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Abstract

In the robust submodular partitioning problem, we aim to allocate a set of items
into m blocks, so that the evaluation of the minimum block according to a
submodular function is maximized. Robust submodular partitioning promotes
the diversity of every block in the partition. It has many applications in machine
learning, e.g., partitioning data for distributed training so that the gradients
computed on every block are consistent. We study an extension of the robust
submodular partition problem with additional constraints (e.g., cardinality, multiple
matroids, and/or knapsack) on every block. For example, when partitioning data
for distributed training, we can add a constraint that the number of samples of each
class is the same in each partition block, ensuring data balance. We present two
classes of algorithms, i.e., Min-Block Greedy based algorithms (with an Ω(1/m)
bound), and Round-Robin Greedy based algorithms (with a constant bound) and
show that under various constraints, they still have good approximation guarantees.
Interestingly, while normally the latter runs in only weakly polynomial time, we
show that using the two together yields strongly polynomial running time while
preserving the approximation guarantee. Lastly, we apply the algorithms on a
real-world machine learning data partitioning problem showing good results.

1 Introduction

The problem of partitioning a given set V of items into m blocks, where any two blocks share no
items in common, arises in many real-world scenarios and machine learning applications. As an
optimization problem, partitioning aims to generate the blocks so that the utilities of the blocks, as
measured by a given set function, are good. Submodular functions are a rich family of set functions
that naturally captures diversity of a given set of items. They have been applied in many real-
world problems [26, 30, 21, 17, 13, 18, 28]. By maximizing a submodular utility function for each
partitioned block, we encourage each block to be representative of the ground set V . Many algorithms
have been proposed for various submodular partitioning problems with approximation guarantees.

For the submodular welfare problem [24], we aim to find a partition such that the sum of the
submodular evaluations of every block is maximized. Such an objective promotes the overall utility
of the entire partition but some blocks may still have small function values. The robust submodular
partitioning problem [12, 29] (often called “submodular fair allocation with indivisible goods”) aims
to find the partition such that the minimum-valued block in the partition is maximized according
to the submodular function. The robust objective optimizes the worst block in the partition so that
all blocks are minimally “good.” In the general setting, every block in the partition may have a
different submodular function (the heterogeneous case) although for this work, we study only the
restricted setting where all blocks share the same submodular function (the homogeneous case). The
robust submodular partitioning problem has many applications. Given V as the training dataset for
a machine learning task, Wei et al. [29] finds a partition of V for distributed training: every block
of partitioned data is sent to a single machine for parallel gradient computations, and the gradients
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are aggregated over all the blocks in the partition for model updates. Since we enforce each block to
be representative of V , the gradients computed across distributed machines are consistent, resulting
in reduced variance and improved convergence for the aggregation step. Using a similar idea, Wang
et al. [25] partitions the training data into mini-batches so that every mini-batch is as representative
as possible, therefore reducing the variance during mini-batch gradient-based training.

In this work, we explore two different algorithmic approaches, Min-Block Greedy and Round-Robin
Greedy, for our partitioning problem but under various constraints, newly applied to this problem. For
Min-Block Greedy based algorithms, we first show that the 1

m bound for the unconstrained case is tight.
We then modify the algorithm to allow a general down-closed constraint C, and prove an approxima-
tion bound of α

αm+1 , where α is the bound for solving the submodular maximization problem under
constraint C using a greedy based algorithm. For example, for a cardinality constraint, α = 1−1/e [9],
and the bound for constrained robust submodular partitioning is (m+ 1

1−1/e )−1. Similarly, for C as
an intersection-of-p-matroids constraint, α = (1 + p)−1 [10], and the bound is (m+ p+ 1)−1; for C
as a knapsack constraint, α = 0.5(1− 1/e) [16], and the bound is (m+ 2

1−1/e )−1. For Round-Robin

Greedy based algorithms, when C is a cardinality constraint, we get a bound of (1−1/e)2

3 , and when C is
a matroid constraint, we get a bound of 1−1/e

5 . The Min-Block Greedy approach gives a weaker bound,
and since the 1

m bound for the unconstrained case is tight, we cannot improve upon the 1
m factor for the

constrained case. The Round-Robin Greedy approach gives a constant bound, but its running time is
worse. The running time for Min-Block Greedy is O(n2), where n is the ground set size. For Round-
Robin Greedy under a matroid constraint, the running time isO(n2(log logm+log 1

δ )), as it needs to
use binary search to find the optimal solution value to the given problem over an exponentially decreas-
ing sequence, with 1

1+δ (δ > 0) as the multiplicative factor. In all cases, we assume an oracle model,
and the running time is in terms of the number of submodular evaluations. An important contribution
our work shows is that by utilizing the Min-Block Greedy algorithm result as input, our Round-Robin
Greedy algorithm attains strongly polynomial running time — all previous results on the uncon-
strained case using a Round-Robin-like algorithm have only weakly polynomial running time [3].

The various constraints (e.g., cardinality, matroids, and knapsack) we study greatly improves the
applicability of robust submodular partitioning. Several applications that benefit from the constraints
include: (1) Partition a training data for machine learning models in distributed training or forming
deterministic mini-batches [29, 25]. The additional constraint can be the number of samples from
each class to be no more than a certain value. If there are enough samples in the training data, every
resulting block will have the same number of samples for each class, which avoids imbalance, further
promoting each block’s diversity, and improving the gradients’ consistency. (2) Given an undirected
graph, we partition the edges into subgraphs so that each subgraph is representative based on the
submodular evaluation, and we also constrain each subgraph to have no cycles (a cycle matroid). A
practical scenario is that we wish to send information efficiently over a graph of devices. We partition
the graph so that information can be sent in parallel, and the constraint to have no cycles enforces that
information is not redundantly sent twice to the same device, leading to improved communications
efficiency. (3) Again, for an undirected and connected graph, we partition the edges into subgraph
blocks such that if we were to remove any block of the partition from the original graph, the remaining
graph remains connected (which can be done via a bond matroid, where min-cuts are cycles and
anything not a cut is independent). In practice, this functions as a form of reliability insurance. For a
graph of devices, we partition the graph to perform computation in parallel, so that if the connections in
one block fail, the other blocks can still operate and communicate since the graph remains connected.

2 Related Work

Golovin [12] introduces robust submodular partitioning (i.e., submodular fair allocation of indivisible
goods), and proposes a matching-based algorithm with a bound of 1

n−m+1 . Khot & Ponnuswami [14]
proposes a binary search based algorithm and gives an improved bound of 1

2m−1 . Asadpour & Saberi
[2] uses an ellipsoid approximation approach and gives a bound of Ω( 1√

nm1/4 logn log3/2m
). Wei et al.

[29] gives a simple Min-Block Greedy algorithm and proves a 1
m bound. A Round-Robin Greedy ap-

proach is given in [3] with a bound of 1−e−1

3 . Ghodsi et al. [11] proposes a local search algorithm with
a bound of 1

3 . Both [3] and [11] requires guessing of the optimal solution value from an exponentially
decreasing sequence of values, so strictly speaking, they lose an extra (1 + δ)-factor in the approxima-
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tion bound where (1 + δ) is the exponential factor for the guessing sequence. We can set the δ value
small to get close to the constant bounds shown above at the costs of computation. Wang et al. [25]
extends the Min-Block Greedy algorithm with a cardinality constraint, and also shows a hierarchical
partitioning framework to reduce the memory costs. We adapt the Min-Block Greedy approach [29]
and the Round-Robin Greedy approach [3] to the constrained case. To the best of our knowledge, this
work is the first (as far as we know) to study the robust submodular partitioning problem under all of
the various constraints (cardinality, intersection of matroid, knapsack). Wang et al. [25] is a special
case of our work as it only studies the cardinality constraint. Cotter et al. [8] studies (as well as allow-
ing multiple blocks to be jointly scored) a matroid constrained “groupings” (i.e.,coverings, packings,
or partitions) problem but only a fractional subset of groups (rather than the minimum of the groups),
is guaranteed to have values larger than the bounded max-min OPT, while our bound compares the
min block evaluation to the optimal max-min value. Another line of related research is the submodular
load balancing problem, which minimizes the maximum-valued block in the partition according to the
submodular evaluations. In contrast to promoting diversity of each block for the robust submodular
partition problem, submodular load balancing encourages every block to contain redundant items,
similar to standard clustering objectives. Theoretically, this problem has been shown to be much
harder as Svitkina & Fleischer [22] shows a information theoretical lower bound of o(

√
n

logn ), and

also gives a sampling algorithm to match the lower bound up to constant factors. Similar to the
max-min case, Ghodsi et al. [11] uses the ellipsoidal approximation to get a bound of O(

√
n log n).

Wei et al. [29] gives a Lovász extension based relaxation algorithm and achieves a bound of m.

3 Preliminaries and Formulation

With a ground set V of n items, a submodular function f is a set function 2V → R that satisfies the
property: f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B), where A,B ⊆ V . Equivalently, a submodular
function is characterized by diminishing returns: f(v|A) ≥ f(v|B) ∀v /∈ B and A ⊂ B ⊆ V , where
f(v|B) = f({v} ∪B)− f(B). Submodular functions naturally describe the diversity or representa-
tiveness of a given set of items. Many simple greedy-based algorithms have been developed to solve
optimization problems involving submodular functions, giving both theoretical approximation guar-
antees, as well as good empirical performance. We restrict the submodular functions discussed in this
paper to be monotone non-decreasing and normalized, i.e., f(B) ≥ f(A) ∀A ⊆ B ⊆ V , f(∅) = 0.

