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Abstract

Pretrained language models (PLMs) have demonstrated remarkable performance1

in various natural language processing tasks: Unidirectional PLMs (e.g., GPT) are2

well known for their superior text generation capabilities; bidirectional PLMs (e.g.,3

BERT) have been the prominent choice for natural language understanding (NLU)4

tasks. While both types of models have achieved promising few-shot learning5

performance, their potential for zero-shot learning has been underexplored. In this6

paper, we present a simple approach that uses both types of PLMs for fully zero-shot7

learning of NLU tasks without requiring any task-specific data: A unidirectional8

PLM generates class-conditioned texts guided by prompts, which are used as9

the training data for fine-tuning a bidirectional PLM. With quality training data10

selected based on the generation probability and regularization techniques (label11

smoothing and temporal ensembling) applied to the fine-tuning stage for better12

generalization and stability, our approach demonstrates strong performance across13

seven classification tasks of the GLUE benchmark (e.g., 72.3/73.8 on MNLI-m/mm14

and 92.8 on SST-2), significantly outperforming zero-shot prompting methods and15

achieving even comparable results to strong few-shot approaches using 32 training16

samples per class1.17

1 Introduction18

Pretrained language models (PLMs) [5, 8, 11, 19, 33, 39] have achieved human-level performance19

on natural language understanding (NLU) tasks [63, 64] when fine-tuned on a large amount of20

task-specific training data. However, such a supervised fine-tuning paradigm is drastically different21

from how humans perform these tasks: We barely need to see many task-specific training samples to22

perform well.23

Recently, many studies have revealed the intriguing few-shot learning potential of PLMs: By24

converting task descriptions to natural language prompts and injecting them into PLMs, prompt-based25

approaches [5, 13, 53, 54, 56] leverage task-specific information for better training data efficiency26

and have achieved remarkable few-shot results.27

When prompt-based methods are applied to the zero-shot setting, however, the PLMs’ predictions28

are much less accurate. For example, GPT-3’s zero-shot performance is much degraded relative to29

its few-shot performance [5], especially on challenging tasks like natural language inference (NLI).30

Without any task-specific samples, it is indeed challenging for PLMs to effectively interpret the31

prompts that come in different formats and are unseen in the pretraining data. To familiarize PLMs32

with various prompts for zero-shot generalization to unseen tasks, a recent study proposes instruction33

tuning [67], which fine-tunes PLMs on a large collection of different tasks described by instructions.34

Despite its strong performance, its success is grounded in the large number of cross-task annotated35

1Code is shared in the supplementary material.
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datasets (e.g., train on many non-NLI tasks and transfer to NLI tasks) and the gigantic model size36

(e.g., hundreds of billions of parameters), posing great challenges for training and using such models37

in most real-world applications.38

In this work, we study zero-shot learning of PLMs on NLU tasks without any task-specific or cross-39

task data. Motivated by the strong text generation power of recent PLMs [5, 23, 29, 50], we propose40

SuperGen, a Supervision Generation approach, wherein training data are created via a unidirectional41

PLM (i.e., the generator) which generates class-conditioned texts guided by label-descriptive prompts.42

A bidirectional PLM (i.e., the classifier) is then fine-tuned on the generated texts to perform the43

corresponding task. Both PLMs can be of moderate size to fit in typical research hardware (e.g., a44

GPT-2-sized [49] generator and a RoBERTaLarge-sized [33] classifier). With supervision automatically45

created by the generator, SuperGen eliminates the need for task-specific annotations and provides46

the classifier PLM with a larger amount of training data than in few-shot scenarios. SuperGen is47

compatible with any PLM as the classifier and any fine-tuning method.48

Across seven classification tasks of the GLUE benchmark [63], SuperGen significantly outperforms49

the prompt-based zero-shot method and even achieves an overall better result in both average50

performance and stability than strong few-shot approaches that use 32 annotated samples per class.51

We identify several key factors to the strong performance of SuperGen through ablation studies: (1)52

selecting quality training data based on their generated probability, and (2) using label smoothing and53

temporal ensembling to regularize fine-tuning on generated data.54

2 Related Work55

2.1 Few-Shot and Zero-Shot Learning with PLMs56

Instead of using a large amount of annotated training data for fine-tuning PLMs on downstream57

tasks, few-shot learning studies how to better leverage only a small amount of task-specific training58

data, a more realistic scenario in many applications. The most strict few-shot learning setting does59

not assume access to any unlabeled data or large validation sets for hyperparameter tuning [46],60

where prompt-based methods [5, 13, 32, 34, 53–56, 60, 79] are prominently deployed to inject task61

descriptions into PLMs and make effective use of their language modeling capability for improved62

training data efficiency in low-data regimes. More broadly, semi-supervised learning additionally63

leverages unlabeled task-specific data, where data augmentation [7, 70], regularization [41] and64

bootstrapping [54] methods are commonly used.65

Zero-shot learning, on the other hand, is a much more challenging setting with absolutely no access66

to any task-specific data. When prompt-based methods are directly used to obtain predictions from67

PLMs without any training, their zero-shot performance can be much worse [5, 13]—difficult NLU68

tasks can be barely formulated as prompts that resemble the format of pretraining data, posing great69

challenges for PLMs to accurately interpret and leverage the prompts without given any training70

samples. The current mainstream of zero-shot learning is based on transfer learning: By converting71

a set of tasks with abundant annotations into instruction templates [40, 52, 67, 71], entailment72

pairs [75, 76] or question-answer formats [48, 81] and fine-tuning PLMs on them, the PLMs acquire73

the cross-task transfer ability [74] to execute unseen tasks when they are formulated in a similar74

format. Our work proposes a different approach from these studies: We use a unidirectional PLM to75

generate training data for fine-tuning another PLM on the target task. This not only removes the need76

for a large amount of cross-task annotations, but also eliminates the task difference in training and77

inference. Moreover, different from previous studies [1, 73] that rely on labeled data to fine-tune the78

generative PLM, we directly use prompts to guide data generation without fine-tuning.79

2.2 Controlled Text Generation with PLMs80

Controlled text generation [22] aims to steer the generated texts of language models towards desired81

contents, styles or domains. Through fine-tuning PLMs on attribute-specific data, high-level control82

(e.g., generating certain topics or sentiments [83]), fine-grained control (e.g., generating specific words83

or phrases [6]) or both [24] can be achieved. Adapting PLMs to generate texts of specific attributes can84

also be realized at inference time without any further training of the PLMs [10, 25, 26, 31, 45, 65, 72].85

Different text attributes can also be represented during pretraining time as control codes [23] which86

later can serve as explicit guidance for generating domain/attribute-specific texts.87

Along another line of controlling text generation, the idea of using prompts as guidance has emerged88

recently—Since natural language generation is largely based on contexts, providing certain prompts89
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Label Smoothing

This film is terrible.

Single-Sequence Tasks
(e.g. Sentiment Classification)

It is a waste of 
time and money.

