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Abstract

Transformers are slow and memory-hungry on long sequences, since the time and1

memory complexity of self-attention are quadratic in sequence length. Approximate2

attention methods have attempted to address this problem by trading off model qual-3

ity to reduce the compute complexity, but often do not achieve wall-clock speedup.4

We argue that a missing principle is making attention algorithms IO-aware—5

accounting for reads and writes between levels of GPU memory. We propose6

FLASHATTENTION, an IO-aware exact attention algorithm that uses tiling to reduce7

the number of memory reads/writes between GPU high bandwidth memory (HBM)8

and GPU on-chip SRAM. We analyze the IO complexity of FLASHATTENTION,9

showing that it requires fewer HBM accesses than standard attention, and is optimal10

for a range of SRAM sizes. We also extend FLASHATTENTION to block-sparse11

attention, yielding an approximate attention algorithm that is faster than any existing12

approximate attention method. FLASHATTENTION trains Transformers faster than13

existing baselines: 14% end-to-end wall-clock speedup on BERT-large (seq. length14

512) compared to the MLPerf 1.1 training speed record, 3× speedup on GPT-2 (seq.15

length 1K), and 2.4× speedup on long-range arena (seq. length 1K-4K). FLASHAT-16

TENTION and block-sparse FLASHATTENTION enable longer context in Trans-17

formers, yielding higher quality models (0.7 better perplexity on GPT-2 and 6.418

points of lift on long-document classification) and entirely new capabilities: the first19

Transformers to achieve better-than-chance performance on the Path-X challenge20

(seq. length 16K, 61.4% accuracy) and Path-256 (seq. length 64K, 63.1% accuracy).21

1 Introduction22

Transformer models [78] have emerged as the most widely used architecture in applications such23

as natural language processing and image classification. Transformers have grown larger [5] and24

deeper [79], but equipping them with longer context remains difficult [76], since the self-attention25

module at their heart has time and memory complexity quadratic in sequence length. An important26

question is whether making attention faster and more memory-efficient can help Transformer models27

address their runtime and memory challenges for long sequences.28

Many approximate attention methods have aimed to reduce the compute and memory requirements of29

attention. These methods range from sparse-approximation [49, 70] to low-rank approximation [11, 48,30

80], and their combinations [3, 8, 88]. Although these methods reduce the compute requirements to lin-31

ear or near-linear in sequence length, many of them do not display wall-clock speedup against standard32

attention and have not gained wide adoption. One main reason is that they focus on FLOP reduction33

(which may not correlate with wall-clock speed) and tend to ignore overheads from memory access (IO).34

In this paper, we argue that a missing principle is making attention algorithms IO-aware [1]—that35

is, carefully accounting for reads and writes to different levels of fast and slow memory (e.g., between36

fast GPU on-chip SRAM and relatively slow GPU high bandwidth memory, or HBM [43], Figure 137

left). In modern GPUs, compute speed has out-paced memory speed [58–60], and most operations38
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Figure 1: Left: FLASHATTENTION uses tiling to prevent materialization of the large 𝑁×𝑁 attention
matrix (dotted box) on (relatively) slow GPU HBM. In the outer loop (red arrows), FLASHATTENTION
loops through blocks of the K and V matrices and loads them to fast on-chip SRAM. In each block,
FLASHATTENTION loops over blocks of Q matrix (blue arrows), loading them to SRAM, and writing
the output of the attention computation back to HBM. Right: Speedup over the PyTorch implementation
of attention on GPT-2. FLASHATTENTION does not read and write the large 𝑁×𝑁 attention matrix to
HBM, resulting in an 7.6x speedup on the attention computation.

in Transformers are bottlenecked by memory accesses [41]. IO-aware algorithms have been critical39

for similar memory-bound operations, when reading and writing data can account for a large portion40

of the runtime—such as database joins [67], image processing [66], numerical linear algebra [4], and41

more [38, 81]. However, common Python interfaces to deep learning such as PyTorch and Tensorflow42

do not allow fine-grained control of memory access.43

We propose FLASHATTENTION, a new attention algorithm that computes exact attention with far44

fewer memory accesses. Our main goal is to avoid reading and writing the attention matrix to and from45

HBM. This requires (i) computing the softmax reduction without access to the whole input (ii) not46

storing the large intermediate attention matrix for the backward pass. We apply two well-established47

techniques to address these challenges. (i) We restructure the attention computation to split the input48

into blocks and make several passes over input blocks, thus incrementally performing the softmax49

reduction (also known as tiling). (ii) We store the softmax normalization factor from the forward50

pass to quickly recompute attention on-chip in the backward pass, which is faster than the standard51

approach of reading the intermediate attention matrix from HBM. We implement FLASHATTENTION52

in CUDA to achieve fine-grained control over memory access and fuse all the attention operations into53

one GPU kernel. Even with the increased FLOPs due to recomputation, out algorithm both runs faster54

