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Abstract

This paper proposes Mutual Information Regularized Assignment (MIRA), a1

pseudo-labeling algorithm for unsupervised representation learning inspired by2

information maximization. We formulate online pseudo-labeling as an optimization3

problem to find pseudo-labels that maximize the mutual information between the la-4

bel and data while being close to a given model probability. We derive a fixed-point5

iteration method and prove its convergence to the optimal solution. aIn contrast to6

baselines, MIRA combined with pseudo-label prediction enables a simple yet effec-7

tive clustering-based representation learning without incorporating extra training8

techniques or artificial constraints such as sampling strategy, equipartition con-9

straints, etc. With relatively small training epochs, representation learned by MIRA10

achieves state-of-the-art performance on various downstream tasks, including the11

linear/k-NN evaluation and transfer learning. Especially, with only 400 epochs, our12

method applied to ImageNet dataset with ResNet-50 architecture achieves 75.5%13

linear evaluation accuracy.14

1 Introduction15

There has been a growing interest in using a large-scale dataset to build powerful machine learning16

models [43]. Self-supervised learning (SSL), which aims to learn a useful representation without17

labels, is suitable for this trend; is actively studied in the fields of natural language processing [19, 20]18

and computer vision [10, 29]. In the vision domain, recent SSL methods are commonly designed19

to use augmented views and train visual representation to be augmentation-invariant. They have20

achieved state-of-the-art performance surpassing supervised representation in a variety of visual tasks,21

including semi-supervised learning [8, 50], transfer learning [21], and object detection [13].22

Meanwhile, a line of works use clustering for un-/self-supervised representation learning. They23

explicitly assign pseudo-labels to embedded representation via clustering, and the model is thereby24

trained to predict such labels. These clustering-based methods can account for inter-data similarity;25

representations are encouraged to encode the semantic structure of data. Prior works [48, 46, 4, 31]26

have shown encouraging results in small-scaled settings; Caron et al. [6] show that it can be also27

applied to the large-scaled dataset or even to a non-curated dataset [7]. Recently, several works [2, 8,28

37] have adapted the philosophy of augmentation invariance and achieved strong empirical results.29

They typically assign pseudo-labels using augmented views while predicting the labels looking at30

other differently augmented views.31

Despite its conceptual simplicity, a naive application of clustering to representation learning is hard32

to achieve, especially in large-scale dataset. This is because clustering-based methods are prone to33

collapse, i.e., all samples are assigned to a single cluster. To address this, recent methods heavily rely34

on extra training techniques or artificial constraints, such as pre-training [47], sampling strategy [6],35
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equipartition constraints [2, 8], etc. However, it is unclear if these additions are appropriate or how36

such components will affect the representation quality.37

In this paper, we propose Mutual Information Regularized Assignment (MIRA), a pseudo-labeling38

algorithm that enables clustering-based SSL without any artificial constraints or extra training39

techniques. MIRA is designed to follow the infomax principle [38] and the intuition that good40

labels are something that can reduce most of the uncertainty about the data. Our method assigns a41

pseudo-label in a principled way by constructing an optimization problem. For a given training model42

that predicts pseudo-labels, the optimization problem seeks a solution that maximizes the mutual43

information (MI) between the pseudo-labels and data while taking the model probability into account.44

We formulate the problem as a convex optimization problem and derive the necessary and sufficient45

condition of solution with the Karush-Kuhn-Tucker (KKT) condition. The solution can be achieved46

by fixed-point iteration that we prove the convergence. We remark that MIRA does not require any47

form of extra training techniques or artificial constraints, e.g., equipartition constraints.48

We apply MIRA to clustering-based representation learning and verify the representation quality on49

several standard self-supervised learning benchmarks. We demonstrate its state-of-the-art performance50

on linear/k-NN evaluation, semi-supervised learning, and transfer learning benchmark. We further51

experiment with convergence speed, scalability, and different components of our method.52

Our contributions are summarized as follows:53

• We propose MIRA, a simple and principled pseudo-label assignment strategy based on mutual54

information. Our method does not require extra training techniques or artificial constraints.55

• We apply MIRA to clustering-based representation learning and it shows comparable performance56

against the state-of-the-art methods with half of the training epochs. Especially it achieves57

75.5% top-1 accuracy on ImageNet linear evaluation with only 400 epochs of training and best58

performance in 9 out of 11 datasets in transfer learning.59

• Representation by MIRA also consistently improves over other information-based SSL meth-60

ods [22, 50]. Especially, our method without a multi-crop augmentation strategy achieves 73.8%61

top-1 accuracy and outperforms BarlowTwins [50], an information maximization-based self-62

supervised method.63

2 Related works64

Self-supervised learning SSL methods are designed to learn the representation by solving pretext65

tasks. Recent state-of-the-art SSL methods train their representation to be augmentation invariant.66

They are based on various pretext tasks: instance discrimination [10, 11, 13, 14], metric learning [27,67

12], self-training [51, 9], and clustering [2, 6, 8]; our method belongs to the clustering-based SSL68

method. Meanwhile, these methods are prone to collapsing into a trivial solution where every69

representation is map into a constant vector. To address this, a variety of schemes and mechanisms are70

suggested, e.g., the asymmetric structure, redundancy reduction, etc. We will review more relevant71

works in detail below.72

Collapse preventing Many SSL approaches rely on extra training techniques and artificial assump-73

tions to prevent collapsing. In clustering-based methods, DeepCluster [6] adapts a sample strategy to74

sample elements uniformly across pseudo-labels to deal with empty clusters; SeLa [2] and SwAV [8]75

impose equipartition constraints to balance the cluster distribution. Similarly, SelfClassifier [1] uses a76

uniform pseudo-label prior, and PCL [37] employs concentration scaling. DINO [9] and ReSSL [51]77

address collapsing by specific combinations of implementation details, i.e., centering and scaling with78

an exponential moving average network; while their mechanism for preventing collapse is unclear.79