The opening date of the 
station was estimated to be 
mid-2020. In other words,

Generator Gt
(Unidirectional PLM)
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Sequence-Pair Tasks
(e.g. Natural Language Inference)

The station was to 
open in 2020.
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Figure 1: Overview of SuperGen for zero-shot learning of NLU tasks. A unidirectional PLM is
used as the generator for creating training data guided by label-descriptive prompts. Quality training
samples are selected based on average log generation probability. A bidirectional PLM is fine-tuned
on the selected training set with label smoothing and temporal ensembling as regularization to perform
the classification task.

as the beginning of a sequence can effectively steer the subsequent texts to be generated. The prompts90

can be either in natural language [55] or as learnable parameters [30]. In this work, we also guide text91

generation via prompts, but for the novel purpose of creating training data for NLU tasks. The idea92

of using generated texts as training data has been explored in topic classification with bag-of-words93

or LSTM-based language models [37, 38] which do not have enough capacity to generate quality94

training data for challenging NLU tasks. Compared to annotated task-specific data, the generated95

texts may contain noise and have domain difference from the downstream task. We will introduce96

several important strategies for effective fine-tuning of PLMs on generated data.97

3 Method98

3.1 Preliminaries99

Problem Formulation. We consider solving a classification problem2 where we are only given the100

label space Y and a mappingM : Y → W that converts each label y ∈ Y into a label-descriptive101

prompt (i.e., a short phrase) wy ∈ W . We assume access to a unidirectional PLM Gθ as the generator102

and a bidirectional PLM Cϕ which will be fine-tuned as the classifier3. We also assume the pretraining103

corpus D (e.g., Wikipedia) is available.104

Text Generation with Unidirectional PLMs. A unidirectional PLM Gθ is pretrained to maximize
the generation probability of each token in a sequence x = [x1, x2, . . . , xn] conditioned on previous
tokens:

max
θ

n∏
i=1

pθ(xi|x<i), where pθ(xi|x<i) =
exp(e⊤i hi)∑|V |
j=1 exp(e

⊤
j hi)

.

Here, pθ(·) is usually parameterized using token embeddings e and contextualized embeddings h105

given by a Transformer [62] encoder.106

After pretraining, Gθ can be directly used to generate new texts by recursively sampling tokens from107

its output probability distribution. Typically, a temperature hyperparameter τ > 0 is introduced108

during sampling [20] to adjust the sharpness of the probability distribution:109

pθ(xi|x<i) =
exp(e⊤i hi/τ)∑|V |
j=1 exp(e

⊤
j hi/τ)

, (1)

where τ → 0 approximates greedily picking the most probable next token; τ →∞ induces a uniform110

distribution. Additionally, sampled tokens can be confined to the top-k most probable ones to avoid111

2We do not consider regression tasks in this work due to the difficulty of generating texts conditioned on
a continuous label space. However, there exist approaches [14, 51] that solve regression tasks by training
on classification tasks. We leave the integration of SuperGen with these methods as future work for solving
regression tasks.

3We assume the classifier to be bidirectional PLMs since they generally work better than unidirectional
PLMs in NLU tasks; we can in principle use any PLM as the classifier.
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low-quality tokens. In this work, we find such top-k sampling with temperature is sufficient to112

produce coherent and meaningful texts as training data for NLU tasks. Exploring more sophisticated113

sampling strategies [21] is left for future work.114

3.2 Training Data Generation115

Table 1: Prompts used to generate class-conditioned
texts for different GLUE tasks. SST-2 is a single-
sequence classification task and the rest are sequence-
pair classification tasks. Generation for CoLA does
not use prompts but by varying sampling tempera-
tures. xs denotes a sequence randomly sampled from
the pretraining corpus; xg denotes the sequence to be
generated by Gθ; . . . denotes skipping at least one
sequence. See Appendix B for more details.

Task Label Prompt

SST-2 positive Rating: 5.0 xg

negative Rating: 1.0 xg

MNLI
entailment xs. In other words, xg

neutral xs. Furthermore, xg

contradiction There is a rumor that xs.
However, the truth is: xg

QNLI entailment xs? xg

not entailment xs? . . .xg

RTE entailment xs. In other words, xg

not entailment xs. Furthermore, xg

MRPC equivalent xs. In other words, xg

not equivalent xs. Furthermore, xg

QQP equivalent xs? In other words, xg

not equivalent xs? Furthermore, xg

When given a label-descriptive prompt such116

as “Write a negative review:”, humans are117

able to produce texts pertaining to the cor-118

responding class. We aim to leverage the119

strong text generation power of a unidirec-120

tional PLM Gθ for the same purpose of cre-121

ating class-conditioned training data. We122

note that Gθ is directly used for generation123

without any parameter updates. The prompts124

used for different NLU tasks in GLUE are125

summarized in Table 1.126

Generating Single Sequences. For single-
sequence NLU tasks such as sentiment clas-
sification (e.g., SST-2), we simply use a
prompt wy corresponding to label y as the
beginning of the sequence and let Gθ gener-
ate the remaining sequence:

xg ← Gθ(wy),

where Gθ(wy) denotes using wy as the in-127

put to Gθ and recursively sampling tokens128

from the distribution in Eq. (1) until a full129

sequence is generated; xg denotes the gen-130

erated sequence (i.e., excluding the prompt),131

which will be paired with y to form one train-132

ing sample (xg, y).133

For syntactic tasks like linguistic acceptabil-134

ity classification (e.g., CoLA) which requires generating both linguistically acceptable and unaccept-135

able sequences, we start the sequence with random stop words and use varying sampling temperatures136

for generating different sequences. A smaller temperature (e.g., τ = 0.1 in Equation (1)) sharpens the137

sampling probability distribution towards the most probable tokens, thus the resulting sequence will138

more likely to be linguistically acceptable. Using a larger temperature (e.g., τ = 10 in Equation (1))139

flattens the sampling probability distribution to be more uniform, and the generated tokens will be140

nearly random, which can create linguistically incorrect sequences.141

Generating Sequence Pairs. Sequence-pair classification tasks require generating two sequences
of specific relationships (e.g., entailment, contradiction). We sample4 the first sequence xs from the
pretraining corpus D, concatenate the prompt wy with xs, and let Gθ generate the second sequence
xg:

xg ← Gθ ([x
s;wy]) , x

s ∼ D.
The sequence pair training sample will then be formed as (xs,xg, y).142

Rewarding and Penalizing Repetitions for Sequence Pair Generation. A common issue in text143

generation is degenerate repetition [21, 23, 49, 68] where generated texts can get stuck in repetition144

loops. To address this issue, one approach is to discourage repetition by reducing the logits of tokens145

that are already in the sequence before performing sampling [23]. In sequence pair generation,146

however, it is sometimes desirable to encourage the second sequence to repeat some words in the147

first sentence (e.g., for generating an entailment or a paraphrase). Therefore, we propose a simple148

modification of Eq. (1) that rewards/penalizes repetition based on whether the token has appeared in149

4In principle, we can also generate the first sequence using Gθ , but we find sampling from D improves the
diversity of texts.
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xs/xg:150

pθ(xi|x<i) =
exp(e⊤i hi/ω)∑|V |
j=1 exp(e

⊤
j hi/ω)