(up to 7.6x on GPT-2 [64], Figure 1 right) and uses less memory—linear in sequence length—than55

standard attention, thanks to the massively reduced amount of HBM access.56

We analyze the IO complexity [1] of FLASHATTENTION, proving that it requires𝑂 (𝑁2𝑑2𝑀−1) HBM57

accesses where 𝑑 is the head dimension and 𝑀 is the size of SRAM, as compared to Ω(𝑁𝑑+𝑁2) of58

standard attention. For typical values of 𝑑 and 𝑀, FLASHATTENTION requires many times fewer59

HBM accesses compared to standard attention (up to 9× fewer, as shown in Fig. 2). Moreover, we60

provide a lower bound, showing that no exact attention algorithm can asymptotically improve on the61

number of HBM accesses over all SRAM sizes.62

We also show that FLASHATTENTION can serve as a useful primitive for realizing the potential of63

approximate attention algorithms by overcoming their issues with memory access overhead. As a proof64

of concept, we implement block-sparse FLASHATTENTION, a sparse attention algorithm that is 2-4×65

faster than even FLASHATTENTION, scaling up to sequence length of 64k. We prove that block-sparse66

FLASHATTENTION has better IO complexity than FLASHATTENTION by a factor proportional to67

the sparsity ratio. We discuss further extensions to other operations (attention on multi-GPU, kernel68

regression, block-sparse matrix multiply) in Section 5. We plan to open-source FLASHATTENTION69

to make it easier to build on this primitive.70

We empirically validate that FLASHATTENTION speeds up model training and improves model quality71

by modeling longer context. We also benchmark the runtime and memory footprint of FLASHAT-72

TENTION and block-sparse FLASHATTENTION compared to prior attention implementations.73
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• Faster Model Training. FLASHATTENTION trains Transformer models faster in wall-clock time. We74

train BERT-large (seq. length 512) 14% faster than the training speed record in MLPerf 1.1 [56], GPT275

(seq. length 1K) 3× faster than baseline implementations from HuggingFace [83] and Megatron-76

LM [73], and long-range arena (seq. length 1K-4K) 2.4× faster than baseline implementations.77

• Higher Quality Models. FLASHATTENTION scales Transformers to longer sequences, which78

improves their quality and enables new capabilities. We observe a 0.7 improvement in perplexity on79

GPT-2 and 6.4 points of lift from modeling longer sequences on long-document classification [12].80

FLASHATTENTION enables the first Transformer that can achieve better-than-chance performance81

on the Path-X [76] challenge, solely from using a longer sequence length (16K). Block-sparse82

FLASHATTENTION enables a Transformer to scale to even longer sequences (64K), resulting in83

the first model that can achieve better-than-chance performance on Path-256.84

• Benchmarking Attention. In benchmarks, FLASHATTENTION is up to 4× faster than the standard85

attention implementation across common sequence lengths from 128 to 2K and scales up to 64K.86

Up to sequence length of 512, FLASHATTENTION is both faster and more memory-efficient than87

any existing attention method, whereas for sequence length beyond 1K, some approximate attention88

methods (e.g., Linformer) start to become faster. On the other hand, block-sparse FLASHATTEN-89

TION is faster than all existing approximate attention methods that we know of.90

2 Background91

We provide some background on the performance characteristics of common deep learning operations92

on modern hardware (GPUs). We also describe the standard implementation of attention.93

2.1 Hardware Performance94

We focus here on GPUs. Performance on other hardware accelerators are similar [44, 46].95

GPU Memory Hierarchy. The GPU memory hierarchy (Fig. 1 left) comprises multiple forms of mem-96

ory of different sizes and speeds, with smaller memory being faster. As an example, the A100 GPU97

has 40-80GB of high bandwidth memory (HBM) with bandwidth 1.5-2.0TB/s and 192KB of on-chip98

SRAM per each of 108 streaming multiprocessors with bandwidth estimated around 19TB/s [42, 43].99

The on-chip SRAM is an order of magnitude faster than HBM but many orders of magnitude smaller100

in size. As compute has gotten faster relative to memory speed [58–60], operations are increasingly101

bottlenecked by memory (HBM) accesses. Thus exploiting fast SRAM becomes more important.102

Execution Model. GPUs have a massive number of threads to execute an operation (called a kernel).103

Each kernel loads inputs from HBM to registers and SRAM, computes, and then writes outputs to HBM.104

Performance characteristics. Depending on the balance of computation and memory accesses, op-105

erations can be classified as either compute-bound or memory-bound. This is commonly measured by106

the arithmetic intensity [81], which is the number of arithmetic operations per byte of memory access.107

1. Compute-bound: the time taken by the operation is determined by how many arithmetic operations108

there are, while time accessing HBM is much smaller. Typical examples are matrix multiply with109

large inner dimension, and convolution with large number of channels.110

2. Memory-bound: the time taken by the operation is determined by the number of memory accesses,111

while time spent in computation is much smaller. Examples include most other operations: ele-112

mentwise (e.g., activation, dropout), and reduction (e.g., sum, softmax, batch norm, layer norm).113