A matroid M = (V, I) is a set system that describes the independence relationships among the
subsets of the ground set V . I is a set of subsets of V and every S ∈ I is considered an independent
subset. The matroid rank function is defined as rM(A) = max{|S| : S ⊆ A,S ∈ I}. rM(V )
indicates the maximum size of a subset that may be independent according to the matroidM. All
subsets of cardinality≤ k with some integer k > 0 form a uniform matroid, which we denote byMu

k .
A partition matroid is one where we partition the ground set into blocks, and a set is independent
if it intersects each block by no more than a block-specific limit. We define a particularly useful
partition matroid on an expanded ground set V̄ as follows: We first duplicate the ground set m times,
creating V1 = V2 = . . . Vm = V , which are ground set copies. We create an expanded ground set
V̄ = ]j=1:mVj as the disjoint union. A subset S ⊆ V̄ is independent inMp

m if for every element
v ∈ V , let its m copies in V̄ be {v1, v2, . . . , vm}, we have |S ∩ {v1, v2, . . . , vm}| ≤ 1, i.e., S
contains at most one copy of element v. Apart from the uniform matroid and this particular partition
matroid, there are many other matroids reflecting a natural notion of independence, for example, the
linearly-independent set of real vectors and the spanning trees in a graph. In the below, we use both
S ∈M and, when clear, S ∈ I, to indicate that S is independent in the matroidM = (V, I).

Matroids are often used as constraints in submodular optimization problems: maxS∈I f(S) with a
matroidM = (V, I). WhenM is a uniform matroidMu

k , this reduces to the cardinality submodular
max and the greedy algorithm gives a 1−e−1 bound [9]. For a general constraint with the intersection
of p matroids, the simple greedy algorithm gives a 1

p+1 bound [10]. Suppose we represent a set S as a
binary indicator vector xS ∈ {0, 1}n, i.e., ∀i ∈ [n], xS [i] = 1 if vi ∈ S or otherwise xS [i] = 0. Then
for all the independent sets of a matroidM = (V, I), the convex hull over all the xS , S ∈ I forms a
polytope, which is called the matroid polytope PM of matroidM [9]. Based on the convex property
of the matroid polytope, algorithms [4–6, 24] have been proposed to firstly solve a continuous
extension of the submodular optimization problem under the matroid polytope constraint, which
generates a fractional solution in [0, 1]n, and then round the fractional solution to an integral solution
to get the resulting set. The continuous greedy algorithm [4] gives a 1− e−1 guarantee under a single
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matroid constraint using pipage rounding [1, 4]. Interestingly, running the continuous greedy under a
partition matroid constraint (submodular welfare problem) gives a uniform fractional solution, i.e., on
the expanded ground set V̄ , the fractional solution x = ( 1

m ,
1
m , . . . ,

1
m ) (i.e., assigning 1

m of every
element to each block) leads to a 1− e−1 bound in expectation for an integral solution that assigns
each element in V uniformly to one of the m blocks. This observation also constitutes the basic
idea of Round-Robin Greedy for solving the robust submodular partition problem [3], which we will
discuss in more detail later.

For a submodular function f on a ground set V , the robust submodular partition problem (submodular
fair allocation) [12] is defined as:

max
π∈Π(V,m)

min
A∈π

f(A), (1)

where m is the number of blocks in a partition, we denote all possible partitions with m blocks of
ground set V as Π(V,m), and one partition π with |π| = m is a collection of m disjoint sets. Equiva-
lently, we can represent the partition using a partition matroid constraint on the expanded ground set V̄ :

max
S⊆V̄ ,S∈Mp

m

min
j∈[m]

f(S ∩ Vj). (2)

Intuitively, the above optimization for robust submodular partitioning encourages the minimum-
valued block to have a high submodular evaluation. Compared to the submodular welfare problem,
the robust submodular partition promotes fairness for every one of the partition blocks.

There have been three recent approximation algorithms developed to solve Eq. (1). Particularly, Wei
et al. [29] uses a Min-Block Greedy algorithm, which greedily adds the element with the largest gain
to the block with the minimum evaluation. Barman & Krishna Murthy [3] propose a Round-Robin
Greedy algorithm, which iteratively traverses all the blocks in a fixed order, and greedily adds an
element with the largest gain to each block. Ghodsi et al. [11] applies a local search approach, which
starts with an arbitrary partition and keeps moving an element from a non-minimum block to the
minimum block if this relocation improves the objective by certain threshold until no such element
can be found.

For [3] and [11], they both require guessing the optimal solution’s value, and they need to
run multiple instances of their algorithms with the guessed optimal values as an exponentially
decreasing sequence from the maximal possible value f(V ) to the optimal solution value
µ = maxπ∈Π(V,m) minS∈π f(S). With the exponential decreasing factor as 1 + δ, the running
time (in terms of submodular function calls) is O(n2 1

δ log f(V )
µ ) for [3], and O(n2m2 1

δ log f(V )
µ )

for [11]. Min-Block Greedy, a much simpler algorithm, has a running time of O(n2). Note that the
settings of [3] and [11] are slightly more general than Eq. (1) as the submodular function for each
block can be different. But it’s not the heterogeneous case either as they focus on a different notion
of optimality (see Appendix C). In this work, we study the constrained case for the submodular
robust partition problem. We extend Min-Block Greedy algorithm [29] and Round-Robin Greedy
algorithm [3] to adapt to various constraints, e.g., cardinality, matroid, and intersection of matroids.

4 Min-Block Greedy Based Algorithms
Wei et al. [29] proposes a Min-Block Greedy Algorithm 2 for Eq. (1), which loops over n iterations,
and at every iteration, for the minimum-valued block Aj∗ ∈ argminj f(Aj), it finds the element
with the largest gain f(v|Aj∗). Wei et al. [29] proves a 1/m bound of Min-Block Greedy. In
fact, their proof works for a simpler algorithm, Min-Block Streaming Algorithm 1, which assumes
that the algorithm accesses elements from the ground set in an arbitrary order as a stream V =
(v1, v2, . . . , vn), and it assigns the incoming element to the block with the least evaluation. We denote
the optimal partition to Eq. (1) as π∗ = {O1, O2, . . . , Om}.
Lemma 1 (Unconstrained Min-Block Streaming[29]). For a ground set V and its elements
(v1, v2, . . . , vn) coming in an arbitrary streaming order, the output solution of Alg. 1 has
minj∈[m] f(Aj) ≥ 1

m minj∈[m] f(Oj).

Corollary 1 (Unconstrained Min-Block Greedy[29]). The output solution of Alg. 2 has
minj∈[m] f(Aj) ≥ 1

m minj∈[m] f(Oj) since the order of adding elements in Min-Block Greedy
is one possible order of the ground set elements.
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Intuitively, Alg. 2 optimizes the objective Eq. (1) greedily, i.e., it always increases the current value
(the minimum-block evaluation) with the largest possible gain, while the performance of Alg. 1
greatly depends on the order of elements, so it might seem that the bound for Min-Block Greedy
should improve upon the current 1

m bound. However, as shown in our new result in the following
lemma, the bound in Corollary 1 is tight.
Lemma 2 (Tightness of Corollary 1 ). ∀ε > 0, ∃ a submodular function f such that the output
solution of Alg 2 minj=1:m f(Aj) = 1

m minj=1:m f(Oj) + ε.

Algorithm 1: Min-Block Streaming
input : submodular function f , ground

set as a stream
V = (v1, v2, . . . , vn), number of
blocks m

1 R := V ;
2 Let A1 = A2 = . . . = Am = ∅;
3 for i = 1 : n do
4 j∗ ∈ argminj f(Aj);
5 Aj∗ := Aj∗ ∪ {vi} ;
6 return (A1, A2, . . . , Am)

Algorithm 2: Min-Block Greedy
input : submodular function f , ground

set V , number of blocks m
1 R := V ;
2 Let A1 = A2 = . . . = Am = ∅;
3 while R 6= ∅ do
4 j∗ ∈ argminj f(Aj);
5 v∗ ∈ argmaxv∈R f(v|Aj∗);
6 Aj∗ := Aj∗ ∪ {v∗} ;
7 R := R \ {v∗};
8 return (A1, A2, . . . , Am)

We elaborate on how to construct the submodular function in Appendix A. The key idea is that
we can find a set-cover function where even though Min-Block Greedy selects the element with
the largest gain, the element can still be quite redundant with the current minimum block. Say
the current minimum block is A, and the maximum-gain element is v chosen by the greedy step,
meaning f(v|A) is larger than f(v′|A) for v′ ∈ R \ v. However, f(v|A)

f(v) can still be very small, i.e.,
the area covered by v according to the set-cover function is already mostly covered by A. On the
other hand, the optimal solution can fully utilize f(v) thus making a more lonesome v cover a much
larger area overall. Note that Lemma 2 also serves as the tightness for Lemma. 1 since the order
of adding elements in Min-Block Greedy follows a streaming order.

More generally, given a constraint C, we define the constrained robust submodular partition as:

max
π∈Π(V,m,C)

min
A∈π

f(A), (3)

where Π(V,m, C) is the set of all possible partitions on set V into m blocks such that for every
partition π ∈ Π(V,m, C), every block A ∈ π should satisfy the constraint A ∈ C. We denote the
optimal partition in Eq. (3) as π∗C = {OC1 , OC2 , . . . , OCm}. We remark that due to the constraints, some
elements might not be assigned to a partition block, so strictly speaking the solution is an allocation
(or “grouping”, Cotter et al. [8]) of elements rather than a partition.

For now, we will take C as any down-closed constraint: Let C be a collection of subsets of the ground
set V , and by satisfying the constraint, we require the solution A to be one of the subsets in C. The
down-closed property means that if A ∈ C we have B ∈ C for any B ⊆ A. Following Eq. (3), we
can define the constrained problem in terms of the expanded subset V̄ :

max
S⊆V̄ ,S∈Mp

m,∀j:(S∩Vj)∈C
min
j∈[m]

f(S ∩ Vj). (4)

Based on the Min-Block Greedy algorithm for the unconstrained case, we propose a natural extension
to the constrained case (Alg. 3), where at every iteration, for the minimum-valued block Aj∗ , we
greedily find the best element v∗ that retains block feasibility under the constraint C, i.e., {v∗}∪Aj∗ ∈
C. If we cannot find any element in the remaining set to add to the current minimum block, we
remove the current block from the candidate blocks and move to the next smallest valued block.