, where ω =


τα xi ∈ xs ∧ xi /∈ xg

τβ xi ∈ xg

τ else
, (2)

and α > 0, β > 0 are hyperparameters. By setting α < 1 and β > 1, we can promote tokens in151

xs that have not appeared in xg to have a higher chance of being generated, and discourage the152

generation of repetitive tokens in xg to mitigate degenerate repetition. The parameters used for153

different tasks are listed in Appendix C Table 8.154

3.3 Effective Fine-Tuning on Generated Texts155

With the generated training data, one can fine-tune a bidirectional PLM Cϕ as the classifier to perform156

the NLU task. However, training Cϕ via standard supervised training on all generated texts is likely157

to yield suboptimal performance on downstream tasks because (1) the generated texts may contain158

noise as Gθ may not always produce texts pertaining to the desired class, especially for challenging159

sequence pair tasks with subtle semantic relationships; and (2) the generated texts can be considered160

as originated from the domain of Gθ’s pretraining data, with a potentially different distribution from161

the downstream task; straightforward application of supervised training will result in overfitting162

to the pretraining domain and diminishing generalization ability, a common challenge in transfer163

learning [61, 82]. To address these challenges, we next introduce several simple and important164

strategies for more effective and stable fine-tuning on generated texts.165

Selecting Quality Training Data. We aim to select generated texts xg that are most likely to
pertain to the desired label y (i.e., with the highest p(xg|y)). The true probability p(xg|y) is unknown
and we estimate it via the generation probability given by Gθ conditioned on the prompt wy:

p(xg|y) ≈ pθ(x
g|wy) =

n∏
i=1

pθ
(
xi

∣∣[wy;x
g
<i]

)
.

Since the above measure is biased towards shorter sequences, we instead use the geometric mean166

of the above conditional generation probability (or equivalently, the average log probability) of all167

tokens in xg as the ranking score, following [77]:168

r =
1

n

n∑
i=1

log pθ
(
xi

∣∣[wy;x
g
<i]

)
. (3)

To construct a training set consisting of N samples per class, we will generate more samples (e.g.,169

10N ), and select training data based on the score r in Eq. (3): For all tasks except CoLA, the170

top-N ones of each class are selected; for CoLA, the top-N ones are used as the training sample171

as linguistically acceptable sequences, and the bottom-N ones are as linguistically unacceptable172

sequences.173

Regularization for Better Generalization and Stability. Even with the above training data174

selection procedure, the resulting training set may still contain noise and there exists domain difference175

from the downstream tasks. We apply two regularization techniques, label smoothing [59] and176

temporal ensembling [27] for better fine-tuning stability and generalization.177

Given a training sample (xg, y), label smoothing trains the classifier Cϕ to minimize the standard178

cross-entropy loss between the label and the classifier’s prediction pϕ(x
g), except that the label is a179

weighted average of the one-hot vector and a uniform distribution over all labels:180

min
ϕ
−

|Y|∑
j=1

qj log(pϕ(x
g)j), (4)

where qj = 1(j = y)(1− ϵ) + ϵ/|Y| and ϵ is the smoothing weight. By forcing the classifier to be181

less confident on training data, label smoothing improves robustness to label noise [35] and prevents182

overfitting to the training set [42], thus improving generalization to different domains.183

The motivation for temporal ensembling is that neural networks usually first pick up easy and general184

patterns in the data before learning more sophisticated and dataset-specific features [78], and thus the185

5



earlier states of the network offer better generalizability to different domains. We therefore record the186

predictions pϕ = pϕ(x
g) of Cϕ on each training sample (xg, y) at different training steps, and use187

the accumulated moving-average predictions z̄ to regularize the latest model training. This also helps188

suppress the fluctuation in model predictions due to data noise, offering better noise-robustness [43].189

We update ensembled predictions z̄ once every B batches:190

ẑ ← γẑ + (1− γ)pϕ, z̄ ← ẑ/(1− γt), (5)

where ẑ has a zero initialization; γ is the momentum parameter; t is the number of updates z̄ has191

received; the division (1− γt) is for bias correction [27]. We also use the ensembled prediction z̄ as192

a reliable signal to filter out noisy training samples: Only those samples on which z̄ strongly agrees193

with the label y (i.e., z̄y > δ where δ > 0 is a threshold parameter) will be used for training.194

We regularize model training by extending Eq. (4) to add a KL divergence regularization term from195

the model prediction to the ensembled prediction weighed by λ:196

min
ϕ
−

|Y|∑
j=1

qj log(pϕ(x
g)j)− λ

|Y|∑
j=1

z̄j log
pϕ(x

g)j
z̄j

. (6)

We follow [27] to slowly ramp-up λ during training.197

3.4 Overall Algorithm198

Algorithm 1: SuperGen for Zero-Shot Learning.
Input: Y : Label space; P : Label-descriptive prompts; Gθ:

Unidirectional PLM; Cϕ: Bidirectional PLM.
Parameter: N : Number of training samples per class to

generate; M(≫ N): Number of total
training samples to generate; T : Number of
training steps; B: Ensemble prediction
update interval; δ: Threshold parameter.

Output: C∗
ϕ: Classifier that classifies input texts into Y .

for y ∈ Y do
Ty ← {}
// Class y train set init.

for i ∈ [1, 2, . . . ,M ] do
xg ← Gθ(wy)
Ty ← Ty

⋃
{(xg, y)}

end
end
T ← {}
// Selected train set.
for y ∈ Y do

Sort Ty in descending order by Eq. (3)
T ← T

⋃
Ty[: N ]

end
ẑ ← 0
// Ensembled prediction init.
T ∗ ← T
// Filtered train set.
for i ∈ [1, 2, . . . , T ] do

Fine-tune Cϕ via Eq. (6) on a minibatch of T ∗

if i%B = 0 then
Update ẑ, z̄ via Eq. (5)
T ∗ ← {(xg, y)|z̄y > δ, (xg, y) ∈ T }

end
end
return C∗

ϕ = Cϕ

We summarize SuperGen for single-199

sequence NLU tasks in Algorithm 1. Solv-200

ing sequence-pair problems follows the201

same algorithm except the pretraining cor-202

pus D is needed for sampling the first se-203

quence xs.204

4 Experimental Setup205

Downstream Tasks and Metrics. We206

use all the tasks included in GLUE [63]207

except STS-B which is a regression task.208

Please refer to Appendix A for more de-209

tails about GLUE tasks. We follow the210

evaluation protocol of [13]: We use F1211

score as the metric for QQP and MRPC,212

Matthews correlation for CoLA, and accu-213

racy for the rest of the tasks. The original214

development sets of these tasks are used215

for testing. For all reported results, we in-216

clude the average and standard deviation217

over 5 different random seeds.218

Models. Unless specified otherwise, we219

use CTRL (1.63B parameters) [23] as the220

generator Gθ and COCO-LMLarge (367M221

parameters) [39] as the classifier Cϕ. We222

also show the results using similar-sized223

PLMs (GPT-2 [49]/RoBERTa [33]) as the224

generator/classifier in Appendix D.225

Fine-Tuning Settings and Hyperparam-226

eters. We note that SuperGen is compat-227

ible with any fine-tuning method; while us-228

ing more sophisticated methods may grant229

further performance improvement, we use the basic prompt-based fine-tuning with manual templates230

approach for simplicity and clarity. For all tasks, we use the same templates and label words as in231

[13]. Under the zero-shot learning setting, it is not possible to tune hyperparameters due to the lack232
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Table 2: Results on seven GLUE classification tasks. We report average and standard deviation (as
subscripts) performance over 5 different random seeds. †: Results from LM-BFF [13].