Kernel fusion. The most common approach to accelerate memory-bound operations is kernel fusion:114

if there are multiple operations applied to the same input, the input can be loaded once from HBM,115

instead of multiple times for each operation. Compilers can automatically fuse many elementwise116

operations [51, 62, 71]. However, in the context of model training, the intermediate values still need117

to be written to HBM to save for the backward pass, reducing the effectiveness of naive kernel fusion.118

2.2 Standard Attention Implementation119

Given input sequences Q,K,V∈R𝑁×𝑑 where 𝑁 is the sequence length and 𝑑 is the head dimension,120

we want to compute the attention output O∈R𝑁×𝑑:121

S=QK> ∈R𝑁×𝑁 , P=softmax(S) ∈R𝑁×𝑁 , O=PV∈R𝑁×𝑑 ,
where softmax is applied row-wise.122

Standard attention implementations materialize the matrices S and P to HBM, which takes 𝑂 (𝑁2)123

memory. Often 𝑁 � 𝑑 (e.g., for GPT2, 𝑁 = 1024 and 𝑑 = 64). We describe the standard attention124
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implementation in Algorithm 0. As some or most of the operations are memory-bound (e.g., softmax),125

the large number of memory accesses translates to slow wall-clock time.126

This problem is exacerbated by other elementwise operations applied to the attention matrix, such127

as masking applied to S or dropout applied to P. As a result, there have been many attempts to fuse128

several elementwise operations, such as fusing masking with softmax [73].129

In Section 3.2, we will show that the standard attention implementation performs HBM accesses130

quadratic in the sequence length 𝑁 . We also compare the number of FLOPs and number of HBM131

accesses of standard attention and of our method (FLASHATTENTION).132

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V∈R𝑁×𝑑 in HBM.
1: Load Q,K by blocks from HBM, compute S=QK>, write S to HBM.
2: Read S from HBM, compute P=softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O=PV, write O to HBM.
4: Return O.

3 FLASHATTENTION: Algorithm, Analysis, and Extensions133

We show how to compute exact attention with fewer HBM reads/writes and without storing large134

intermediate matrices for the backward pass. This yields an attention algorithm that is both memory135

efficient and faster in wall-clock time. We analyze its IO complexity, showing that our method requires136

much fewer HBM accesses compared to standard attention. We further show that FLASHATTENTION137

can serve as a useful primitive by extending it to handle block-sparse attention.138

We focus here on the forward pass for ease of exposition; Appendix B contains details for the backward.139

3.1 An Efficient Attention Algorithm With Tiling and Recomputation140

Given the inputs Q,K,V∈R𝑁×𝑑 in HBM, we aim to compute the attention output O∈R𝑁×𝑑 and write141

it to HBM. Our goal is to reduce the amount of HBM accesses (to sub-quadratic in 𝑁).142

We apply two established techniques (tiling, recomputation) to overcome the technical challenge143

of computing exact attention in sub-quadratic HBM accesses. We describe this in Algorithm 1. The144

main idea is that we split the inputs Q,K,V into blocks, load them from slow HBM to fast SRAM,145

then compute the attention output with respect to those blocks. By scaling the output of each block146

by the right normalization factor before adding them up, we get the correct result at the end.147

Tiling. We compute attention by blocks. Softmax couples columns of K, so we decompose the large148

softmax with scaling [49, 63]. For numerical stability, the softmax of vector 𝑥 ∈R𝐵 is computed as:149

𝑚(𝑥) :=max
𝑖

𝑥𝑖 , 𝑓 (𝑥) :=
[
𝑒𝑥1−𝑚(𝑥) ... 𝑒𝑥𝐵−𝑚(𝑥)

]
, ℓ(𝑥) :=

∑︁
𝑖

𝑓 (𝑥)𝑖 , softmax(𝑥) := 𝑓 (𝑥)
ℓ(𝑥) .

For vectors 𝑥 (1) ,𝑥 (2) ∈R𝐵, we can decompose the softmax of the concatenated 𝑥=
[
𝑥 (1) 𝑥 (2)

]
∈R2𝐵 as:150

𝑚(𝑥)=𝑚(
[
𝑥 (1) 𝑥 (2)

]
)=max(𝑚(𝑥 (1) ),𝑚(𝑥 (2) )), 𝑓 (𝑥)=

[
𝑒𝑚(𝑥

(1) )−𝑚(𝑥) 𝑓 (𝑥 (1) ) 𝑒𝑚(𝑥
(2) )−𝑚(𝑥) 𝑓 (𝑥 (2) )

]
,

ℓ(𝑥)=ℓ(
[
𝑥 (1) 𝑥 (2)

]
)=𝑒𝑚(𝑥 (1) )−𝑚(𝑥)ℓ(𝑥 (1) )+𝑒𝑚(𝑥 (2) )−𝑚(𝑥)ℓ(𝑥 (2) ), softmax(𝑥)= 𝑓 (𝑥)

ℓ(𝑥) .