In Line 6 of Alg. 3, we call a subroutine GreedyStep(R, C, Aj∗) to greedily find a feasible ele-
ment. The subroutine varies according to the type of constraint C. Particularly, for the constrained
submodular maximization problem defined as

max
S⊆V,S∈C

f(S). (5)

GreedyStep(·) is shared by Alg. 3 and Alg. 4, and if Alg. 4 is an approximation algorithm of solving
Eq. (5) with some bound α, we can prove the following result for Alg. 3.
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Algorithm 3: Constrained Min-Block Greedy
input : submodular function f , ground set V ,

number of blocks m, constraint C
1 Let A1 = A2 = ... = Am = ∅;
2 Let J = [m], R = V ;
3 while R 6= ∅ and J 6= ∅ do
4 j∗ ∈ argminj∈J f(Aj);
5 if ∃v ∈ R s.t. Aj∗ ∪ {v} ∈ C then
6 v∗ := GreedyStep(R, C, Aj∗);
7 Aj∗ := Aj∗ ∪ {v∗}, R := R \ {v∗};
8 else
9 a∗ ∈ argmaxa∈Aj∗∪R f({a});

10 if f({a∗}) ≥ f(Aj∗) then
11 Aj∗ := {a∗}, R := R \ {a∗} ;
12 Let J = J \ j∗;
13 return (A1, A2, ..., Am)

Algorithm 4: Constrained Submodular
Greedy Max
input : submodular function f , ground

set V , constraint C
1 R := V ;
2 Let Sg = ∅;
3 while R 6= ∅ do
4 if ∃v ∈ R s.t. Aj∗ ∪ {v} ∈ C then
5 v∗ := GreedyStep(R, C, Sg) ;
6 Sg := Sg ∪ {v∗} ;
7 R := R \ {v∗};
8 else
9 Break;

10 a∗ ∈ argmaxa∈V f({a});
11 return argmaxA∈{Sg,{a∗}} f(A)

Theorem 1 (Constrained Min-block Greedy). Given a constraint C, if the greedy solution Sg
to problem maxS∈C f(S) using Alg. 4 has a bound of α, i.e., f(Sg) ≥ αmaxS∈C f(S), then the
solution of Alg. 3 has minj∈[m] f(Aj) ≥ α

αm+1 minj∈[m] f(OCj ).

The general idea of the proof (details in Appendix A) is that we divide the ground set V into two
disjoint parts V = V ′ ∪R′, where the min block in the output solution A intersecting V ′ corresponds
to the min block solution of an instance of unconstrained robust partition problem (Eq. (1)) defined
on the ground set V ′, and A ∩ R′ with the other part corresponds to the solution of an instance of
submodular maximization (Eq. (5)) under the constraint C defined on the ground set A ∪ R′. We
bound the two parts separately and combine them to obtain the above bound.
Corollary 2 (Cardinality Constrained Min-block Greedy). For C as a cardinality constraint, the
output of Alg 3 has minj=1:m f(Aj) ≥ 1

m+ 1

1−e−1
minj=1:m f(OCj ).

Corollary 3 (Matroid Constrained Min-block Greedy). For C as an intersection of p matroids
constraint, the output of Alg 3 has minj=1:m f(Aj) ≥ 1

m+p+1 minj=1:m f(OCj ).

Corollary 4 (Knapsack Constrained Min-block Greedy). For C as a knapsack constraint, the
output of Alg 3 has minj=1:m f(Aj) ≥ 1

m+ 2
1−1/e

minj=1:m f(OCj ).

For C as a cardinality constraint, GreedyStep(·) just picks the element with the largest gain assuming
the block has not yet reached the cardinality limit k. For C as an intersection of p matroid constraints,
GreedyStep(·) finds the element v∗ that has the largest gain f(v∗|Aj∗) assuming the block can be
kept feasible, i.e., v∗ ∪Aj∗ ∈ C. For C as a knapsack constraint with the weight of each element v
as w(v), GreedyStep(·) finds the element v∗ with the largest ratio f(v∗|Aj∗ )

w(v) assuming the sum of
weights can be kept below the given budget. In line 9-11 of Alg. 3 and line 10-11 of Alg. 4, we
include an extra step of comparing with the largest singleton value. Such step is redundant when
C is an intersection of matroid constraints, but is essential for the knapsack constraint case, as the
modified greedy algorithm for the knapsack problem [16] requires this extra step or otherwise α is
unbounded. Due to the tightness of the 1

m bound we have proved for the unconstrained case, the 1
m

dependence in the constrained bound cannot be improved.

5 Round-Robin Greedy Based Algorithms

Barman & Krishna Murthy [3] propose a round-robin style algorithm for the unconstrained robust
submodular partition problem (Eq. (1)) and gives a constant bound of 1−e−1

3 with weakly polynomial
running time. Compared to Min-Block Greedy, Round-Robin Greedy requires guessing the optimal
values by an exponentially decreasing sequence, and for each guessed value, it runs one instance
of the round-robin subroutine. Specifically, suppose µ = minj∈[m] f(Oj), i.e., µ is the optimal
solution value for the unconstrained case, then for a parameter δ > 0, Round-Robin Greedy runs the
round-robin subroutine with the guessed optimal values from a sequence (f(V ), f(V )

1+δ ,
f(V )

(1+δ)2 , . . .)
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and ends when the guessed value is no larger than µ. The running time of each round-robin
subroutine is O(n2), as it greedily finds the element with the largest gain by iterating over all the
remaining elements. There are log1+δ

f(V )
µ guessed values in the exponentially decreasing sequence,

so the overall running time is O(n2 log1+δ
f(V )
µ ) = O(n2 1

δ log f(V )
µ ). Note that since we use a

(1 + δ) factor exponentially decreasing sequence, we lose a (1 + δ) factor in the approximation
bound, which can be improved arbitrarily by using a smaller δ value but with a cost of running more
instances of the round-robin subroutine.

The major idea behind Round-Robin Greedy comes from the solution of Continuous Greedy for
the submodular welfare problem, which is an uniform fractional vector x = ( 1

m ,
1
m , . . . ,

1
m ) with the

length of x equal to the size of the expanded ground set |V̄ |. LetF be the multilinear extension [4] of f ,
Continuous Greedy gives a bound that F (x) = ER∼x f(R) ≥ (1− e−1) maxπ∈Π(V,m)

∑
A∈π f(A),

where ER∼x f(R) takes the expectation of f(R) on a random set R with each element sampled
independently according to the probability in the fractional vector x. Note that the hardness for
submodular optimization under a matroid constraint is 1 − e−1, which means that the random
assignment strategy achieves the best possible theoretical bound on the submodular welfare problem.

Round-Robin Greedy can be thought as a rounding mechanism for the fractional solution x. The
round-robin style iteration is similar to the uniform random assignment in a deterministic manner, and
by greedily finding the element, the value of every block can be bounded against that for the random
assignment. In fact, Round-Robin Greedy bounds every block Aj to be f(Aj) ≥ 1

3
F (x)
m , and since

the welfare solution bounds the robust solution in terms of the sum: maxπ∈Π(V,m)

∑
A∈π f(A) ≥∑

j∈[m]Oj ≥ mµ, we get the desired bound for the robust partition problem.

We extend Round-Robin Greedy to the constrained case (Eq. (3)) firstly with C as a cardinality
constraint k. This is a relatively simple case due to the nature of Round-Robin Greedy that every
block gets assigned with the same number of elements at the end of every round-robin iteration.
We present the modified algorithm in Alg. 5, which also helps to explain the essential ideas of the
original Round-Robin Greedy as we describe below.
Lemma 3 (Cardinality Constrained Round-Robin). For the problem in Eq. (3), with C as a
cardinality constraint k, Alg. 5 gives a solution minj∈[m] f(Aj) ≥ (1−e−1)2

3 minj∈[m] f(Okj ).

Algorithm 5: Cardinality Round-Robin Greedy
input : f , V , m, cardinality constraint k, discounting factor for guessing optimal δ

1 Let τ be the solution value of Alg. 3;
2 Let high = dlog1+δ(m+ 2)e, low = 0;
3 Create a sequence of guessed values: (τ, (1 + δ)τ, (1 + δ)2τ, . . . , (1 + δ)highτ);
4 Create an empty solution (∅ for each block in the partition) for each guessed value

π0, π1, . . . , πhigh ;
5 while high ≥ low do
6 Let idx = b(high + low)/2c; Let A1 = A2 = . . . = Am = ∅;
7 Let V ′ = {v|v ∈ V, f(v) ≤ (1−e−1)2

3 (1 + δ)idx τ}; Let G = V \ V ′;
8 Assign G to Am−|G|+1, Am−|G|+2, . . . , Am with one element per block;
9 Let m′ = m− |G|;

10 Let A′1, A
′
2, . . . , A

′
m′ be the solution to maxπ∈Π(V ′,m′,k)

∑
S∈π f(S) using continuous

greedy and swap rounding; Let V ′′ = ∪j∈[m]′A
′
j ;

11 Let {A1, A2, . . . , Am′} = RR(f, V ′′,m′,Mu
k , [m

′]);

12 if f(Aj) ≥ (1−e−1)2

3 (1 + δ)idx τ ∀j ∈ [m′] then
13 Let πidx = {A1, A2, . . . , Am}; Let low = idx + 1;
14 else
15 Let high = idx − 1;
16 return best of π0, π1, . . . , πhigh ;

Here is how we achieve strongly-polynomial time. Different from the original Round-Robin Greedy,
which performs a grid search over guessed optimal values, we perform a binary search over the
sequence of values and therefore the number of outer iterations is reduced. Most importantly, we use
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the Min-Block Greedy solution’s value as the minimum guessed value τ . Because of the 1
m+ 1

1−1/e

bound of the Min-Block Greedy solution, the maximum guessed value is thus bounded by (m+ 2)τ .
We then create a 1 + δ-factor exponential decreasing sequence between τ and (m+ 2)τ to binary
search for the optimal solution value. This improves the number of outer iterations of the algorithm
to O(log log1+δm) = O(log logm + log 1

δ ), which is strongly-polynomial while the number of
outer iterations O(log1+δ

f(V )
µ ) for the original unconstrained case is only weakly-polynomial as

it has a log dependence on the function value.