Method MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC AVG
(Acc.) (F1) (Acc.) (Acc.) (Matt.) (Acc.) (F1)

Zero-Shot Setting: No task-specific data (neither labeled nor unlabeled).

Prompting† 50.80.0/51.70.0 49.70.0 50.80.0 83.60.0 2.00.0 51.30.0 61.90.0 50.1
SuperGen 72.30.5/73.80.5 66.11.1 73.31.9 92.80.6 32.75.5 65.31.2 82.20.5 69.4

- data selection 63.71.5/64.21.6 62.32.2 63.93.2 91.32.0 30.58.8 62.41.5 81.60.2 65.1
- label smooth 70.70.8/72.10.7 65.10.9 71.42.5 91.00.9 9.51.0 64.81.1 83.00.7 65.2
- temporal ensemble 62.04.6/63.64.8 63.90.3 72.42.0 92.50.9 23.57.0 63.51.0 78.82.2 65.3

Few-Shot Setting: Use 32 labeled samples/class (half for training and half for development).

Fine-tuning† 45.86.4/47.86.8 60.74.3 60.26.5 81.43.8 33.914.3 54.43.9 76.62.5 59.1
Manual prompt† 68.32.3/70.51.9 65.55.3 64.54.2 92.70.9 9.37.3 69.13.6 74.55.3 63.6

+ demonstration† 70.71.3/72.01.2 69.81.8 69.21.9 92.60.5 18.78.8 68.72.3 77.82.0 66.9
Auto prompt† 68.32.5/70.12.6 67.03.0 68.37.4 92.31.0 14.014.1 73.92.2 76.22.3 65.8

+ demonstration† 70.03.6/72.03.1 67.75.8 68.55.4 93.00.6 21.815.9 71.15.3 78.13.4 67.3

Fully supervised† 89.8/89.5 81.7 93.3 95.0 62.6 80.9 91.4 84.9

Table 3: Results with different groups of prompts. CoLA does not use prompts for generation. The
number of prompt groups is equal to the number of the task labels.

Prompt Group MNLI-(m/mm) QQP QNLI SST-2 RTE MRPC

# 0 (Original) 72.30.5/73.80.5 66.11.1 73.31.9 92.80.6 65.31.2 82.20.5

# 1 70.71.4/72.41.2 65.51.4 71.91.7 92.20.9 64.41.6 81.90.4
# 2 70.80.6/72.10.8 65.61.1 72.22.2 92.40.8 64.71.8 81.80.8
# 3 70.91.4/72.21.4 - - - - -
Mixed 72.20.7/73.40.6 66.91.5 73.01.7 92.80.9 66.31.0 81.32.0

of validation sets. Therefore, we keep all fine-tuning hyperparameters (e.g., learning rate, batch size,233

training epochs, number of generated training samples, label smoothing and temporal ensembling234

hyperparameters) same across all tasks. See Appendix C Table 9 for details.235

Compared Methods and Ablations. We include the results of zero-shot prompting, standard236

few-shot fine-tuning and the four few-shot prompt-based fine-tuning methods proposed in [13]. We237

also conduct ablation studies by removing the following three techniques from SuperGen one at a238

time: (1) not using Eq. (3) for training data selection but randomly selecting the same amount of239

training data (- data selection); (2) not using label smoothing (- label smooth) but using one-hot240

labels; and (3) not using temporal ensembling (i.e., using Eq. (4) instead of Eq. (6) as the training241

objective) (- temporal ensemble). Lastly, we report the fully supervised fine-tuning results trained on242

the entire training sets.243

5 Evaluation244

5.1 Main Results245

We present the results of SuperGen, its ablations and compared methods in Table 2. Overall, SuperGen246

significantly outperforms zero-shot prompting and achieves an overall better result than all few-shot247

methods. Notably, SuperGen results in much smaller variance over different random seeds than248

few-shot approaches on most tasks—with access to more training data, fine-tuning of PLMs becomes249

much more stable. The ablation results demonstrate that all three strategies (i.e., quality training250

data selection, label smoothing and temporal ensembling) play important roles in improving and251

stabilizing the final performance, especially on challenging tasks like MNLI.252

5.2 Using Different Prompts253

One important factor of SuperGen is the choice of label-descriptive prompts as they directly influence254

the quality of generated training samples. To study the impact of different prompt choices on the255
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final model performance, we create different groups of prompts other than the original ones. We256

replace the prompt for one label used in Table 1 with a synonymous one and keep other prompts257

unchanged when forming a different prompt group (Please refer to Appendix B Table 7 for details).258

We also experiment with mixing the generated data by different prompt groups (mixed). The results259

are shown in Table 3. Overall, the model performance under different prompts is quite close, except260

on RTE whose test set is very small, potentially resulting in the higher variance. In this work, we261

manually choose simple prompts that make intuitive sense, and we leave the automatic searching of262

optimal prompts as future work.263

5.3 Results with Different Amount of Generated Data264
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(a) MNLI-m.
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(b) SST-2.

Figure 2: Results with different amount of generated training
data used. Dots and error bars are the average performance and
the standard deviation over 5 seeds, respectively.

With training data automatically cre-265

ated by the generator, we can have266

a virtually infinite amount of train-267

ing samples. We show the results268

of using different amount of gener-269

ated data (after quality data selec-270

tion) for fine-tuning the classifier271

Cϕ in Fig. 2 on MNLI-m and SST-2.272

When the number of training data273

is small (e.g., 100), the fine-tuning274

variance is high, resulting in the sim-275

ilar instability issue with few-shot276

settings. With more generated data277

used, both average performance and278

training stability improve, yielding279

comparable results (with smaller variance) to fine-tuning using few-shot task-specific data. However,280

when too many generated data (e.g., 10, 000) are used, the classifier’s performance slightly drops,281

probably due to increased label noise—recall that the training data are selected based on the ranking282

score in Eq. (3), so using more data results in the inclusion of more lower-ranking texts in the training283

set and reduced data quality. One way to address this issue is to use a fixed selection ratio and increase284

the total number of generated texts to obtain a larger number of high-quality training data. However,285

this comes at a greater computation cost in the generation step. An important future direction is thus286

to develop better data selection strategies.287

5.4 Using Generators for Knowledge Distillation288

Table 4: Comparisons with using CTRL for
zero-shot prompting and for knowledge distil-
lation. †: The entire training set is used as
unlabeled data.