Therefore if we keep track of some extra statistics (𝑚(𝑥),ℓ(𝑥)), we can compute softmax one block at151

a time.1 We thus split the inputs Q,K,V into blocks (Algorithm 1 line 3), compute the softmax values152

along with extra statistics (Algorithm 1 line 10), and combine the results (Algorithm 1 line 12).153

Recomputation. One of our goals is to not store𝑂 (𝑁2) intermediate values for the backward pass.154

The backward pass typically requires the matrices S,P∈R𝑁×𝑁 to compute the gradients with respect to155

Q,K,V. However, by storing the output O and the softmax normalization factor ℓ, we can recompute the156

attention matrix S and P easily in the backward pass from blocks of Q,K,V in SRAM. This can be seen157

as a form of selective gradient checkpointing [9, 32]. While gradient checkpointing has been suggested158

to reduce the maximum amount of memory required [63], all implementations (that we know off) have159

to trade speed for memory. In contrast, even with more FLOPs, our recomputation speeds up the back-160

ward pass due to reduced HBM accesses (Fig. 2). The full backward pass description is in Appendix B.161

1This style of aggregation is called algebraic aggregation [31].
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Implementation details: Kernel fusion. Tiling enables us to implement our algorithm in one CUDA162

kernel, loading input from HBM, performing all the computation steps (matrix multiply, softmax, op-163

tionally masking and dropout, matrix multiply), then write the result back to HBM (masking and dropout164

in Appendix B). This avoids repeatedly reading and writing of inputs and outputs from and to HBM.165

Algorithm 1 FLASHATTENTION

Require: Matrices Q,K,V∈R𝑁×𝑑 in HBM, on-chip SRAM of size 𝑀 .
1: Set block sizes 𝐵𝑟 =

⌈
𝑀
4𝑑
⌉
,𝐵𝑐 =min

(⌈
𝑀
4𝑑
⌉
,𝑑
)
.

2: Initialize O= (0)𝑁×𝑑 ∈R𝑁×𝑑 ,ℓ= (0)𝑁 ∈R𝑁 ,𝑚= (−∞)𝑁 ∈R𝑁 in HBM.
3: Divide Q into 𝑇𝑟 =

⌈
𝑁
𝐵𝑟

⌉
blocks Q1, ...,Q𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide K,V in to 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks K1,...,K𝑇𝑐 and V1,...,V𝑇𝑐 , of size 𝐵𝑐×𝑑 each.

4: Divide O into𝑇𝑟 blocks O𝑖 ,...,O𝑇𝑟 of size 𝐵𝑟×𝑑 each, divide ℓ into𝑇𝑟 blocks ℓ𝑖 ,...,ℓ𝑇𝑟 of size 𝐵𝑟
each, divide𝑚 into𝑇𝑟 blocks𝑚1,...,𝑚𝑇𝑟 of size 𝐵𝑟 each.

5: for 1≤ 𝑗 ≤𝑇𝑐 do
6: Load K 𝑗 ,V 𝑗 from HBM to on-chip SRAM.
7: for 1≤ 𝑖≤𝑇𝑟 do
8: Load Q𝑖 ,O𝑖 ,ℓ𝑖 ,𝑚𝑖 from HBM to on-chip SRAM.
9: On chip, compute S𝑖 𝑗 =Q𝑖K𝑇𝑗 ∈R𝐵𝑟×𝐵𝑐 .

10: On chip, compute 𝑚̃𝑖 𝑗 = rowmax(S𝑖 𝑗 ) ∈ R𝐵𝑟 , P̃𝑖 𝑗 = exp(S𝑖 𝑗 − 𝑚̃𝑖 𝑗 ) ∈ R𝐵𝑟×𝐵𝑐 (pointwise),
ℓ̃𝑖 𝑗 = rowsum(P̃𝑖 𝑗 ) ∈R𝐵𝑟 .

11: On chip, compute𝑚new
𝑖

=max(𝑚𝑖 ,𝑚̃𝑖 𝑗 ) ∈R𝐵𝑟 , ℓnew
𝑖

=𝑒𝑚𝑖−𝑚new
𝑖 ℓ𝑖+𝑒𝑚̃𝑖 𝑗−𝑚new

𝑖 ℓ̃𝑖 𝑗 ∈R𝐵𝑟 .
12: Write O𝑖←diag(ℓnew

𝑖
)−1 (diag(ℓ𝑖)𝑒𝑚𝑖−𝑚new

𝑖 O𝑖+𝑒𝑚̃𝑖 𝑗−𝑚new
𝑖 P̃𝑖 𝑗V 𝑗 ) to HBM.

13: Write ℓ𝑖←ℓnew
𝑖

,𝑚𝑖←𝑚new
𝑖

to HBM.
14: end for
15: end for
16: Return O.

