighted 1-norm constraint, and they identify structural properties of the optimal287

solutions. Since the linear function and the norm constraint are in different places of the optimization288

problem, however, their findings are not directly applicable to our setting.289

5.4 �2-Distance290

In contrast to the previous subsections, we directly solve the bivariate problem (5) for the �2-distance291

�(t) = (t� 1)2 without first formulating an associated univariate optimization problem.292

Theorem 5. For the �2
-distance �(t) = (t� 1)2, the optimal value of the projection problem (4)293

can be computed exactly in time O(S logS).294

Theorem 5 splits the bivariate piecewise quadratic optimization problem (5) corresponding to the295

�2-distance into S + 1 bivariate quadratic problems by sorting the components of b. Each of these296

S + 1 problems can be reduced to the solution of 3 univariate quadratic problems that themselves297

admit analytical solutions.298

Corollary 4. The robust Bellman iteration (3) over a �2
-distance ambiguity set can be computed to299

any accuracy ✏ > 0 in time O(S2 logS ·A · log[R/✏]).300

The projection problem (4) for the �2-distance ambiguity set can be solved as a quadratic program301

with a practical complexity of O(S3) as well as a theoretical complexity of O(S3.5).302

The first-order framework of [15] also applies to RMDPs over s-rectangular spherical uncertainty303

sets. In that case, the robust Bellman update enjoys a complexity of O(`2 ·S2
·A · log2(✏�1)), where304

` is the iteration number. A careful analysis results in an overall convergence rate for the optimal305

MDP policy of O(S3 logS ·A2
· ✏�1 log[✏�1]). In contrast, the convergence rate of our robust value306

iteration amounts to O(S2 logS ·A · log[R/✏] · log[✏�1]). Treating the parameter R as a constant, our307

convergence rate simplifies to O(S2 logS ·A · log2[✏�1]), which compares favourably against the308

convergence rate of [15]. We remark, however, that the spherical ambiguity sets of [15] differ from309

the �2-distance ambiguity sets studied here, and as such the two methods are not directly comparable.310

We also note that our �2-distance ambiguity sets enjoy a strong statistical justification [4, 6].311

Computing unweighted 2-norm projections of points onto S-dimensional probability simplices has312

manifold applications in image processing, finance, optimization and machine learning [1, 8]. [28]313

proposes one of the earliest algorithms that computes this projection in time O(S2) by iteratively314

reducing the dimension of the problem using Lagrange multipliers. The minimum complexity of315

O(S) is achieved, among others, by [26] through a linear-time median-finding algorithm and by [30]316

through a filtered bucket-clustering method. Note, however, that these algorithms do not account317

for the weights and the additional inequality constraint present in our generalized projection (4).318

The unweighted 2-norm projection of a point onto the intersection of the S-dimensional probability319

simplex with an axis-parallel hypercube is computed by [46] through a sorting-based method and320

by [2] through Newton’s method, respectively. [32] optimize a linear function over the intersection321

of a probability simplex with an unweighted 2-norm constraint through an iterative dimension322

reduction scheme. [1], finally, study algorithms that optimize linear functions over the intersection of323

a probability simplex and a bound on the unweighted 2-norm distance to a nominal distribution.324

6 Numerical Results325

We compare our fast suite of algorithms with the state-of-the-art solver MOSEK 9.3 [3] (commercial)326

and the first-order method of [15]. To this end, we implemented our algorithms as well as the first-327

order scheme of [15] in C++, whereas MOSEK is called from Python [36] (BSD license) using the328

modelling language CVXPY 1.2 [10] (Apache license). We only account for the actual solution time329

of MOSEK and do not record the time required to formulate the optimization problems in Python.330
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S MOSEK fast MOSEK/fast

20 1.00 0.01 175.35
100 7.53 0.02 317.80
400 17.87 0.09 190.95

1,000 49.23 0.24 208.20
4,000 235.43 0.94 249.18

S = A MOSEK fast MOSEK/fast

20 12.98 1.06 12.21
100 637.78 25.25 25.28
400 24,308.16 343.37 70.79
600 47,473.61 731.17 64.93
700 63,318.00 1,084.65 58.38

Table 2: Comparison of our algorithms (‘fast’) vs. MOSEK for the projection problem (left) and the
Bellman update (right) on KL-divergence constrained ambiguity sets. Runtimes are reported in ms.

S = A f-o (3 its) f-o (5 its) fast f-o/fast (3 its) f-o/fast (5 its)

20 9.12 25.25 1.06 8.58 23.75
100 183.34 508.83 25.25 7.26 20.15
400 2,821.52 7,833.65 343.37 8.21 22.81
600 6,434.55 17,828.39 731.17 8.80 24.38
700 8,523.80 23,702.00 1,084.65 7.86 21.85

Table 3: Comparison of our algorithms (‘fast’) vs. the first-order method of [15] (after ` = 3, 5 its.)
for the Bellman update on KL-divergence constrained ambiguity sets. Runtimes are reported in ms.