Method MNLI-(m/mm) SST-2
SuperGen 72.30.5/73.80.5 92.80.6

CTRL Prompting 38.50.0/39.20.0 72.50.0
Knowledge Distill† 40.80.5/41.50.6 73.60.8

Apart from using unidirectional PLMs Gθ for train-289

ing data generation, one could also directly apply290

them to unlabeled data formulated as prompts to ob-291

tain zero-shot predictions (i.e., prompting [5, 13]),292

which can then be used as soft labels to train the293

classifier Cϕ. In Table 4, we show (1) the zero-294

shot prediction accuracy of CTRL (the best out of295

three different prompts, details in Appendix F) and296

(2) the classifier performance trained from CTRL’s297

predictions on the entire unlabeled training set as298

soft labels (i.e., knowledge distillation). Similar299

to the observations in previous studies [5, 67, 80],300

the zero-shot predictions of unidirectional PLMs are quite inaccurate and directly using them as301

soft labels to train classifiers does not yield good results. We hypothesize that the advantages of302

using unidirectional PLMs for training data generation over using them for zero-shot predictions are303

twofold: (1) Better flexibility in prompt formats. When unidirectional PLMs are used for zero-shot304

predictions, the prompts have to be designed so that the label word is the last token in the sequence to305

be predicted, as unidirectional PLMs cannot attend to subsequent tokens. Such constraints may result306

in the prompt being dissimilar to the pretraining data distribution and worsen the prediction quality307

of the PLMs. On the contrary, using unidirectional PLMs for generation is not subject to any prompt308

format constraints. (2) More direct uses of PLMs’ language modeling ability. Using unidirectional309

PLMs for training data generation directly leverages the PLMs’ output token probability. Applying310

PLMs for zero-shot prediction, however, requires an additional step to convert token predictions to311
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label predictions (i.e., the verbalizer [54]), and such a mapping process usually necessitates manual312

curation and can hardly be optimal [13] especially without abundant task-specific data.313

5.5 Using SuperGen in Few-Shot Settings314

Table 5: Using SuperGen for few-shot learning. The few-
shot setup follows [13].

Method MNLI-(m/mm) QQP CoLA
Zero-Shot SuperGen 72.30.5/73.80.5 66.11.1 32.75.5

Few-Shot Manual Prompt 68.32.3/70.51.9 65.55.3 9.37.3
+ SuperGen 73.10.9/74.30.6 69.92.5 45.56.5

We present a simple extension of Super-315

Gen to few-shot settings and show that316

the generated data of SuperGen may fur-317

ther improve the few-shot performance.318

When few-shot samples are available, we319

first fine-tune the classifier on the few-320

shot training set (standard prompt-based321

fine-tuning without regularization), and322

then continue fine-tuning the classifier323

on the generated data by SuperGen as324

described in Section 3.3. This allows the classifier to effectively leverage the knowledge from325

the few-shot training set to filter out noisy samples in the generated data, as temporal ensembling326

regularizes the classifier to remember the predictions learned previously and only keeps samples on327

which the model predictions agree with the label. As shown in Table 5, such a simple approach that328

applies SuperGen to few-shot settings improves both zero-shot SuperGen and few-shot prompt-based329

fine-tuning. We note that few-shot samples are not used in the training data generation stage, and330

we expect the results to be even better if they are leveraged to generate training data closer to the331

task-specific distribution. Possible ways to use few-shot samples for generation include using them332

as demonstrations [5], for creating augmentations [28] and for tuning the generators. We leave the333

explorations of generating higher quality data by leveraging few-shot samples for future work.334

6 Discussions and Conclusions335

Ethical Considerations. While PLMs have demonstrated remarkable text generation and un-336

derstanding capability, they can come with potential risks or harms [2, 3, 5] such as generating337

misinformation [44] or amplifying harmful biases [47]. The focus of our work is on utilizing exist-338

ing PLMs to generate training data for NLU tasks instead of developing new PLMs or generation339

methods. Therefore, our method can be used in company with any bias reduction and correction340

techniques [15, 36] to mitigate the risks of PLMs.341

Limitations. One inherent limitation with zero-shot learning is the lack of access to task-specific342

samples for hyperparameter tuning, whereas the performance of neural networks is usually heavily343

dependent on the choice of hyperparameters even when the training algorithm and training set are344

fixed [46]. Also, without access to any labeled data, the generated training data quality may not be345

high enough to achieve good performance on challenging tasks, especially when the task distribution346

is significantly different from the pretraining data distribution (e.g., the “linguistically incorrect” label347

of CoLA requires generating sequences with grammar mistakes – a different distribution from the one348

used to train PLMs). A promising direction to address the above limitations is extending SuperGen to349

few-shot settings and leveraging a small amount of labeled data for generating better quality data and350

for hyperparameter tuning.351

Conclusions. We propose SuperGen, an automatic supervision generation approach for zero-shot352

learning of NLU tasks. By providing label-descriptive prompts as guidance to a unidirectional353

PLM, training data can be automatically created for fine-tuning a bidirectional PLM. Our framework354

differs from previous transfer-learning-based zero-shot methods in that SuperGen does not rely on355

cross-task annotations and eliminates the task difference in training and inference. We show that356

several strategies are important for effective and stable fine-tuning on generated data, including357

quality training data selection, label smoothing and temporal ensembling. SuperGen achieves strong358

performance on seven classification tasks of the GLUE benchmark, even yielding comparable or359

better results than sophisticated few-shot learning methods and offering better stability. There is large360

room for future work, including but not limited to: Extension to few-shot learning settings, exploring361

larger generator models, better fine-tuning techniques to leverage generated data and better strategies362

for selecting quality training data.363
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[45] Damian Pascual, Béni Egressy, Clara Meister, Ryan Cotterell, and Roger Wattenhofer. A472

plug-and-play method for controlled text generation. In Findings of EMNLP, 2021.473

[46] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.474

In NeurIPS, 2021.475

[47] Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhutdinov, and Alan W. Black. Style transfer476

through back-translation. In ACL, 2018.477

[48] Raul Puri and Bryan Catanzaro. Zero-shot text classification with generative language models.478

ArXiv, abs/1912.10165, 2019.479

[49] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.480

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.481

[50] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,482

Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified483

text-to-text transformer. Journal of Machine Learning Research, 2019.484

[51] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using siamese485

BERT-networks. In EMNLP, 2019.486

[52] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang A. Sutawika, Zaid Alyafeai,487

Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M SAIFUL BARI,488

Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan489

Chhablani, Nihal V. Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang,490

Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang,491

Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan492

Fries, Ryan Teehan, Stella Rose Biderman, Leo Gao, T. G. Owe Bers, Thomas Wolf, and493

Alexander M. Rush. Multitask prompted training enables zero-shot task generalization. ArXiv,494

abs/2110.08207, 2021.495

[53] Teven Le Scao and Alexander M. Rush. How many data points is a prompt worth? In NAACL,496

2021.497

[54] Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification498

and natural language inference. In EACL, 2021.499

[55] Timo Schick and Hinrich Schütze. Few-shot text generation with natural language instructions.500