We show FLASHATTENTION’s correctness, runtime, and memory requirement (proof in Appendix C).166

Theorem 1. Algorithm 1 returns O = softmax(QK>)V with 𝑂 (𝑁2𝑑) FLOPs and requires 𝑂 (𝑁)167

additional memory beyond inputs and output.168

3.2 Analysis: IO Complexity of FLASHATTENTION169

We analyze the IO complexity of FLASHATTENTION, showing significant reduction in HBM accesses170

compared to standard attention. We also provide a lower bound, proving that no exact attention algo-171

rithm can asymptotically improve on HBM accesses over all SRAM sizes. Proofs are in Appendix C.172

Theorem 2. Let 𝑁 be the sequence length, 𝑑 be the head dimension, and 𝑀 be size of SRAM with173

𝑑 ≤𝑀 ≤𝑁𝑑. Standard attention (Algorithm 0) requires Θ(𝑁𝑑+𝑁2) HBM accesses, while FLASHAT-174

TENTION (Algorithm 1) requires Θ(𝑁2𝑑2𝑀−1) HBM accesses.175

For typical values of 𝑑 (64-128) and 𝑀 (around 100KB), 𝑑2 is many times smaller than 𝑀, and thus176

FLASHATTENTION requires many times fewer HBM accesses than standard implementation. This177

leads to both faster execution and lower memory footprint, which we validate in Section 4.3.178

The main idea of the proof is that given the SRAM size of 𝑀, we can load blocks of K,V of size179

Θ(𝑀) each (Algorithm 1 line 6). For each block of K and V, we iterate over all blocks of Q (Algo-180

rithm 1 line 8) to compute the intermediate values, resulting in Θ(𝑁𝑑𝑀−1) passes over Q. Each pass181

loads Θ(𝑁𝑑) elements, which amounts to Θ(𝑁2𝑑2𝑀−1) HBM accesses. We similarly prove that the182

backward pass of standard attention requires Θ(𝑁𝑑 +𝑁2) HBM accesses while the backward pass183

of FLASHATTENTION requires Θ(𝑁2𝑑2𝑀−1) HBM accesses (Appendix B).184

We prove a lower-bound: one cannot asymptotically improve on the number of HBM accesses for185

all values of 𝑀 (the SRAM size) when computing exact attention.186

Proposition 3. Let 𝑁 be the sequence length, 𝑑 be the head dimension, and 𝑀 be size of fast on-187

chip memory. There does not exist an algorithm to compute exact attention with 𝑜(𝑁2𝑑2𝑀−1) HBM188

accesses for all 𝑀 in the range [𝑑,𝑁𝑑].189

The proof relies on the fact that for 𝑀 =Θ(𝑁𝑑) any algorithm must perform Ω(𝑁2𝑑2𝑀−1)=Ω(𝑁𝑑)190

HBM accesses. This type of lower bound over a subrange of 𝑀 is common in the streaming algo-191
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Figure 2: Left: Forward + backward runtime of standard attention and FLASHATTENTION for GPT-2 medium
(seq. length 1024, head dim. 64, 16 heads, batch size 64) on A100 GPU. HBM access is the primary factor affecting
runtime. Middle: Forward runtime of FLASHATTENTION (seq. length 1024, head dim. 64, 16 heads, batch size
64) on A100 GPU. Fewer HBM accesses result in faster runtime, up to a point. Right: The runtime (for seq. length
4K) of block-sparse FLASHATTENTION is faster than FLASHATTENTION by a factor proportional to the sparsity.

rithms literature [84]. We leave proving parameterized complexity [25] lower bounds in terms of 𝑀192

as exciting future work.193

We validate that the number of HBM accesses is the main determining factor of attention run-time.194

In Fig. 2 (left), we see that even though FLASHATTENTION has higher FLOP count compared to stan-195

dard attention (due to recomputation in the backward pass), it has much fewer HBM accesses, resulting196

in much faster runtime. In Fig. 2 (middle), we vary the block size 𝐵𝑐 of FLASHATTENTION, which197

results in different amounts of HBM accesses, and measure the runtime of the forward pass. As block198

size increases, the number of HBM accesses decreases (as we make fewer passes over the input), and199

runtime decreases. For large enough block size (beyond 256), the runtime is then bottlenecked by other200

factors (e.g., arithmetic operations). Moreover, larger block size will not fit into the small SRAM size.201

3.3 Extension: Block-Sparse FLASHATTENTION202

We extend FLASHATTENTION to approximate attention: we propose block-sparse FLASHATTENTION,203

whose IO complexity is smaller than FLASHATTENTION by a factor proportional to the sparsity.204

Given inputs Q,K,V∈R𝑁×𝑑 and a mask matrix M̃∈ {0,1}𝑁×𝑁 , we want to compute:205

S=QK> ∈R𝑁×𝑁 , P=softmax(S�𝟙M̃) ∈R𝑁×𝑁 , O=PV∈R𝑁×𝑑 ,
where (S�𝟙M̃)𝑘𝑙 =S𝑘𝑙 if M̃𝑘𝑙 =1 and −∞ if M𝑘𝑙 =0. We require M̃ to have block form: for some block206

sizes 𝐵𝑟 ,𝐵𝑐 , for all 𝑘,𝑙, M̃𝑘,𝑙 =M𝑖 𝑗 with 𝑖= b𝑘/𝐵𝑟 c, 𝑗 = b𝑙/𝐵𝑐c for some M∈ {0,1}𝑁 /𝐵𝑟×𝑁 /𝐵𝑐 .207