Algorithm 6: Round-Robin Greedy Itera-
tions (RR(f,R,m′,M, J))
input : f , R, m′, matroid constraintM,

set of block indices J
1 while J 6= ∅ and R 6= ∅ do
2 for j ∈ [m′] do
3 if j ∈ J then
4 if ∃v ∈ R s.t. Aj ∪ {v} ∈ M

then
5 v∗ ∈

argmax
v∈R,Aj∪v∈M

f(v|Aj);

6 Aj := Aj ∪ {v∗} ;
7 R := R \ {v∗};
8 else
9 Let J = J \ j;

10 return (A1, A2, . . . , Am′)

In every outer iteration (Line 12-15), Alg 5 checks
if the round-robin solution based on the guessed
optimal value (1 + δ)idx τ satisfy the approximation
bound, i.e., f(Aj) ≥ (1−1/e)2

3 (1 + δ)idx τ ∀j ∈ [m]′.
If the bound is (not) satisfied, the guessed value is
large (small) and we move to an increased (decreased)
search value. Within every outer iteration, we per-
form round-robin greedy (iterate over every block in
some fixed order and greedily add to the block the el-
ement with the largest gain). Line 10 of Alg. 5 is the
major change to Round-Robin Greedy specifically
for the cardinality constraint case, where we first find
the solution to the cardinality constrained submod-
ular welfare problem maxπ∈Π(V ′,m′,k)

∑
S∈π f(S),

and then only apply Round-Robin Greedy to the
union V ′′ of the solution A′1, A

′
2, . . . , A

′
m′ .

The running time of Alg. 5 is similar to Round-Robin
Greedy, with additional costs caused by Line 10,
which solves a cardinality constrained submodular welfare problem. Using Continuous Greedy and
swap rounding [7] for Line 10 can be quite costly (O(n5) for the inner loop), which may improve
in the future by a better algorithm. In Alg. 7, we propose another algorithm that addresses the
constrained robust submodular problem with C as any matroid constraintM and incurs no additional
computation costs compared to Round-Robin Greedy.
Theorem 2 (Matroid Constrained Round-Robin). For the problem in Eq. (3), with C as any
matroid constraintM, Alg 7 gives a solution minj∈[m] f(Aj) ≥ (1−e−1)

5 minj∈[m] f(OMj ).

Algorithm 7: Matroid Round-Robin Greedy
input : f , V , m, matroid constraintM, discounting factor for guessing optimal δ

1 Let τ be the solution value of Alg. 3;
2 Let high = dlog1+δ(m+ 2)e, low = 0;
3 Create a sequence of guessed values: (τ, (1 + δ)τ, (1 + δ)2τ, . . . , (1 + δ)highτ);
4 Create an empty solution (∅ for each block in the partition) for each guessed value

π0, π1, . . . , πhigh ;
5 while high ≥ low do
6 Let idx = b(high + low)/2c; Let A1 = A2 = . . . = Am = ∅;
7 Let V ′ = {v|v ∈ V, f(v) ≤ 1−e−1

5 (1 + δ)idx τ}; Let G = V \ V ′;
8 Assign G to Am−|G|+1, Am−|G|+2, . . . , Am with one element per block;
9 Let m′ = m− |G|;

10 Let {A1, A2, . . . , Am′} = RR(f, V ′,m′,M, [m′]);

11 if f(Aj) ≥ (1−e−1)
5 (1 + δ)idx τ ∀j ∈ [m′] then

12 Let πidx = {A1, A2, . . . , Am}; Let low = idx + 1;
13 else
14 Let high = idx − 1;
15 return best of π0, π1, . . . , πhigh ;

Comparing to Alg. 5, the major change in Alg. 7 is (1) we do not need to run the costly Continuous
Greedy and swap rounding to get a solution to the constrained welfare problem, which makes the
algorithm applicable in practice; (2) for the RR(·) subroutine, we find a feasible element and add
it to the current block, and we remove a block from the candidate set J if there are no element in
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the remaining set that can be added to the block without violating the matroid constraint. Note for the
cardinality constraint case, we can always find a feasible element until every block has k elements. The
overall running time isO(n2(log logm+log 1

δ )). The general idea of proving Theorem 2 is to bound
the solution to the fractional solution of the continuous relaxation. For every block in the solution, we
inspect the elements that have been evaluated during the greedy step. For those elements with large
gains when being evaluated but not added due to the violation of the matroid constraint, we bound
their gains as submodular maximization with a matroid constraint on a reduced ground set. For the
remaining elements, we bound their gains by the greedy step and together we get the desired bound.

6 Experiments
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Figure 2: Training ResNet-9 (Myrtle AI) on parti-
tioned minibatches.

We empirically test Algs. 3 and. 7 on the CIFAR-
10 training set [19] (|V | = 50000). We use
facility location as our submodular function,
i.e., f(S) =

∑
v∈V maxv′∈S sim(v, v′), where

sim(v, v′) measures the affinity between elements
v and v′. This function is widely used and naturally
describes a subset’s diversity via its similari-
ties/distances to all other points in the ground set, and
it has achieved much practical success [27, 26, 23].
For similarity, we use a Gaussian kernel with L2
distances, i.e., sim(v, v′) = exp(−||v−v

′||2
σ ), where

σ is the bandwidth of the kernel, set to the average
L2 distance, i.e., σ =

∑
v,v′∈V ||v − v′||2/n2. The

features used to calculate the L2 distance is the
bottleneck layer’s outputs generated by a deep
auto-encoder model (details are in Appendix E).
We test the algorithms and compare their objective
values (Eq. (3)) with a matroid constraint where
we limit the number of samples selected for each
class in CIFAR-10 for each block (CIFAR-10 has
10 classes). We compare the two algorithms with a
random selection baseline — we randomly sample
from each class and assign to each block with the
constrained number of elements. Hence, the random selection results satisfy the constraints.

In Fig. 1, we report the results for different matroid constraints with various block sizes. The
random baseline results are reported with means and standard-deviations over 10 runs. For all cases,
we see that both Alg. 3 and Alg. 7 significantly outperform the baselines. Although Alg. 7 has a
better theoretical bound, Alg. 3 consistently gives better performance. Intuitively, Alg. 3 directly
optimizes the objective as it greedily adds elements to the minimum-valued block. We expect Alg. 3
to perform better in practice compared to Alg. 7 as Alg. 7 has a fixed ordering of the blocks, and
the minimum-valued block tends to be the last block in the ordering, in which case it does not get
to select samples that have already been selected by prior blocks in the ordering. In Fig. 2, we use
the partitioned blocks as minibatches to train a ResNet-9 model and compare their performance on
the test set. We observe that the blocks with higher submodular evaluations tend to generate better
performance for the trained model. We also provide results on synthetic data in Appendix Section D.

7 Conclusions
We study the problem of constrained submodular robust partitioning. We propose two classes of
algorithms, Min-Block Greedy and Round-Robin Greedy based, and prove approximation bounds
under various constraints. This improves the applicability of the robust partitioning framework to
different scenarios. In future work, we wish to extend the current approach to the heterogeneous
submodular partitioning setting where each block may be evaluated by a different submodular
function. Given the good performance of Alg. 3 in practice, it is worth investigating if further
conditions or modifications to Alg. 3 yield improved theoretical bounds.

This work was supported in part by the CONIX Research Center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored by DARPA.
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We restate the theoretical statements and the algorithms here for completeness and convenience.

A Proofs for Minimum Block Greedy Based Algorithm

Given a normalized monotone submodular function f : 2V → R≥0, where V is the ground set
with |V | = n elements, and a positive integer m denoting the number of blocks in the partition, the
Submodular Robust partition is defined as:

max
π∈Π(V,m)

min
A∈π

f(A), (1)

Where Π(V,m) is the set of all possible partitions on set V into m blocks, and π is one partition. The
objective aims to find the partition such that the minimum-valued block in the partition is maximized.
Denote the optimal partition to Eq. (1) as π∗ = {O1, O2, . . . , Om}.
Lemma 1 (Unconstrained Min-Block Streaming[29]). For a ground set V and its elements
(v1, v2, . . . , vn) coming in an arbitrary streaming order, the output solution of Alg. 1 has
minj∈[m] f(Aj) ≥ 1

m minj∈[m] f(Oj).
Corollary 1 (Unconstrained Min-Block Greedy[29]). The output solution of Alg. 2 has
minj∈[m] f(Aj) ≥ 1

m minj∈[m] f(Oj) since the order of adding elements in Min-Block Greedy
is one possible order of the ground set elements.
Lemma 2 (Tightness of Corollary 1 ). ∀ε > 0, ∃ a submodular function f such that the output
solution of Alg 2 minj=1:m f(Aj) = 1

m minj=1:m f(Oj) + ε.

Proof. We construct a set cover function as the tight example for Corollary 1. We illustrate the set
cover function graphically in Fig. 3.

……
………

Shaded area
>

C1 C2 Cm

Figure 3: A graphical illustration of the tight example. The circles are the areas to cover for the set cover
function and the green inner circles and the red triangles are elements in the ground set (the outer yellow circles
are not elements). The inner circles (green) largely overlap with the outer circles (yellow). The red triangles
mostly overlap with the inner circle, with little gains on the ring between the two circles. We can change the
size of the red triangles so that Min-Block Greedy prefers a redundant element (the shaded area comparison
on the top of the figure). Also note that the red triangles may overlap on the inner circle part (they may not
retain the shapes as triangles), so overall they cover m− 1 times the area of each circle.

Suppose we have m circles of area to cover in the set cover function. Say we order the circles by
their area, say C1 < C2 < . . . < Cm. Let Cj+1 = Cj + εj+1 for some εj+1 > 0. For every circle
j, we have an element vj ∈ V , which covers an inner circle, which almost covers the entire circle.
W.l.o.g, suppose f(v1) = 1 and let Cj = f(vj) + δj .

For each circle Cj , we construct nj elements, which largely overlap with the inner circle covered
by vj and gives little gain on the ring between the inner circle and the outer circle Cj . Call these nj
elements Vj . Let f(Vj |vj) = ε′j , f(v) < f(vj)∀v ∈ Vj , and f(Vj) > f(vj).
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Now let’s focus on the first two circles C1 and C2, and assume m = 2 for the partition problem. It is
easy to extend to general m case by recursively applying the following arguments on C2 and C3.