In EMNLP, 2021.501

[56] Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are502

also few-shot learners. In NAACL, 2021.503

12



[57] Iyer Shankar, Dandekar Nikhil, and Csernai Kornél. First Quora dataset re-504

lease: Question pairs, 2017. URL https://www.quora.com/q/quoradata/505

First-Quora-Dataset-Release-Question-Pairs.506

[58] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y507

Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a508

sentiment treebank. In EMNLP, 2013.509

[59] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.510

Rethinking the inception architecture for computer vision. In CVPR, 2016.511

[60] Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank Srivastava, and Colin Raffel. Improving512

and simplifying pattern exploiting training. In EMNLP, 2021.513

[61] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on machine learning514

applications and trends: algorithms, methods, and techniques. 2010.515

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,516

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.517

[63] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.518

GLUE: A multi-task benchmark and analysis platform for natural language understanding. In519

EMNLP Workshop BlackboxNLP, 2018.520

[64] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill,521

Omer Levy, and Samuel R. Bowman. SuperGLUE: A stickier benchmark for general-purpose522

language understanding systems. In NeurIPS, 2019.523

[65] Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao. Towards zero-label language learning.524

arXiv preprint arXiv:2109.09193, 2021.525

[66] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability526

judgments. In TACL, 2019.527

[67] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,528

Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In ICLR,529

2022.530

[68] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.531

Neural text generation with unlikelihood training. In ICLR, 2020.532

[69] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for533

sentence understanding through inference. In NAACL-HLT, 2018.534

[70] Qizhe Xie, Zihang Dai, Eduard H. Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised535

data augmentation for consistency training. In NeurIPS, 2020.536

[71] Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, and Zhilin Yang.537

ZeroPrompt: Scaling prompt-based pretraining to 1, 000 tasks improves zero-shot generalization.538

ArXiv, abs/2201.06910, 2022.539

[72] Kevin Yang and Dan Klein. FUDGE: Controlled text generation with future discriminators. In540

NAACL, 2021.541

[73] Yiben Yang, Chaitanya Malaviya, Jared Fernandez, Swabha Swayamdipta, Ronan Le Bras,542

Ji Ping Wang, Chandra Bhagavatula, Yejin Choi, and Doug Downey. Generative data augmenta-543

tion for commonsense reasoning. In Findings of EMNLP, 2020.544

[74] Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. Crossfit: A few-shot learning challenge for545

cross-task generalization in nlp. In EMNLP, 2021.546

[75] Wenpeng Yin, Jamaal Hay, and Dan Roth. Benchmarking zero-shot text classification: Datasets,547

evaluation and entailment approach. In EMNLP, 2019.548

[76] Wenpeng Yin, Nazneen Rajani, Dragomir Radev, Richard Socher, and Caiming Xiong. Universal549

natural language processing with limited annotations: Try few-shot textual entailment as a start.550

In EMNLP, 2020.551

13

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs


[77] Weizhe Yuan, Graham Neubig, and Pengfei Liu. BARTScore: Evaluating generated text as text552

generation. In NeurIPS, 2021.553

[78] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding554

deep learning requires rethinking generalization. In ICLR, 2017.555

[79] Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan, Fei Huang,556

and Huajun Chen. Differentiable prompt makes pre-trained language models better few-shot557

learners. In ICLR, 2022.558

[80] Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:559

Improving few-shot performance of language models. In ICML, 2021.560

[81] Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein. Adapting language models for zero-shot561

learning by meta-tuning on dataset and prompt collections. In Findings of EMNLP, 2021.562

[82] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,563

and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 2020.564

[83] Daniel M. Ziegler, Nisan Stiennon, Jeff Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul565

Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. ArXiv,566

abs/1909.08593, 2019.567

Checklist568

1. For all authors...569

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s570

contributions and scope? [Yes]571

(b) Did you describe the limitations of your work? [Yes]572

(c) Did you discuss any potential negative societal impacts of your work? [Yes]573

(d) Have you read the ethics review guidelines and ensured that your paper conforms to574

them? [Yes]575

2. If you are including theoretical results...576

(a) Did you state the full set of assumptions of all theoretical results? [N/A]577

(b) Did you include complete proofs of all theoretical results? [N/A]578

3. If you ran experiments...579

(a) Did you include the code, data, and instructions needed to reproduce the main experi-580

mental results (either in the supplemental material or as a URL)? [Yes]581

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they582

were chosen)? [Yes]583

(c) Did you report error bars (e.g., with respect to the random seed after running experi-584

ments multiple times)? [Yes]585

(d) Did you include the total amount of compute and the type of resources used (e.g., type586

of GPUs, internal cluster, or cloud provider)? [Yes]587

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...588

(a) If your work uses existing assets, did you cite the creators? [Yes]589

(b) Did you mention the license of the assets? [Yes]590

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]591

592

(d) Did you discuss whether and how consent was obtained from people whose data you’re593

using/curating? [N/A]594

(e) Did you discuss whether the data you are using/curating contains personally identifiable595

information or offensive content? [N/A]596

5. If you used crowdsourcing or conducted research with human subjects...597

(a) Did you include the full text of instructions given to participants and screenshots, if598

applicable? [N/A]599

(b) Did you describe any potential participant risks, with links to Institutional Review600

Board (IRB) approvals, if applicable? [N/A]601

(c) Did you include the estimated hourly wage paid to participants and the total amount602

spent on participant compensation? [N/A]603
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A GLUE Tasks604

We provide the details of the seven classification tasks included in the GLUE benchmark.605

MNLI: Multi-genre Natural Language Inference [69] aims to predict whether a given premise606

sentence entails, contradicts or neutral with respect to a given hypothesis sentence.607

QQP: Quora Question Pairs [57] aims to determine whether a pair of questions asked are semantically608

equivalent.609

QNLI: Question Natural Language Inference aims to predict whether a given sentence contains the610

answer to a given question sentence.611

SST-2: Stanford Sentiment Treebank [58] aims to determine if a movie review has positive or negative612

sentiment.613

CoLA: Corpus of Linguistic Acceptability [66] aims to determine whether a given sentence is614

linguistically acceptable or not.615

RTE: Recognizing Textual Entailment [4, 9, 16, 18] aims to predict whether a given premise sentence616

entails a given hypothesis sentence or not.617

MRPC: Microsoft Research Paraphrase Corpus [12] aims to predict whether two sentences are618

semantically equivalent or not.619

B Details of Prompts Used for Different Tasks620

Table 6: Extensions of Table 1 with more details of prompts used to generate class-conditioned texts
for different GLUE tasks. SST-2 and CoLA are single-sequence classification tasks and the rest
are sequence-pair classification tasks. Generation for CoLA does not use prompts but by varying
sampling temperatures. Text generation with CTRL [23] requires starting with control codes, and
we use the ones that correspond to the pretraining corpus where the first sequence is sampled: For
MNLI, RTE and MRPC, the first sequence is sampled from Wikipedia; for QNLI and QQP, the first
sequence is sampled from OpenWebText [17]. xs denotes a sequence randomly sampled from the
pretraining corpus; xg denotes the sequence to be generated by Gθ; . . . denotes skipping at least one
sequence. The prompts used for SST-2 are part of the CTRL [23] codes.