Given a predefined block sparsity mask M∈ {0,1}𝑁 /𝐵𝑟×𝑁 /𝐵𝑐 we can easily adapt Algorithm 1 to only208

compute the nonzero blocks of the attention matrix. The algorithm is identical to Algorithm 1, except209

we skip zero blocks. We reproduce the algorithm description in Algorithm 2 in Appendix B.210

We also analyze the IO complexity of block-sparse FLASHATTENTION.211

Proposition 4. Let 𝑁 be the sequence length, 𝑑 be the head dimension, and 𝑀 be size of SRAM with212

𝑑 ≤ 𝑀 ≤ 𝑁𝑑. Block-sparse FLASHATTENTION (Algorithm 2) requires Θ(𝑁𝑑 +𝑁2𝑑2𝑀−1𝑠) HBM213

accesses where 𝑠 is the fraction of nonzero blocks in the block-sparsity mask.214

We see that applying block-sparsity yields a direct improvement by the sparsity to the larger term in the215

IO complexity. For large sequence lengths 𝑁 , 𝑠 is often set to 𝑁−1/2 [10] or 𝑁−1log𝑁 [3, 16, 88], result-216

ing in Θ(𝑁
√
𝑁) or Θ(𝑁log𝑁) IO complexity. For downstream experiments, we use the fixed butterfly217

sparsity pattern [16], which has been shown to be able to approximate arbitrary sparsity patterns [15].218

In Fig. 2 (right), we validate that as the sparsity increases, the runtime of block-sparse FLASHATTEN-219

TION improves proportionally. On the LRA benchmark, block-sparse FLASHATTENTION achieves220

2.8× speedup, while performing on par with standard attention (Section 4).221

4 Experiments222

We evaluate the impact of using FLASHATTENTION to train Transformer models. We validate two223

claims about training time and model accuracy, and report attention runtime and memory benchmarks.224

• Training Speed. FLASHATTENTION outperforms the MLPerf 1.1 [56] speed record for BERT225

by 14%, and speeds up GPT-2 up to 3× over HuggingFace [83] and 1.8× over Megatron [73] over226

standard Transformers. FLASHATTENTION speeds up the long-range arena (LRA) benchmark 2.4×.227

• Quality. FLASHATTENTION scales Transformers to longer sequences, yielding higher quality.228

FLASHATTENTION trains GPT-2 with context length 4K faster than Megatron trains GPT-2 with229

context length 1K, while achieving 0.7 better perplexity. Modeling longer sequences yields 6.4230
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points of lift on two long-document classification tasks. Finally, FLASHATTENTION yields the231

first Transformer that can achieve better-than-random performance on the challenging Path-X task232

(sequence length 16K), and block-sparse FLASHATTENTION yields the first sequence model that233

we know of that can achieve better-than-random performance on Path-256 (sequence length 64K).234

• Benchmarking Attention. We measure the runtime and memory performance of FLASHATTEN-235

TION and block-sparse FLASHATTENTION based on sequence length. We confirm that the memory236

footprint of FLASHATTENTION scales linearly with seq. length and is up to 4× faster than standard237

attention for common seq. lengths (up to 2K). We confirm that runtime of block-sparse FLASHAT-238

TENTION scales linearly in seq. length and is faster than all existing approximate attention baselines.239

Additional experiment details are in Appendix E.240

4.1 Faster Models with FLASHATTENTION241

BERT. FLASHATTENTION yields the fastest single-node BERT training speed that we know of. We242

train a BERT-large [21] model with FLASHATTENTION on Wikipedia. Table 1 compares our training243

time to the implementation from Nvidia that set the training speed record for MLPerf 1.1 [56]. Our244

implementation is 14% faster.245

Table 1: Training time of BERT-large, starting from the same initialization provided by the MLPerf benchmark, to
reach the target accuracy of 72.0% on masked language modeling. Averaged over 10 runs on 8×A100 GPUs.

BERT Implementation Training time (minutes)
Nvidia MLPerf 1.1 [56] 20.0 ± 1.5

FLASHATTENTION (ours) 17.5 ± 1.4

GPT-2. FLASHATTENTION yields faster training times for GPT-2 [64] on the large OpenWebtext246

dataset [30] than the widely used HuggingFace [83] and Megatron-LM [73] implementations. Ta-247

ble 2 shows up to 3× end-to-end speedup compared to Huggingface and 1.7× speedup compared to248

Megatron-LM. FLASHATTENTION achieves the same perplexity as the other two implementations,249

as we do not change the model definition. Appendix E includes plots of the validation perplexity250

throughout training, confirming that FLASHATTENTION is as numerically stable as the baselines and251

produces the same training / validation curves.252

Table 2: GPT-2 small and medium using FLASHATTENTION achieve up to 3× speed up compared to Huggingface
implementation and up to 1.7× compared to Megatron-LM. Training time reported on 8×A100s GPUs.