Suppose we run the min-block greedy, after the first two steps, one block contains v1 and the other
contains v2. At step 3, v1 is the min-block. By setting the suitable values for n1 and n2 (say
n2 >> n1), we can make f(v|v1) > f(v′|v1)∀v ∈ V1, v

′ ∈ V2. Therefore, we will still select an
element from V1 even though such element overlaps largely with the inner circle v1. We can force
the min-block greedy algorithm to select all elements from V1 before the min-block changes to the
block containing v2, and f(V1 ∪ v1) > f(v2). After that, the algorithm can only add elements from
V2 to the block containing v2, which gives only ε′2 gains. As we can make the values of εj , ε′j and δj
arbitrarily small, the solution is arbitrarily close to 1. On the contrary, the optimal partition should
add elements in V1 to v2 and elements in V2 to v1, and the solution has value arbitrarily close to 2.

To extend to general m partitions, we may treat the current V2 as V1, and construct V3 in the same
way we construct V2 based on V1. In the first m steps of the min-block greedy, the algorithm is forced
to evenly distribute vj , j = 1, 2, . . . ,m into every block. After that, the algorithm adds all elements
in Vj to the block containing vj before the min-block changes and the block containing vj will not
become the min-block again. In the end, every block only covers (almost) one circle. Suppose for
Vj , we may make the elements to cover the inner circle multiple times, i.e., ∃π ∈ Π(Vj ,m)s.t.∀A ∈
π, f(A) ≥ f(vj). Then for the optimal solution, every block can cover (almost) all the circles, and
therefore the approximation ratio can be arbitrarily close to 1/m.

The constrained submodular robust partition problem:

max
π∈Π(V,m,C)

min
A∈π

f(A), (3)

Where Π(V,m, C) is the set of all possible partitions on set V into m blocks such that for every
partition π ∈ Π(V,m, C), every block A ∈ π should satisfy the constraint A ∈ C. Denote the optimal
partition to Eq. (3) as π∗C = {OC1 , OC2 , . . . , OCm}.
Theorem 1 (Constrained Min-block Greedy). Given a constraint C, if the greedy solution Sg
to problem maxS∈C f(S) using Alg. 4 has a bound of α, i.e., f(Sg) ≥ αmaxS∈C f(S), then the
solution of Alg. 3 has minj∈[m] f(Aj) ≥ α

αm+1 minj∈[m] f(OCj ).

Proof. W.l.o.g., we assume that the block of index 1 for a partition corresponds to the minimum-
valued block, e.g., f(OC1 ) = OPT C . For Min-Block Greedy algorithm, we always add an element
feasible to the constraint C to the block with the minimum evaluation. Let the minimum block in
our final solution be A1. Due to the final singleton comparison step (line 9-11 in Alg. 3), there are
several different scenarios for A1:

1. It is never the case that we cannot add any elements to a block due to the constraint (line 5
always true). This is the simplest case as we can directly reduce it to a stream of elements
with the same ordering as we add them into different blocks, and Lemma. 1 applies. We
therefore can get an 1/m approximation ratio, which is better than the one given in the
theorem for any α ≤ 1.

2. A1 is the first block that we cannot find any feasible elements to add. The singleton
comparison step may increase the function value of A1. however, by assumption it’s still the
minimum block after the algorithm completes.

3. There are other blocks that we cannot find any feasible elements to add before A1. This
could only happen if the other blocks get their values increased by the singleton comparison
step. As if the singleton comparison step does not swap the block with the largest singleton,
the block, which is not A1 in this case, is the minimum block for that step and remains
minimum for the following steps of the algorithm.

For scenarios 2 and 3, the general idea of the proof is the same, where we separate the ground set V
into two parts V ′ and R′ (V = V ′ ∪R′), and bound f(A1) by comparing to a block in the optimal
solution OCj through f(OCj ∩V ′) and f(OCj ∩R′). However, for 2 and 3, we will use slightly different
V ′ and R′.
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First, for scenario 2), let’s suppose at step t′, the current minimum block is A1, and we find no
feasible elements to add. Let all the elements allocated so far (before the singleton comparison step
for A1) as V ′, and the remaining unallocated elements as R′. V = V ′ ∪ R′. Denote the elements
in A1 before the singleton comparison step as A′1, as the singleton step always improves the block
value, we have f(A1) ≥ f(A′1).

If we run the min-block robust partition greedy algorithm on V ′ only, we will get the same partial
partition as we run on V for t′ steps. Therefore, suppose we create a stream that orders the elements
in V ′ in the same order that those elements get allocated by the min-block robust partition greedy
algorithm, then by Lemma. 1, we have:

f(A1) ≥ f(A′1) ≥ 1

m
OPT (V ′), (6)

Where we denote OPT (V ′) = maxπ∈Π(V ′,m) minA∈π f(A) as the optimal solution for the uncon-
strained robust submodular partition on the ground set V ′.

Let OCj be some block in the optimal constrained partition on ground set V . since OCj can be the
non-minimal block in the optimal solution, we have:

f(OCj ) ≥ OPT C . (7)

There exists a j ∈ {1, . . . ,m} such that

f(A1) ≥ 1

m
OPT (V ′) (8)

≥ 1

m
f(OCj ∩ V ′), (9)

as otherwise ∀j ∈ {1, . . . ,m}, OCj ∩ V ′ forms a solution for the partition problem on the reduced
ground set V ′, and gives a solution value better than OPT (V ′), which violates the optimality of
OPT (V ′).

Now we separate the constrained optimal solution on ground set V into 2 parts: OCj ∩V ′ and OCj ∩R′.

Assumption 1. Suppose

f(OCj ∩R′) ≥ f(OCj ∩ V ′), (10)

Then because of submodularity, f(OCj ∩R′) + f(OCj ∩ V ′) ≥ f(OCj ) (recall V = V ′ ∪R′ )and we
have

f(OCj ∩R′) ≥
1

2
f(OCj ). (11)

Consider the set R′ ∪A′1, let

Ô ∈ argmax
S⊆R′∪A′1,S∈C

f(S), (12)

I.e., Ô is the optimal solution to the constraint submodular max on the reduced ground set R′ ∪A′1.
After the singleton comparison step on A′1, we get A1, which is the greedy solution of Alg. 3 on
the reduced ground set R′ ∪ A′1 and constraint C. Therefore, based on the α-bound assumption in
Theorem 1, we have:

f(A1) ≥ αf(Ô) (13)

≥ αf(OCj ∩R′) (14)

≥ α

2
f(OCj ) (15)

≥ α

2
f(OC1 ). (16)

Eq. (14) comes from the optimality of Ô and Eq. (15) comes from Assumption 1.
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Assumption 2. Otherwise, we have

f(OCj ∩ V ′) > f(OCj ∩R′) (17)

≥ 1

2
f(OCj ). (18)

We therefore have:

f(A1) ≥ 1

m
f(OCj ∩ V ′) (19)

>
1

2m
f(OCj ) (20)

≥ 1

2m
f(OC1 ) (21)

Note that one of Assumption 1 and Assumption 2 is always true, since f(OCj ∩R′)+f(OCj ∩V ′) ≥
f(OCj ) because of submodularity. Previously, we use equal weights of 1

2 for both assumptions. We
can balance the weights as long as the weights sum to one, and we get:

if f(OCj ∩R′) ≥ 1
αm+1f(OCj ), we have

f(A1) ≥ αf(Ô) (22)

≥ αf(OCj ∩R′) (23)

≥ α

αm+ 1
f(OCj ) (24)

≥ α

αm+ 1
f(OC1 ); (25)

if f(OCj ∩ V ′) > αm
αm+1f(OCj ), we have

f(A1) >
1

m
f(OCj ∩ V ′) (26)

>
1

m

αm

αm+ 1
f(OCj ∩ V ) (27)

>
α

αm+ 1
f(OC1 ). (28)

Thus, we get a α
αm+1 bound.

For scenario 3, we only need to change V ′ and R′ and the same argument follows. Recall that in
such a scenario, there are some other blocks that have no feasible elements to add before A1, and
they get their values increased through the singleton comparison step. There are also two different
cases here. Firstly, it does not happen that there are no feasible elements to add to A1 until the end of
the algorithm. In such a case, similar to the scenario 1, we can order the elements as a stream and
applies Lemma. 1 to get the 1/m approximation ratio. Note that the blocks that get to the singleton
comparison step all get their values increased for scenario 3, and we can just add the singleton a∗
(line 9) to that block in the streaming case. To be more precise, for Alg. 3 when block j (j 6= 1) is the
current minimum block, and has no feasible elements to add, we denote its elements as A′j , and the
singleton comparison step gives an element a∗ with f({a∗}) ≥ f(A′j). In the streaming ordering,
we use the same ordering as we add element in Alg. 3, and at the singleton comparison step for block
j, we have the next element in the stream be a∗, and we add that element to block j since block j is
the current minimum block. By monotonicity, we have f(A′j ∪ {a∗}) ≥ f({a∗}) ≥ f(A1). In other
words, those blocks never become the minimum block again, and no elements get added to them after
their singleton comparison step. Therefore, we have a streaming ordering of the elements that will
make the minimum block equal to A1 and Lemma. 1 applies.

Next, we discuss for the case where it happens that there are no feasible elements to add to A1. When
that happens, we set all the allocated elements as V ′ and the remaining elements as R′ before the
singleton comparison step. Note for those blocks that get to the singleton comparison step before A1,
we will also include the singletons in V ′ Recall those singletons have larger gains and get swapped
with the elements in those blocks for this scenario. As stated above, those blocks with the singleton

16



comparison step never become the minimum block again, so they don’t interfere with the remaining
blocks/elements. For such V ′ and R′, the exact argument in scenario 2 can be made, i.e., we can
treat A′1 as a min-block streaming solution on V ′ (Eq. 19) and A1 as a greedy solution on A′1 ∪R′
(Eq. 14).

Corollary 2 (Cardinality Constrained Min-block Greedy). For C as a cardinality constraint, the
output of Alg 3 has minj=1:m f(Aj) ≥ 1

m+ 1

1−e−1
minj=1:m f(OCj ).