S MOSEK fast MOSEK/fast

20 0.57 0.00 230.64
100 1.41 0.01 202.30
400 4.55 0.02 211.57
600 10.98 0.05 208.12
700 27.33 0.24 114.94

S = A MOSEK fast MOSEK/fast

20 4.53 0.08 57.84
100 199.74 2.99 66.80
400 4,415.54 48.35 91.32
600 12,267.68 114.32 107.31
700 18,005.51 148.09 121.59

Table 4: Comparison of our algorithms (‘fast’) vs. MOSEK for the projection problem (left) and the
Bellman update (right) on �2-distance constrained ambiguity sets. Runtimes are reported in ms.

All experiments are run on a 3.6 GHz 8-Core Intel Core i9 CPU with 32 GB 2667 MHz DDR4 main331

memory. Our own algorithm as well as the first-order method of [15] are run in single-threaded mode,332

whereas MOSEK uses 16 parallel threads since CVXPY does not allow us to restrict computations333

to a single-threaded mode. All source codes, data sets and detailed results are available on GitHub334

(URL withheld to maintain anonymity during the review process).335

For our experiments, we synthetically generate random RMDP instances as follows. For the projection336

problem, we sample each component of b uniformly at random between 0 and 1. Similarly, we sample337

each component of psa uniformly at random between 0 and 1 and subsequently scale psa so that its338

elements sum up to 1. The parameter �, finally, is uniformly distributed between min{b}+10�8 and339

p>
sab� 10�8 to adhere to the assumptions of our paper. For the robust Bellman update, all vectors340

bsa and all transition probabilities psa, s 2 S and a 2 A, are generated according to the above341

procedure. The parameter  is also sampled from a uniform distribution supported on [0, 1].342

Tables 2–4 report average computation times over 50 randomly generated test instances. The tables343

reveal that for both KL divergence and �2-distance based ambiguity sets, our algorithms are about 2344

orders of magnitude faster than MOSEK in solving the projection problem (4) and about 1-2 orders345

of magnitude faster than MOSEK in computing the robust Bellman update J, respectively. Note,346

however, that MOSEK benefits from a heavy parallelization (it uses 16 threads simultaneously), and347

a fairer comparison that either restricts MOSEK to a single thread or exploits parallelization in our348

algorithms (this can readily be achieved in the outer bisection, for example) would further increase the349

outperformance of our algorithms. The tables also show that our algorithm outperforms the first-order350

method of [15], and that this outperformance increases rapidly with the iteration number at which the351

robust Bellman update is performed: While our algorithms outperform the first-order scheme by a352

factor of about 8 in the third Bellman iteration, this outperformance already increases to a factor of353

about 20 in the fifth Bellman iteration. Since first-order methods are known to require many iterations354

for convergence, we conclude that our algorithm compares favorably in this experiment as well.355

9



References356

[1] L. Adam and V. Mácha. Projections onto the canonical simplex with additional linear inequalities.357

Optimization Methods & Software, Available online first, 2020.358

[2] M. S. Ang, J. Ma, N. Liu, K. Huang, and Y. Wang. Fast projection onto the capped simplex359

with applications to sparse regression in bioinformatics. In Advances in Neural Information360

Processing Systems, volume 34, 2021.361

[3] MOSEK ApS. MOSEK Fusion API for C++ 9.3.20, 2019. URL https://docs.mosek.com/362

latest/cxxfusion/index.html.363

[4] G. Bayraksan and D. K. Love. Data-driven stochastic programming using phi-divergences. In364

D. M. Aleman and A. C. Thiele, editors, INFORMS TutORials in Operations Research, pages365

1–19. 2015.366

[5] B. Behzadian, M. Petrik, and C. P. Ho. Fast algorithms for l1-constrained s-rectangular367

robust MDPs. In Advances in Neural Information Processing Systems, volume 34, pages368

(Pre–Proceedings), 2021.369

[6] A. Ben-Tal, D. den Hertog, A. de Waegenaere, B. Melenberg, and G. Rennen. Robust solutions370

of optimization problems affected by uncertain probabilities. Management Science, 59(2):371

341–357, 2013.372

[7] Z. Chen, P. Yu, and W. B. Haskell. Distributionally robust optimization for sequential decision-373

making. Optimization, 68(12):2397–2426, 2019.374

[8] L. Condat. Fast projection onto the simplex and the l1 ball. Mathematical Programming, 158375