Model implementations OpenWebText (ppl) Training time (speedup)
GPT-2 small - Huggingface [83] 18.2 9.5 days (1.0×)

GPT-2 small - Megatron-LM [73] 18.2 4.7 days (2.0×)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5×)
GPT-2 medium - Huggingface [83] 14.3 21.0 days (1.0×)

GPT-2 medium - Megatron-LM [73] 14.3 11.5 days (1.8×)
GPT-2 medium - FLASHATTENTION 14.2 6.9 days (3.0×)

Long-range Arena. We compare vanilla Transformer (with either standard implementation or253

FLASHATTENTION) on the long-range arena (LRA [76]) benchmark. We measure accuracy, through-254

put, and training time of all models. Each task has a different sequence length varying between 1024 and255

4096. We follow the implementation and experimental setting in Tay et al. [76]and Xiong et al. [86].2 Ta-256

ble 3 shows that FLASHATTENTION achieves up 2.4× speed-up compared to standard attention. Block-257

sparse FLASHATTENTION is faster than all of the approximate attention methods that we have tested.258

Table 3: The performance of standard attention, FLASHATTENTION, block-sparse FLASHATTENTION, and
approximate attention baselines on the Long-Range-Arena benchmarks.

Models ListOps Text Retrieval Image Pathfinder Avg Speedup
Transformer 36.0 63.6 81.6 42.3 72.7 59.3 -

FLASHATTENTION 37.6 63.9 81.4 43.5 72.7 59.8 2.4×
Block-sparse FLASHATTENTION 37.0 63.0 81.3 43.6 73.3 59.6 2.8×

Linformer [80] 35.6 55.9 77.7 37.8 67.6 54.9 2.5×
Linear Attention [48] 38.8 63.2 80.7 42.6 72.5 59.6 2.3×

Performer [11] 36.8 63.6 82.2 42.1 69.9 58.9 1.8×
Local Attention [76] 36.1 60.2 76.7 40.6 66.6 56.0 1.7×

Reformer [49] 36.5 63.8 78.5 39.6 69.4 57.6 1.3×
Smyrf [18] 36.1 64.1 79.0 39.6 70.5 57.9 1.7×

2LRA accuracy results are known to be highly dependent on the tuning procedure [86]. Our reproduced
baselines perform better than as reported in the original comparison [76].
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4.2 Better Models with Longer Sequences259

Language Modeling with Long Context. The runtime and memory-efficiency of FLASHAT-260

TENTION allow us to increase the context length of GPT-2 by 4× while still running faster than the261

optimized implementation from Megatron-LM. Table 4 shows that that GPT-2 with FLASHATTEN-262

TION and context length 4K is still 30% faster than GPT-2 from Megatron with context length 1K,263

while achieving 0.7 better perplexity.264

Table 4: GPT-2 small with FLASHATTENTION, with 4× larger context length compared to Megatron-LM, is still
30% faster while achieving 0.7 better perplexity. Training time on 8×A100 GPUs is reported.

Model implementations Context length OpenWebText (ppl) Training time (speedup)
GPT-2 small - Megatron-LM 1k 18.2 4.7 days (1.0×)

GPT-2 small - FLASHATTENTION 1k 18.2 2.7 days (1.7×)
GPT-2 small - FLASHATTENTION 2k 17.6 3.0 days (1.6×)
GPT-2 small - FLASHATTENTION 4k 17.5 3.6 days (1.3×)

Long Document Classification. Training Transformers with longer sequences with FLASHATTEN-265

TION improves performance on the MIMIC-III [45] and ECtHR [6, 7] datasets. MIMIC-III contains266

intensive care unit patient discharge summaries, each annotated with multiple labels. ECtHR contains267

legal cases from the European Court of Human Rights, each of which is mapped to articles of the268

Convention of Human Rights that were allegedly violaged. Both of these datasets contain very long269

text documents; the average number of tokens in MIMIC is 2,395 tokens, and the longest document270

contains 14,562 tokens, while the average and longest numbers in ECtHR are 2,197 and 49,392, re-271

spectively. We evaluate lift from increasing the sequence length of a pretrained RoBERTa model [54]272

(we repeat the positional embeddings, as in Beltagy et al. [3]).273

Table 5 shows that sequence length 16K outperforms length 512 by 4.3 points on MIMIC, and that274

length 8K outperforms length 512 by 8.5 points on ECtHR. The discrepancies may be due to subtle275

distribution shifts: MIMIC-III contains specialized medical text and thus may be more susceptible276

to a distribution shift in the document length, whereas ECtHR contains general language.277

Table 5: Long Document performance (micro 𝐹1)
at different sequence lengths using FLASHATTEN-
TION.

512 1024 2048 4096 8192 16384
MIMIC-III 52.8 50.7 51.7 54.6 56.4 57.1

ECtHR 72.2 74.3 77.1 78.6 80.7 79.2

Table 6: We report the first Transformer model that
can achieve non-random performance on Path-X
and Path-256.