Corollary 3 (Matroid Constrained Min-block Greedy). For C as an intersection of p matroids
constraint, the output of Alg 3 has minj=1:m f(Aj) ≥ 1

m+p+1 minj=1:m f(OCj ).

Corollary 4 (Knapsack Constrained Min-block Greedy). For C as a knapsack constraint, the
output of Alg 3 has minj=1:m f(Aj) ≥ 1

m+ 2
1−1/e

minj=1:m f(OCj ).

B Proofs for Round-Robin Greedy Based Algorithms

The matroid constrained submodular robust partition problem is

max
π∈Π(V,m,M)

min
A∈π

f(A). (29)

Before we get into the proofs for the algorithm bounds, we will state the following lemma, which is a
general property about robust submodular partitioning.
Lemma 4 (Removal of one element and one block). For any v ∈ V , we have:

max
π∈Π(V \v,m−1,M)

min
A∈π

f(A) ≥ max
π∈Π(V,m,M)

min
A∈π

f(A). (30)

I.e., if we remove one element and one block from the problem, the optimal solution gets no worse.

Proof. Denote the optimal solution on V and m by O1, O2, . . . , Om with f(O1) ≤ f(O2) ≤ . . . ≤
f(Om).

Suppose v ∈ Oj for some j, then the blocks other than Oj forms a solution for problem defined
on V \ v and m− 1, and we can add elements in Oj \ v to other blocks (if the constraints permit).
In the worst case, even if we cannot add any elements of Oj \ v to other blocks, we still have
maxπ∈Π(V,m,M) minA∈π f(A) ≥ minj′∈[m],j′ 6=j f(Oj′) ≥ f(O1).

Suppose ∀j ∈ [m], v /∈ Oj , then we only remove one block, and we can add the elements in that
block to any other block so the solution value gets improved.

For Round-Robin Greedy based algorithms, we first guess the optimal solution value and then assign
singletons to blocks which satisfies the bound based on the guessed optimal value. After that, we run
the algorithm on the restricted problem with those blocks and elements removed. By applying the
previous lemma (recursively if multiple elements and blocks removed), we know that the optimal
solution on the restricted instance is no worse than the optimal solution on the original problem.
Therefore, it suffices to analyze the solution on the restricted instance.
Lemma 3 (Cardinality Constrained Round-Robin). For the problem in Eq. (3), with C as a
cardinality constraint k, Alg. 5 gives a solution minj∈[m] f(Aj) ≥ (1−e−1)2

3 minj∈[m] f(Okj ).

Proof. By solving maxπ∈Π(V ′,m′,k)

∑
S∈π f(S) in Line 10 of Alg. 5 (Theorem III.3 in [7]), we

know that ∑
j∈[m]′

f(A′j) ≥ (1− e−1) max
π∈Π(V ′,m′,k)

∑
S∈π

f(S). (31)

Recall that we denote the optimal solution value in the cardinality constraint case by OPTM
u
k , where

k is the cardinality. We assume we know the optimal solution value OPTM
u
k for this proof. For the
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Algorithm 5: Cardinality Round-Robin Greedy
input : f , V , m, cardinality constraint k, discounting factor for guessing optimal δ

1 Let τ be the solution value of Alg. 3;
2 Let high = dlog1+δ(m+ 2)e, low = 0;
3 Create a sequence of guessed values: (τ, (1 + δ)τ, (1 + δ)2τ, . . . , (1 + δ)highτ);
4 Create an empty solution (∅ for each block in the partition) for each guessed value

π0, π1, . . . , πhigh ;
5 while high ≥ low do
6 Let idx = b(high + low)/2c; Let A1 = A2 = . . . = Am = ∅;
7 Let V ′ = {v|v ∈ V, f(v) ≤ (1−e−1)2

3 (1 + δ)idx τ}; Let G = V \ V ′;
8 Assign G to Am−|G|+1, Am−|G|+2, . . . , Am with one element per block;
9 Let m′ = m− |G|;

10 Let A′1, A
′
2, . . . , A

′
m′ be the solution to maxπ∈Π(V ′,m′,k)

∑
S∈π f(S) using continuous

greedy and swap rounding; Let V ′′ = ∪j∈[m]′A
′
j ;

11 Let {A1, A2, . . . , Am′} = RR(f, V ′′,m′,Mu
k , [m

′]);

12 if f(Aj) ≥ (1−e−1)2

3 (1 + δ)idx τ ∀j ∈ [m′] then
13 Let πidx = {A1, A2, . . . , Am}; Let low = idx + 1;
14 else
15 Let high = idx − 1;
16 return best of π0, π1, . . . , πhigh ;

algorithm, the OPTM
u
k value is guessed within a factor of 1

1+δ . Therefore, to be more precise, we
have an additional factor of 1

1+δ in the bound, which can be made arbitrarily small by setting δ small.

For the limited ground set V ′′, running unconstrained round-robin ensures every block to have
at most k elements and therefore the cardinality constraint is satisfied. Suppose we run the
continuous greedy algorithm on the limited ground set V ′′ with the submodular welfare objec-
tive (maxπ∈Π(V ′′,m′)

∑
S∈π f(S)), we get a fractional solution x1 = x2 = . . . = xm′ =

( 1
m′ ,

1
m′ , . . . ,

1
m′ ) (we do not really need to run the algorithm, but we will compare our solution to

the fractional solution). Denote the multilinear extension of f by F and F (x) = ER∼x f(R) (we
can think it as the expected value of f where every element is sampled independently based on
probabilities defined in vector x). Consider any block Aj in the solution of Alg 5 for j ∈ [m′] (for
j /∈ [m′], those blocks are the singleton assignment blocks and they satisfy the bound by construction),
we have:

(1− e−1)2

3
OPTM

u
k + 2f(Aj) ≥ F (xj) (32)

≥ 1− e−1

m′
max

π∈Π(V ′′,m′)

∑
S∈π

f(S) (33)

≥ 1− e−1

m′
max

π∈Π(V ′′,m′,k)

∑
S∈π

f(S) (34)

≥ (1− e−1)2

m′
max

π∈Π(V ′,m′,k)

∑
S∈π

f(S) (35)

≥ (1− e−1)2 max
π∈Π(V ′,m′,k)

min
S∈π

f(S). (36)

≥ (1− e−1)2OPTM
u
k . (37)

Rearrange and we get:

f(Aj) ≥
(1− e−1)2

3
OPTM

u
k . (38)

Eq. (32) comes from the Lemma.3 of [3], in which case we can bound every block in the round-
robin solution to the fractional solution of the continuous greedy algorithm on the multilinear
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extension of f . Note for Lemma.3 of [3], they study the unconstrained case and show that
γ
3OPT

Mu
k + 2f(Aj) ≥ F (xj) with γ = 1 − e−1. γ comes from the singleton assignment

step, which assigns blocks with singletons whose values are larger than γ
3OPT

Mu
k . A slightly

more general statement can be made for any 0 ≤ γ ≤ 1 with the same proof as Lemma.3 of [3].
In our case, we pick γ = (1 − e−1)2. Eq. (33) follows from the property of the continuous
greedy solution. The continuous greedy gives a (1 − e−1) approximation to the submodular wel-
fare problem, and the fractional solution xj for each block is the same. Therefore, every block’s
evaluation in expectation is at least (1−e−1)

m′ of the submodular welfare optimal solution. Eq. (34)
follows that the unconstrained solution is no worse than the constrained solution. Eq. (35) uses
Eq. (31): A′1, . . . , A

′
m is one possible solution to maxπ∈Π(V ′′,m′,Mu

k )

∑
S∈π f(S), and we know∑

j f(A′j) ≤ maxπ∈Π(V ′′,m′,k)

∑
S∈π f(S) because of the max operator. Therefore, we have

maxπ∈Π(V ′′,m′,k)

∑
S∈π f(S) ≥

∑
j f(A′j) ≥ (1 − e−1) maxπ∈Π(V ′,m′,k)

∑
S∈π f(S). Eq. (36)

follows that the sum over blocks of the max-min solution is no larger than the optimal welfare solution.
Eq. (37) uses Lemma. 4: the optimal max-min solution on V ′ and m′ is no worse than the optimal
max-min solution on V and m.

As stated above, γ3OPT + 2f(Aj) ≥ F (xj) is true for any 0 ≤ γ ≤ 1. It may seem that making
γ smaller can improve the bound. However, we only bound the m′ blocks but not the singleton
blocks. Because of the singleton assignment step, every singleton has a value larger than γ

3 , and the
final bound over all m blocks will be the minimal of the bound on the m′ blocks and the singleton
blocks. Setting γ small worsens the bound on the singleton blocks. To balance the two bounds,
γ = (1− e−1)2 is picked so that the bounds on the m′ blocks and the singleton blocks meet.

Finally, we discuss about the binary search process. Let’s consider a special problem instance,
which does not have any singleton values larger than (1−1/e)2

3 times the optimal solution value of

the problem instance. Then we can directly run line 10 and 11 to get a solution with a (1−1/e)2

3
approximation ratio (no optimal solution value guessing and large singleton value removal). However,
we don’t know if that assumption is true for general problem instances.

Back to the general problem instances. Suppose the guessed optimal values form a sequence
(τ1, τ2, . . . , τl) where τi+1 = (1 + δ)τi. We are going to show that for any τi ≤ OPTM

u
k as the

guessed optimal value that we plug into the binary search iterations (Alg. 5 line 7-15), line 12 of
Alg. 5 is always true. For simplicity, denote the optimal solution of the cardinality constrained robust
partitioning problem as OPT for the following. Let’s denote the found large singleton values and
the remaining sets (line 7 of Alg. 5) respectively by GOPT and V ′OPT for OPT , and Gi and V ′i for
τi. Since τi ≤ OPT , GOPT ⊆ Gi as the threshold is smaller for τi. Then by Lemma. 4, we know
that the optimal solution OPTi on V ′i (partitioned to m − |Gi| blocks) is no less than the optimal
solution OPT ′ on V ′OPT (partitioned to m− |GOPT | blocks). Also note that since we remove all
singleton values to form V ′i based on the threshold (1−e−1)2

3 τi, and τi ≤ OPT ≤ OPT ′ ≤ OPTi
(OPT ≤ OPT ′ is also from Lemma. 4), we are guaranteed that there are no singleton elements with
f(v) ≥ (1−e−1)2

3 OPTi in V ′i . Therefore, as discussed for the special problem instance, line 10 and

11 on V ′i give a solution whose every block has a value of at least (1−e−1)2

3 OPTi ≥ (1−e−1)2

3 τi, and
thus line 12 is guaranteed to be true for τi.