(1–2):575–585, 2016.376

[9] E. Derman, M. Geist, and S. Mannor. Twice regularized MDPs and the equivalence between ro-377

bustness and regularization. In Advances in Neural Information Processing Systems, volume 35,378

pages (Pre–Proceedings), 2021.379

[10] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex380

optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.381

[11] M. Diehl and J. Bjornberg. Robust dynamic programming for min-max model predictive control382

of constrained uncertain systems. IEEE Transactions on Automatic Control, 49(12):2253–2257,383

2004.384

[12] R. Givan, S. Leach, and T. Dean. Bounded-parameter Markov decision processes. Artificial385

Intelligence, 122(1):71–109, 2000.386

[13] J. Goh, M. Bayati, S. A. Zenios, S. Singh, and D. Moore. Data uncertainty in Markov chains:387

Application to cost-effectiveness analyses of medical innovations. Operations Research, 66(3):388

697–715, 2018.389

[14] V. Goyal and J. Grand-Clément. Robust Markov decision process: Beyond rectangularity.390

Available on arXiv, 2018.391

[15] J. Grand-Clément and C. Kroer. Scalable first-order methods for robust MDPs. In Proceedings392

of the AAAI Conference on Artificial Intelligence, volume 35, pages 12086–12094, 2021.393

[16] J. Grand-Clément and C. Kroer. First-order methods for Wasserstein distributionally robust394

MDPs. In Proceedings of Machine Learning Research, volume 139, pages 2010–2019, 2021.395

[17] J. Grand-Clément, C. W. Chan, V. Goyal, and G. Escobar. Robust policies for proactive ICU396

transfers. Working Paper, 2019.397

[18] Vishal Gupta. Near-optimal Bayesian ambiguity sets for distributionally robust optimization.398

Management Science, 65(9):4242–4260, 2019.399

[19] C. P. Ho, M. Petrik, and W. Wiesemann. Fast Bellman updates for robust MDPs. In Proceedings400

of the 35th International Conference on Machine Learning, pages 979–1988, 2018.401

10



[20] C. P. Ho, M. Petrik, and W. Wiesemann. Partial policy iteration for l1-robust Markov decision402

processes. Journal of Machine Learning Research, 22:1–46, 2021.403

[21] Q. Huang, Q.-S. Jia, and X. Guan. Robust scheduling of EV charging load with uncertain wind404

power integration. IEEE Transactions on Smart Grid, 9(2):1043–1054, 2018.405

[22] G. N. Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):406

257–280, 2005.407

[23] D. L. Kaufman and A. J. Schaefer. Robust modified policy iteration. INFORMS Journal on408

Computing, 25(3):396–410, 2013.409

[24] M. J. Kochenderfer and J. P. Chryssanthacopoulos. Robust airborne collision avoidance through410

dynamic programming. Project Report ATC-371 for the Federal Aviation Administration, 2011.411

[25] Y. Le Tallec. Robust, Risk-Sensitive, and Data-driven Control of Markov Decision Processes.412

PhD thesis, Massachusetts Institute of Technology, 2007.413

[26] N. Maculan and G. G. de Paula Jr. A linear-time median-finding algorithm for projecting a414

vector on the simplex of Rn. Operations Research Letters, 8(4):219–222, 1989.415

[27] S. Mannor, O. Mebel, and H. Xu. Robust MDPs with k-rectangular uncertainty. Mathematics416

of Operations Research, 41(4):1484–1509, 2016.417

[28] C. Michelot. A finite algorithm for finding the projection of a point onto the canonical simplex418

of Rn. Journal of Optimization Theory and Applications, 50(1):195–200, 1986.419

[29] A. Nilim and L. El Ghaoui. Robust control of Markov decision processes with uncertain420

transition matrices. Operations Research, 53(5):780–798, 2005.421

[30] G. Perez, M. Barlaud, L. Fillatre, and J.-C. Régin. A filtered bucket-clustering method for422

projection onto the simplex and the l1 ball. Mathematical Programming, 182(1–2):445–464,423

2020.424

[31] M. Petrik and D. Subramanian. RAAM: The benefits of robustness in approximating aggregated425

MDPs in reinforcement learning. In Advances in Neural Information Processing Systems,426

volume 27, pages 1979–1987, 2014.427

[32] A. Philpott, V. de Matos, and L. Kapelevich. Distributionally robust SDDP. Computational428

Management Science, 15(3–4):431–454, 2018.429

[33] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John430

Wiley & Sons, 1994.431

[34] H. Rahimian, G. Bayraksan, and T. Homem-de-Mello. Identifying effective scenarios in distri-432

butionally robust stochastic programs with total variation distance. Mathematical Programming,433

173(1–2):393–420, 2019.434

[35] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1997.435

[36] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA,436

2009. ISBN 1441412697.437

[37] P. Rusmevichientong and H. Topaloglu. Robust assortment optimization under the multinomial438

logit choice model. Operations Research, 60(4):865–882, 2012.439
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