Model Path-X Path-256
Transformer 7 7

Linformer [80] 7 7
Linear Attention [48] 7 7

Performer [11] 7 7
Local Attention [76] 7 7

Reformer [49] 7 7
SMYRF [18] 7 7

FLASHATTENTION 61.4 7
Block-sparse FLASHATTENTION 56.0 63.1

Path-X and Path-256. The Path-X and Path-256 benchmarks are challenging tasks from the long-278

range arena benchmark designed to test long context. The task is to classify whether two points in279

a black and white 128×128 (or 256×256) image have a path connecting them, and the images are fed280

to the transformer one pixel at a time. In prior work, all transformer models have either run out of281

memory, or only achieved random performance [76]. There has been a search for alternative archi-282

tectures that can model such long context [35]. We present here the first result of Transformer models283

being able to solve Path-X and Path-256 (Table 6). We pretrain a transformer on Path-64, and then284

transfer to Path-X by spatially interpolating the positional embeddings. FLASHATTENTION achieves285

61.4 accuracy on Path-X. Additionally, block-sparse FLASHATTENTION enables the Transformers286

to scale to sequence length 64K, achieving 63.1 accuracy3 on Path-256.287

4.3 Benchmarking Attention288

We vary sequence length and measure runtime and memory usage of FLASHATTENTION and block-289

sparse FLASHATTENTION against various attention baselines on one A100 GPU with 40 GB HBM,290

with dropout and a padding mask. We compare against reference implementations for exact atten-291

tion, approximate attention, and sparse attention. We report a subset of baselines in the main body;292

Appendix E contains more baselines and full details.293

3Path-256 requires longer sequences but has relatively shorter paths than Path-X, so it is easier to obtain a
higher accuracy.
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Figure 3: Left: runtime of forward pass + backward pass. Right: attention memory usage.

Runtime. Figure 3 (left) reports the runtime in milliseconds of the forward + backward pass of294

FLASHATTENTION and block-sparse FLASHATTENTION compared to the baselines in exact, approxi-295

mate, and sparse attention (exact numbers in Appendix E). Runtime grows quadratically with sequence296

length, but FLASHATTENTION runs significantly faster than exact attention baselines, up to 4× faster297

than the PyTorch implementation. The runtimes of many approximate/sparse attention mechanisms298

grow linearly with sequence length, but FLASHATTENTION still runs faster than approximate and299

sparse attention for short sequences due to fewer memory accesses. The approximate attention300

runtimes begin to cross over with FLASHATTENTION at sequences between 512 and 1024. On the301

other hand, block-sparse FLASHATTENTION is faster than all implementations of exact, sparse, and302

approximate attention that we know of, across all sequence lengths.303

Memory Footprint. Figure 3 (right) shows the memory footprint of FLASHATTENTION and block-304

sparse FLASHATTENTION compared to various exact, approximate, and sparse attention baselines.305

FLASHATTENTION and block-sparse FLASHATTENTION have the same memory footprint, which306

grows linearly with sequence length. FLASHATTENTION is up to 20×more memory efficient than307

exact attention baselines, and is more memory-efficient than the approximate attention baselines.308

All other algorithms except for Linformer run out of memory on an A100 GPU before 64K, and309

FLASHATTENTION is still 2×more efficient than Linformer.310

5 Limitations and Future Directions311

We discuss limitations of our approach and future directions. Related work is given in Appendix A.312

Compiling to CUDA. Our current approach to building IO-aware implementations of attention re-313

quires writing a new CUDA kernel for each new attention implementation. This requires writing314

the attention algorithm in a considerably lower-level language than PyTorch, and requires significant315

engineering effort. Implementations may also not be transferrable across GPU architectures. These316

limitations suggest the need for a method that supports writing attention algorithms in a high-level317

language (e.g., PyTorch), and compiling to IO-aware implementations in CUDA—similar to efforts318

such as Halide in image processing [66].319

IO-Aware Deep Learning. We believe that the IO-aware approach can extend beyond attention. At-320

tention is the most memory-intensive computation in Transformers, but every layer in a deep network321

touches GPU HBM. We hope our work inspires IO-aware implementations of additional modules.322

We discuss these potential extensions in Appendix D.323

Multi-GPU IO-Aware Methods. Our IO-aware implementation of attention is optimal within324

constants for computing attention on a single GPU. However, the attention computation may be par-325

allelizable across multiple GPUs [68]. Using multiple GPUs adds an additional layer to IO analysis—326

accounting for data transfer between GPUs. We hope our work inspires future work in this direction.327

Societal Impacts. As Transformer-based foundation models grow in size and data, our work seeks328

to understand how to train these large models more efficiently. This may allow a general community329

with limited access to computational resources to train and understand those foundation models. Our330

method is applicable to all Transformer-based models, which have a variety of applications, both331

positive and negative. For example, language modeling may make it easier to spread misinformation,332

while image classification models may make automatic surveillance easier. Alleviating these risks333

requires addressing application-specific issues such as privacy, bias, and discrimination.334
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