Task Task Type Control Code Label Prompt

SST-2 single-sequence Reviews positive Rating: 5.0 xg

negative Rating: 1.0 xg

CoLA single-sequence Links grammatical xg

not grammatical xg

MNLI sequence-pair Wikipedia
entailment xs. In other words, xg

neutral xs. Furthermore, xg

contradiction There is a rumor that xs. However, the truth is: xg

QNLI sequence-pair Links entailment xs? xg

not entailment xs? . . .xg

RTE sequence-pair Wikipedia entailment xs. In other words, xg

not entailment xs. Furthermore, xg

MRPC sequence-pair Wikipedia equivalent xs. In other words, xg

not equivalent xs. Furthermore, xg

QQP sequence-pair Links equivalent xs? In other words, xg

not equivalent xs? Furthermore, xg

We present more details about the prompts used for different tasks in Table 6 which is an extended621

version of Table 1.622

For SST-2, we fix the beginning of the generated sequence xg to be “The/this film/movie” to make623

sure the generated texts are related to movie reviews.624

For CoLA, we start the generated sequence xg with a random stop word.625
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Table 7: Different prompt groups used in the experiments of Section 5.2. We replace the original
prompt for each label with an alternative one and keep other prompts unchanged when forming a
different prompt group.

Task Label Original Alternative

SST-2 positive Rating: 5.0 xg Rating: 4.0 xg

negative Rating: 1.0 xg Rating: 2.0 xg

MNLI
entailment xs. In other words, xg xs. To put it another way, xg

neutral xs. Furthermore, xg xs. In addition, xg

contradiction There is a rumor that xs. However, the truth is: xg People believe that xs. However, the truth is: xg

QNLI entailment xs? xg Question: xs? Answer: xg

not entailment xs? . . .xg Question: xs? Answer: . . .xg

RTE entailment xs. In other words, xg xs. To put it another way, xg

not entailment xs. Furthermore, xg xs. In addition, xg

MRPC equivalent xs. In other words, xg xs. To put it another way, xg

not equivalent xs. Furthermore, xg xs. In addition, xg

QQP equivalent xs? In other words, xg xs? To put it another way, xg

not equivalent xs? Furthermore, xg xs? In addition, xg

For QNLI and QQP, the first sequence is always a question, and we require the sampled sequence626

xs to end with a question mark and begin with one of the following words: “how”, “what”, “why”,627

“who”, “which”, “where”, “when”, “whom”, “whose”.628

For QNLI, the generated sequence xg for the “entailment” label is the one that immediately follows629

the sampled sequence xs; the generated sequence xg for the “not entailment” label is randomly630

sampled from the paragraph following xg excluding the first sequence that immediately follows xg .631

We also show the different prompt groups used in the experiments of Section 5.2 in Table 7.632

C Hyperparameters and Reproducibility633

Table 8: Hyperparameters for generating training data of
different tasks. τ : Temperature during sampling (τ = 0
means using greedy sampling); α and β: Repetition reward-
ing/penalizing parameters; M : Number of total generated
texts per label. The top-k sampling (if τ > 0) uses k = 10.

Task Label τ α β M

SST-2 positive 0.2 - 1.2 25,000
negative - 1.2 25,000

CoLA grammatical [0.1, 10] - 1.2 10,000
not grammatical - 1.2 10,000

MNLI
entailment

0
0.8 1.1 25,000

neutral 1.3 1.3 25,000
contradiction 1.1 1.1 25,000

QNLI entailment 0 0.9 1.2 25,000
not entailment 0.9 1.2 25,000

RTE entailment 0 0.8 1.1 30,000
not entailment 1.1 1.1 30,000

MRPC equivalent 0 0.8 1.1 30,000
not equivalent 1.1 1.1 30,000

QQP equivalent 0 1.0 1.2 25,000
not equivalent 1.2 1.2 25,000

Hyperparameters for Generating634

Training Data. Table 8 lists the hy-635

perparameters used in the training636

data generation stage. For sequence-637

pair tasks, we use greedy sampling638

for better reproducibility. For labels639

that require generating entailment,640

paraphrase, or equivalent sequence641

pairs, we set α ≤ 1 to encourage642

word overlapping between the sec-643

ond sequence and the first sequence;644

otherwise, we set α = β > 1 to dis-645

courage word repetition.646

To construct a training set consisting647

of N samples per class, we will gen-648

erate M samples per class, and select649

training data based on the score r in650

Eq. (3): For all tasks except CoLA651

and the “neutral” label of MNLI, the652

top-N ones of each class are selected;653

for CoLA, the top-N ones are used654

as the training sample as linguisti-655

cally acceptable sequences, and the656

bottom-N ones are as linguistically657

unacceptable sequences; for the “neu-658

tral” label of MNLI, we find it better659

to randomly select N samples from660
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Table 9: Hyperparameters used for fine-tuning on different tasks (they are kept same for all tasks).
Fine-tuning-related hyperparameters (e.g., learning rate, batch size) follow the default values (when
the validation set is not available) in Appendix A of [13]; regularization-related hyperparameters
follow the default values in label smoothing and temporal ensembling. lr: Learning rate; bs: Batch
size; N |Y|: Total number of selected generated data (i.e., training set size); B: Ensemble prediction
update interval; T : Number of training steps; ϵ: Label smoothing parameter; γ: Temporal ensembling
momentum parameter; δ: Threshold for filtering out noisy data; λmax: Maximum weight (after
ramp-up) of temporal ensembling regularization.

lr bs N |Y| B T ϵ γ δ λmax

1e-5 16 6,000 100 1,125 0.15 0.8 0.8 10

Table 10: Results with different generator/classifier PLMs.

PLMs MNLI-(m/mm) SST-2
Gθ: CTRL, Cϕ: COCO-LM 72.30.5/73.80.5 92.80.6
Gθ: CTRL, Cϕ: RoBERTa 69.00.8/70.60.9 93.31.5

Gθ: GPT-2, Cϕ: COCO-LM 69.51.2/71.31.3 88.21.8
Gθ: GPT-2, Cϕ: RoBERTa 68.30.9/69.70.7 88.60.8

the total M samples instead of using the ranking score, probably because a neutral hypothesis with661

respect to the premise has a wide range of possibilities (i.e., any hypothesis that is not entailed by662

or contradicts with the premise will be neutral), and random selection improves the diversity in663

generated hypotheses of the neutral label.664

Hyperparameters for Fine-Tuning. Table 9 lists the hyperparameters used in the fine-tuning stage.665

We keep them same across all tasks except CoLA which uses δ = 0 because half of the training data666

for CoLA are intentionally made to be of low quality (i.e., as linguistically unacceptable sequences)667

and there is no need to filter them out. We follow [27] to slowly ramp-up λ in Equation (6) during the668

first 10 ensembles: λ(t) = λmax exp(−5(1− t/10)2) where t is the number of prediction ensembles669

performed.670

Computation Environment. All experiments are conducted on NVIDIA GeForce RTX 3090671