Based on that, either of the following must hold: 1) for all τi > OPTM line 12 is false, and in
such a case, we can use binary search to find the largest τi with line 12 true, and let’s call it τi∗ ; 2)
there exists some τi > OPTM such that line 12 is true. If we find such τi, we find a solution with
f(Aj) ≥ (1−e−1)2

3 τi ≥ (1−e−1)2

3 OPTM
u
k . Otherwise if we don’t find it, we go to the first case and

will still find τi∗ . We can therefore conclude that binary search can be applied to search among the
guessed optimal solution values.

B.1 Proof for the Matroid Constraint Case

Lemma 5 (Continuous Greedy Solution). For the constrained welfare problem
maxπ∈Π(V,m,M)

∑
A∈π f(A), the continuous greedy algorithm outputs a fractional solution

x1 = x2 = . . . = xm (xj ∈ [0, 1]n), which is the same for every block in the partition and
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∑
j∈[m] F (xj) ≥ (1− e−1) maxπ∈Π(V,m,M)

∑
A∈π f(A). F is the multilinear extension of f , i.e.,

F (x) = ER∼x f(R) (we can think it as the expected value of f where every element is sampled inde-
pendently based on probabilities defined in vector x). Moreover, ∀i ∈ [n], j ∈ {1, . . . ,m}, xj [i] ≤ 1

m
and

∑
i∈V xj [i] ≤ rM(V ).

Proof. Note that the continuous greedy can give a fractional solution with 1− e−1 bound under any
solvable polytope constraint. It’s the rounding procedure that limits the constraint we can use to get a
set solution, e.g., with pipage rounding, we can use any matroid constraint.

In fact, we do not need to run the continuous greedy algorithm, and we only need to show the existence
of a solution. Suppose the solution to themaxy{w ·y, y ∈ P} step of the continuous greedy algorithm
is given by some oracle. Given the direction y, we just evenly split the resulting vector y among the
m blocks, as we cannot distinguish between blocks. At the end of the algorithm, we will have the frac-
tional solution x1 = x2 = . . . = xm and

∑
j∈[m] F (xj) ≥ (1− e−1) maxπ∈Π(V,m,M)

∑
A∈π f(A).

Since the fractional solution are guaranteed to be in the matroid polytope ofM andMp
m, we have

∀i ∈ [n], j ∈ {1, . . . ,m}, xj [i] ≤ 1
m and

∑
i∈V xj [i] ≤ rM(V ).

Lemma 6 (Matroid Constraint Round-robin with No Large Singletons). Suppose for all v ∈ V ,
we have f(v) ≤ 1−e−1

5 OPTM, whereOPTM is the optimal solution value of the robust submodular
partition problem constrained by matroidM (in other words, all the singletons have relatively small
values for the given problem instance). Then, the round-robin iterations of Alg. 7 (line 10) gives a
solution minj∈[m] f(Aj) ≥ 1−e−1

5 OPTM.

Algorithm 7: Matroid Round-Robin Greedy
input : f , V , m, matroid constraintM, discounting factor for guessing optimal δ

1 Let τ be the solution value of Alg. 3;
2 Let high = dlog1+δ(m+ 2)e, low = 0;
3 Create a sequence of guessed values: (τ, (1 + δ)τ, (1 + δ)2τ, . . . , (1 + δ)highτ);
4 Create an empty solution (∅ for each block in the partition) for each guessed value

π0, π1, . . . , πhigh ;
5 while high ≥ low do
6 Let idx = b(high + low)/2c; Let A1 = A2 = . . . = Am = ∅;
7 Let V ′ = {v|v ∈ V, f(v) ≤ 1−e−1

5 (1 + δ)idx τ}; Let G = V \ V ′;
8 Assign G to Am−|G|+1, Am−|G|+2, . . . , Am with one element per block;
9 Let m′ = m− |G|;

10 Let {A1, A2, . . . , Am′} = RR(f, V ′,m′,M, [m′]);

11 if f(Aj) ≥ (1−e−1)
5 (1 + δ)idx τ ∀j ∈ [m′] then

12 Let πidx = {A1, A2, . . . , Am}; Let low = idx + 1;
13 else
14 Let high = idx − 1;
15 return best of π0, π1, . . . , πhigh ;

Proof. Let’s focus on one block (any one in A1, . . . , Am′ ) and for simplicity, we will omit the block
index j for this proof if not further noticed. Denote OPT = minj∈[m] f(OMj ) for this proof. Also,
we assume we know the optimal solution value OPT for this proof. Note that in the complete version
of Alg. 7, we need to remove large singleton values based on the guessed optimal value, but for this
lemma we make the assumption that in the given problem instance, there are no large singletons
present.

For the current block, we denote the final resulting set from Alg. 7 asA. For one round-robin iteration,
we go over all the feasible blocks sequentially, and to get A we need to run |A| = r round-robin
iterations. Note that for different blocks, the number of round-robin iterations might be different.

We then divide the restricted ground set V ′ by the round-robin iterations with respect to the current
block A. Before we add the first element to A, denote all the allocated elements by V 0. Then
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we can think that for every round-robin iteration, we always start from the current block A. Let
V ′ = V 0 ∪ V 1 ∪ . . . ∪ V r be a partition of V ′ and V t contains all the elements allocated during the
t’s round-robin iteration. Note V r contains all the unallocated elements in the ground set after we
add the last element to A. Let V t1:t2 = ∪t∈{t1,t1+1,...,t2}V

t. Accordingly, we partition the result A
by At = A ∩ V t.
For the set V ′ \ A, we separate it into two parts Q′1 and Q′2, where Q′1 contain all the elements
checked in Alg. 7 that cannot be added to the current block due to the matroid constraint, and let
Q′2 = V ′ \A \Q′1, i.e., Q′2 contain all the elements that can be added the current block. To be more
precise:

Q′1 = ∪t∈{0,1,...,r} ∪v∈V t\At,(A1:t∪v)/∈M v (39)

Let Q1 = Q′1 ∪A and Q2 = Q′2 ∪A.

Let F denote the multilinear extension of f , i.e., F (x) = ER∼x f(R). By Lemma 4 and Lemma 5,
we know that

(1− e−1)OPT ≤ max
π∈Π(V ′,m′,M)

min
S∈π

f(S) (40)

≤ 1

m′
max

π∈Π(V ′,m′,M)

∑
S∈π

f(S) (41)

≤ F (x) (42)
≤ (F (x ∩Q1) + F (x ∩Q2)). (43)

Note that x is the fractional solution to the continuous greedy algorithm on the welfare objective:
maxπ∈Π(V ′,m′,M)

∑
S∈π f(S) (similar to one of the xj’s in Lemma 5 and we omit the block index

for this proof). Here we use x ∩ Q to represent setting all elements not in Q to be zero in the x
fractional solution. The first inequality follows from Lemma. 4. The second inequality follows that
the sum over blocks of the max-min solution is no better than the optimal solution of the welfare
problem. Since every element is sampled independently according to its probability in the fractional
solution x, together with submodularity (Q1 ∪Q2 = V ′) we get the last inequality above. Next, we
will bound the two terms F (x ∩Q1) and F (x ∩Q2) separately.

For the first term F (x ∩Q1), we know that r = rM(Q1), and Alg. 7 generates A in the same manor
as running greedy max on Q1 with matroid constraintM. To be more precise, supposeM = (V, I)
and we remove all the elements that are not in Q1 and getM′ = (V ′ ∩Q1, {I ∩Q1∀I ∈ I}). Note
thatM′ is also a matroid, and all sets that satisfyM′ also satisfyM due to the down-monotone
property of matroids. Therefore, we have:

f(A) ≥ 1

2
max
S∈M′

f(S) (44)

≥ 1

2
F (x ∩Q1). (45)

Note that x is in the matroid polytope ofM, and x∩Q1 is in the matroid polytope ofM′. By pipage
rounding, we know that we can get an integral solution X ′ from F (x ∩ Q1) so that the integral
solution still satisfies X ′ ∈ M′ and f(X ′) ≥ F (x ∩Q1). Since maxS∈M′ f(S) ≥ f(X ′), we get
the last inequality above.

For the second term F (x ∩ Q2), we will bound it using the greedy step. Denote y = x ∩ Q2,
yt = y ∩ V t, and ES(y) = ER∼y f(R|S), we have:

F (y) = ER∼y f(R) (46)

= ER∼y0 f(R) + ER1∼y0,R2∼y1:r f(R2|R1) (47)

≤ F (y0) + F (y1:r) (48)

≤ F (y0) + f(A1) + EA1(y1:r) (49)

= F (y0) + f(A1) + EA1(y1) + ER1∼y1,R2∼y2:r f(R2|R1 ∪A1) (50)

≤ F (y0) + f(A1) + EA1(y1) + EA1(y2:r) (51)

≤ F (y0) + f(A1) + EA1(y1) + f(A2|A1) + EA2(y2:r) (52)

21



Continue to unwrap EA2(y2:r) in the same way, finally we get:

F (y) ≤ F (y0) +
[
f(A1) + f(A2|A1) + f(A3|A2) + . . .+ f(Ar|Ar−1)

]
+
[
EA1(y1) + EA2(y2) + . . .+ EAr (yr)

]
(53)

= F (y0) + f(A) +
[
EA1(y1) + EA2(y2) + . . .+ EAr (yr)

]
(54)

We then need to bound F (y0) and
[
EA1(y1) + EA2(y2) + . . .+ EAr (yr)

]
. Note that by assumption,

we do not have any singleton gains larger than 1−e−1

5 , and we have:

F (y0) ≤ 1− e−1

5
OPT (55)

Since we select items greedily at every round-robin step, and y only has non-zero values for elements
that are in Q2, we have:

EAt(yt+1) = ER∼yt+1 f(R|At) (56)

≤
∑

v∈yt+1

yt+1(v)f(v|At) (57)

≤
∑

v∈yt+1

1

m′
f(v|At) (58)

≤ f(At|At−1) (59)
Note that for the last round-robin iteration V r, it may seem that there can be more than m′ elements,
but it’s not possible: since there are no new elements added to the current blocks, V r ∩Q2 contains
at most m′ elements as otherwise we will find new feasible elements and add to block A.