GPUs. SuperGen can be run on typical research hardware (e.g., with > 10GB GPU memory). The672

generator PLM Gθ does not need to be trained so a relatively large generator can be used (e.g., a673

1.63B-parameter CTRL model).674

D Using Different PLMs675

The final performance is also relevant to the choice of PLMs as the generator/classifier. Apart676

from the default PLM choice, we report the results of using GPT-2XLarge (1.54B parameters) [49]677

as the generator and RoBERTaLarge (356M parameters) [33] as the classifier in Table 10 with every-678

thing else unchanged. When using GPT-2, we change the prompt used for SST-2 to “The film is679

bad/terrible/awful.” for the negative label and “The film is good/great/excellent.” for the positive680

label, since the original prompts used for SST-2 in Table 1 are a part of the control codes of CTRL and681

cannot be effectively leveraged by GPT-2. Overall, both CTRL and GPT-2 are able to generate quality682

training data for good fine-tuned classifier performance; CTRL consistently yields better results683

than GPT-2 regardless of the choice of the classifier PLM, probably because CTRL is pretrained684

with control codes which provide explicit guidance for generating texts of certain domains and685

attributes. We also observe that the generated text quality is strongly correlated to the generator’s686

model size—using a smaller version of GPT-2 (e.g., with 117M parameters) results in significantly687

less coherent texts and can hardly serve as training data. An interesting future direction is to try larger688

generator PLMs (e.g., GPT-3) which may create training data of better quality.689
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Table 11: Example generated texts for SST-2, MNLI and QQP. Sampled sequences from pretraining
corpus (xs) are italicized; generated sequences (xg) are underlined; prompts (wy) are in bold.

Task Label Generated Text

SST-2 positive Rating: 5.0 The film is a great example of the kind of movie that you can watch over and over.
negative Rating: 1.0 The film was a total waste of time. I would not recommend this movie to anyone.

MNLI

entailment
The construction of the station began in 2016, when the opening date was estimated to mid-2020.
In other words, the station was to open in 2020.

neutral
The construction of the station began in 2016, when the opening date was estimated to mid-2020.
Furthermore, it is expected that a new bus terminal will be built at this station.

contradiction
There is a rumor that The construction of the station began in 2016, when the opening date was estimated to mid-2020.
However, the truth is: The construction started in 2017, and the official opening date was set for March 31, 2018.

QQP equivalent What are the most wear resistant steels? In other words, what are the most durable steels?
not equivalent What are the most wear resistant steels? Furthermore, what is the best way to clean them?

Table 12: Negative example generated texts for MNLI that do not pertain to the desired label. Sampled
sequences from pretraining corpus (xs) are italicized; generated sequences (xg) are underlined;
prompts (wy) are in bold. In example #1, the generated text corresponding to the “entailment”
label actually pertains to the “neutral” label. In example #2, the generated text corresponding to
the “contradiction” label actually pertains to the “neutral” label. In example #3, the generated text
corresponding to the “neutral” label actually pertains to the “contradition” label.

Example Label Generated Text

#1

entailment
Directed by Daniel J. Sullivan, the cast features Kelly AuCoin, Annie Parisse, Lee Tergesen and Alex Wolff.
In other words, the cast features a lot of people who are not in the original Broadway cast.

neutral
Directed by Daniel J. Sullivan, the cast features Kelly AuCoin, Annie Parisse, Lee Tergesen and Alex Wolff.
Furthermore, it was announced that a sequel to “The Last Airbender” will be released in 2019.

contradiction
There is a rumor that Directed by Daniel J. Sullivan, the cast features Kelly AuCoin, Annie Parisse, Lee Tergesen and Alex Wolff.
However, the truth is: The cast includes only two actors from the original Broadway production.

#2

entailment
As a result, minor problems begin to look serious and rare events begin to seem common.
In other words, a minor problem can begin to look serious and rare events seem common.

neutral
As a result, minor problems begin to look serious and rare events begin to seem common.
Furthermore, the number of people who are affected by these changes is increasing.

contradiction
There is a rumor that As a result, minor problems begin to look serious and rare events begin to seem common.
However, the truth is: The only thing that can cause such an effect is a major change in the weather.

#3

entailment
The character was announced on 20 September 2019, but casting wasn’t revealed until 10 December 2019.
In other words, the casting wasn’t revealed until 10 December 2019.

neutral
The character was announced on 20 September 2019, but casting wasn’t revealed until 10 December 2019.
Furthermore, it is unknown whether the role will be played by a male or female actor.

contradiction
There is a rumor that The character was announced on 20 September 2019, but casting wasn’t revealed until 10 December 2019.
However, the truth is: The character was announced on 19 October 2018.

E Case Studies690

We present concrete examples of generated texts guided by prompts of different labels in Table 11.691

The generated sequences are not only coherent, but also pertain to the corresponding labels. For692

easier tasks like SST-2, the generated texts almost always correctly reflect the desired sentiment693

polarity specified by the prompt. For more difficult tasks like MNLI, sometimes the generated texts694

are not of the correct label. Table 12 demonstrates more concrete examples where the generated texts695

may not correctly pertain to the label of the prompt. The existence of such label noise motivates our696

use of the regularization techniques in the fine-tuning stage.697

We believe that larger generator PLMs (e.g., GPT-3 [5]) can bring about better text generation quality698

and improve the accuracy in producing texts that pertain to the desired class. Furthermore, better699

filtering strategies can be developed in the future to select training data with the correct labels.700

F Knowledge Distillation Baseline Details701

We show the concrete prompts used for the knowledge distillation baseline in Tables 13 and 14702

on MNLI and SST-2, respectively. We use the best prompt (prompt # 1 in both tables) out of the703

three according to the zero-shot test set prediction accuracy for generating soft labels to train the704

classification model (i.e., knowledge distillation). The classifier is trained with Kullback–Leibler705
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Table 13: Different prompts used on MNLI for CTRL zero-shot prompting and knowledge distillation
baselines. x1 and x2 denote the first and second input sequence, respectively.

Prompt Template Label name

# 1
Sentence 1: x1 Sentence 2: x2 entailment: Yes
Does Sentence 1 entail Sentence 2? neutral: Maybe
The answer is: contradiction: No

# 2
Premise: x1 Hypothesis: x2 entailment: Yes
Does the premise entail the hypothesis? neutral: Maybe
Options: Yes. No. Maybe. The answer is: contradiction: No

# 3
Premise: x1 Hypothesis: x2 entailment: Entailment
What is the relation between the premise and the hypothesis? neutral: Neutral
Options: Entailment. Neutral. Contradiction. The answer is: contradiction: Contradiction

Table 14: Different prompts used on SST-2 for CTRL zero-shot prompting and knowledge distillation
baselines. x denotes the input sequence.

Prompt Template Label name

# 1 x This is positive: good; negative: bad

# 2 x It was positive: good; negative: bad

# 3 Review: x Sentiment: positive: Positive; negative: Negative

(KL) divergence as the objective to approximate the soft labels generated by CTRL on the entire706

training set.707
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