Then we sum over all t and get:[
EA1(y1) + EA2(y2) + . . .+ EAr (yr)

]
≤ f(A). (60)

Therefore, we have:
(1− e−1)OPT ≤ (F (x ∩Q1) + F (x ∩Q2)) (61)

≤ 2f(A) + F (y) (62)

≤ 2f(A) + 2f(A) +
1− e−1

5
OPT (63)

f(A) ≥ 1− e−1

5
OPT. (64)

Next, we will discuss why binary search can be used in the guessing of the optimal value (as opposed
to the case of linear search where we try all possible guessed optimal values). We make almost
the same argument as the cardinality constraint case. We restate the argument and proof here for
completeness.
Lemma 7 (Binary Search). For Alg. 7, let the potential guessed optimal values form a sequence
(τ1, τ2, . . . , τl) where τi+1 = (1 + δ)τi. Then for any τi ≤ OPTM as the guessed optimal value
that we plug into the binary search iterations (Alg. 7 line 7-14), line 14 of Alg. 7 is always true.

Proof. For simplicity, denote the optimal solution of the matroid constrained robust partitioning
problem as OPT for this proof. Let’s denote the found large singleton values and the remaining sets
(line 7 of Alg. 7) respectively by GOPT and V ′OPT for OPT , and Gi and V ′i for τi. Since τi ≤ OPT ,
GOPT ⊆ Gi as the threshold is smaller for τi. Then by Lemma. 4, we know that the optimal solution
OPTi on V ′i (partitioned to m− |Gi| blocks) is no less than the optimal solution OPT ′ on V ′OPT
(partitioned to m − |GOPT | blocks). Also note that since we remove all singleton values to form
V ′i based on the threshold 1−e−1

5 τi, and τi ≤ OPT ≤ OPT ′ ≤ OPTi (OPT ≤ OPT ′ is also from
Lemma. 4), we are guaranteed that there are no singleton elements with f(v) ≥ 1−e−1

5 OPTi in V ′i .
Therefore, based on Lemma. 6, our round robin iterations on V ′i give a solution whose every block
has a value of at least 1−e−1

5 OPTi ≥ 1−e−1

5 τi, and thus line 11 is guaranteed to be true for τi.

22



Based on Lemma. 7, either of the following must hold: 1) for all τi > OPTM line 11 is false, and in
such a case, we can use binary search to find the largest τi with line 11 true, and let’s call it τi∗ ; 2)
there exists some τi > OPTM such that line 11 is true. If we find such τi, we find a solution with
f(Aj) ≥ 1−e−1

5 τi ≥ 1−e−1

5 OPTM. Otherwise if we don’t find it, we go to the first case and will
still find τi∗ .

Finally, the approximation guarantee of Alg.7 follows by combining the previous lemmas.

Theorem 2 (Matroid Constrained Round-Robin). For the problem in Eq. (3), with C as any
matroid constraintM, Alg 7 gives a solution minj∈[m] f(Aj) ≥ (1−e−1)

5 minj∈[m] f(OMj ).

Proof. Firstly, based on the previous arguments about the binary search, we can find a τi with
τi ≥ τi∗ , where τi∗ is the largest τj with τj ≤ OPTM and line 11 of Alg. 7 true. By setting δ
small, τi∗ can be arbitrarily close to OPTM. Next, based on Lemma. 6, after removing the large
singleton values, the solution on the remaining elements have the min block value at least 1−e−1

5 τi,
and the removed large singletons are all larger than 1−e−1

5 τi by construction. We therefore get the
approximation ratio.

C Discussions about the Bounds in [3, 11] and the Heterogeneous Case

The works [3, 11] both study the partitioning problem in the economics context of fair allocation of
indivisible goods. In such a setting, every block is an agent, and we want to find an allocation of
the goods to each agent in a fair manner, so that each agent’s evaluation of the allocated goods to
himself is optimized. Each agent can have different evaluations for the goods, which means that the
submodular function for each block can be different. Taking [3] as an example, the bound they prove
is

Lemma 8 (Unconstrained Round-Robin Greedy [3]). Let A1, A2, . . . , Am be the solution to
the Round-Robin Greedy algorithm for the unconstrained problem (Eq. (1)), and given m sub-
modular functions for the m blocks as fj for j = 1, 2, . . .m, for every agent j we have
fj(Aj) ≥ 1−e−1

3 maxπ∈Π(V,m) minS∈π fj(S).

Intuitively, the bound guarantees that based on each agent’s evaluation fj , the goods allocated to
himself is not bad compared to the worst block in the allocation. When all the fj’s are the same, the
bound reduces to the bound for the homogeneous case of robust submodular partitioning, which is
the focus of this paper. The heterogeneous case for robust submodular partitioning is different, as it
requires to show a bound like (suppose the algorithm solution is Aj for j ∈ [m])

min
j∈[m]

fj(Aj) ≥ γ max
π∈Π(V,m)

min
S∈π

fj(S). (65)

We give an example of the m functions so that the two bounds vary. Say we have a predefined
partition over the ground set V into m blocks as C1, C2, . . . , Cm and ∪j∈[m]Cj = V , Cj ∩ Cj′ = ∅,
|Cj | = |Cj′ | (assume |V | is a multiple of m). Let fj(S) = |S ∩ Cj |. The optimal solution to the
heterogeneous case maxπ∈Π(V,m) minj∈[m] fj(Aj) is to assign the items in the same way as the
predefined partition C1, C2, . . . Cm, and the optimal solution value is |Cj |. However, for the bound
in [3, 11], the optimal solution {O1, O2, . . . , Om} ∈ argmaxπ∈Π(V,m) minA∈π fj(A) is to intersect

each predefined block equally, i.e., |Oj ∩ Cj′ | =
|Cj′ |
m ∀j, j′ ∈ 1, . . . ,m. Therefore, the optimal

solution value is then |Cj |
m .

D Synthetic Experiment

We compare Alg. 3, Alg. 7 (10 optimal value guesses) and the random assignment baseline on
randomly generated synthetic facility location functions. Every entry in the facility location similarity
matrix is uniformly sampled from [0, 1]. We report our results with different parameters in Figure 4.

23



Figure 4: Synthetic data results on randomly generated facility location function similarity matrices. The
x−label is n−m− c− p. Results averaged over 30 runs.

Particularly, we have four parameters for every problem instance: n the ground set size, m the
number of partitions, and the partition matroid constraint parameters c and p. For the partition
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matroid constraint, we divide the groundset into blocks of size p and for every such block, it is
constrained that we can pick at most c elements. For all variants of the settings, we observe that
Alg. 3 and Alg. 7 significantly outperform the random baseline. Alg. 3 consistently outperforms
Alg. 7 but the margin is not very large.

E Experiment Details

The features used in the experiments are generated through an autoencoder. The network architecture
is described in Table 1. The network is trained using ReLU non-linearity and batch normalization.
ADAM [15] is utilized as the optimization method with an initial learning rate of 5e-3, a weight
decay of 5e-4 and a minibatch size of 100. The network is trained in PyTorch using the procedure
described in [20]. Features are extracted as the output of the autoencoder’s bottleneck (following the
residual block and non-linearity).

The training of the ResNet-9 (Myrtle-AI, https://github.com/davidcpage/cifar10-fast)
network utilizes an ADAM optimizer with an initial learning rate of 1e− 3. The network is trained
for 90 epochs. For CPU jobs, we use a single core Intel Xeon 2.10GHz CPU, and for GPU jobs we
use a Nvidia RTX 2080Ti GPU.

Table 1: Neural network structure of the autoencoder

Group Block Type
(kernel sz, stride, channels) # Blocks

conv1 [ 3× 3 ], 2, 64 1

conv1 (residual)
[

3× 3
3× 3

]
, 1, 64 2

conv2 [ 3× 3 ], 2, 16 1

conv2 (residual)
[

3× 3
3× 3

]
, 1, 16 2

conv3 [ 3× 3 ], 2, 8 1

conv3 (residual)
[

3× 3
3× 3

]
, 1, 8 2

conv4 [ 3× 3 ], 1, 4 1

conv4 (residual)
[

3× 3
3× 3

]
, 1, 4 1

deconv4 (residual)
[

3× 3
3× 3

]
, 1, 4 1

deconv3 [ 3× 3 ], 1, 8 1

deconv3 (residual)
[

3× 3
3× 3

]
, 1, 8 2

deconv2 [ 3× 3 ], 2, 16 1

deconv2 (residual)
[

3× 3
3× 3

]
, 2, 16 2

deconv1 [ 3× 3 ], 2, 64 1

deconv1 (residual)
[

3× 3
3× 3

]
, 2, 64 2

deconv0 [ 3× 3 ], 2, 3 1

We also test the case for various cardinality constraints on CIFAR-10 datatset, and report the results
in Figure 5. The running times (in seconds) for Figure 5 and Figure 1 is given in Table 2 and Table 3
respectively under various constraint parameters. For the round-robin algorithm, we pick δ = 0.1.
The computing platform uses a single core of Intel Xeon(R) CPU 2.10GHz.
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Figure 5: Cardinality constrained results. We select a total of 2000 samples and the number of blocks varies
according to the constraint, e.g., when the constraint k = 200, m = 2000/200 = 10.

Table 2: Wall Clock Running Time for Figure 5

Constraint Param 200 125 100 80 50 40
Min-Block Greedy 60.7 60.4 60.0 57.9 57.0 57.1

Round-Robin Greedy 240.2 233.5 243.7 244.6 240.0 242.1

Table 3: Wall Clock Running Time for Figure 1

Constraint Param 40 25 20 10 8 5
Min-Block Greedy 63.4 62.3 62.2 60.0 59.5 59.9

Round-Robin Greedy 184.2 180.3 182.1 242.4 244.0 240.0
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