In this work, we show our method can naturally avoid collapsing without any of these assumptions80

or training techniques. We achieve results better than baselines with a simple but novel information81

regularization algorithm. We take a more detailed comparison with SeLa and SwAV in Sec. 3.3.82

Information maximization Information maximization is a principal approach to learn representa-83

tion and to avoid collapse. DeepInfoMax [30] propose the MI maximization between the local and84

global views for representation learning; the existence of negative pairs prevents training toward the85

trivial solution. BarlowTwins [50] and W-MSE [22] addresses collapsing with redundancy reduction,86
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Figure 1: Overview of representation learning via MIRA. In our representation learning, MIRA provides
pseudo-labels with model probabilities, and the model is learned by predicting the pseudo-labels. Our main
contribution is in the ① pseudo-labeling process that accounts for mutual information between the pseudo-label
and data. In MIRA, optimal pseudo-labels are computed through the fixed-point iteration (Eq. 6). Given such
pseudo-labels, ② model updates its parameters by gradient update on swapped prediction loss.

indirectly maximizing the information content of the embedding vectors [3]. Among clustering-based87

approaches, IIC [33] maximizes the MI between the embedding codes for representation learning;88

most similarly to ours, TWIST [25] proposes to combine the mutual information between the data89

and class prediction as a negative loss term with a consistency loss. Both IIC and TWIST use the90

MI as a loss function and directly optimize their model parameters with gradient descent of the loss.91

However, direct optimization of MI terms by updating model parameters often leads to a sub-optimal92

solution [25]; TWIST copes with this issue by appending the normalization layer before softmax93

and introducing an additional self-labeling stage. In contrast, MIRA addresses the difficulty of MI94

maximization in a principled way via explicit optimization.95

3 Method96

In this section, we explain our pseudo-labeling algorithm–MIRA. When applying MIRA to repre-97

sentation learning, we follow the basic framework of clustering-based representation learning that98

alternates between pseudo-labeling, i.e., cluster assignments, and model training to predict such labels.99

Figure 1 illustrates our representation training cycle. We will first explain our main contribution,100

MIRA (pseudo-labeling) and then explain how it applies to model training.101

Our idea is to employ the information maximization principle into pseudo-labeling. We formulate102

an optimization problem for online clustering that assigns soft pseudo-labels to mini-batch samples103

(Sec. 3.1). The problem accounts for the model probability and mutual information between the104

pseudo-labels and data. We propose an iterative method to solve the optimization problem (Sec. 3.2).105

For the model training, we use the swapped prediction loss as in [8] (Sec. 3.3).106

3.1 MI regularized cluster assignment107

We have a model1 fθ parametrized by θ that outputs K-dimensional logit fθ(x) ∈ RK for an image108

x, where K is a predefined number of clusters. The model probability p of an image x is then given109

by the temperature τt scaled output of the model—p := softmax(fθ(x)/τt)—as in [8, 9]. For a mini-110

batch of input images X = {x}Bi=1, we denote the model probability P = {pi}Bi=1 ⊂ RK . In our111

pseudo-labeling, for the given model probability P , we want to assign pseudo-labels W ∗ = {w∗}Bi=1112

that will be used for training the model by predicting them.113

We argue that such pseudo-labels should maximize the mutual information between themselves and114

data while accounting for the model probability P . Let B ∈ {1, ..., B} and YW ∈ {1, ...,K} be the115

random variables associated with the data index in mini-batch and label by probability distributions116

1In our setting, the model consists of an encoder, projection head, and classification (prototype) head as in
[8, 9]; the encoder output will be used as a representation.
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W = {w}Bi=1, respectively. Our online pseudo-label (cluster) assignment is determined by solving117

the following optimization problem:118

W ∗ = argminW⊂∆K

1
B

∑B
i=1 DKL(wi,pi)− βÎ(YW ;B), (1)

where ∆K := {x ∈ RK
+ | x⊺1K = 1}, Î indicates an empirical (Monte Carlo) estimates of MI,119

and β is a trade-off parameter. The problem consists of the (1) KL divergence term that makes120

pseudo-labels to be based on the model probability p and (2) MI term between the pseudo-labels and121

data to induce more information into the pseudo-labels. By combining these two terms, we provide a122

refined pseudo-label that take account of both the model probability and MI.123

To make the optimization problem tractable, we substitute the MI term Î with the mini-batch estimates124

of the entropy Ĥ(YW |B) and marginal entropy Ĥ(YW ) in Eq. 2. We get:125

Î(YW ;B) = Ĥ(YW )− Ĥ(YW |B) = −
K∑
j=1

w̄j log w̄j +
1

B

B∑
i=1

K∑
j=1

wij logwij , (2)

W ∗ = argmin
W⊂∆K

− 1

B

B∑
i=1

K∑
j=1

wij log pij +
1− β

B

B∑
i=1

K∑
j=1

wij logwij + β

k∑
j=1

wj logwj , (3)

where wj =
1
B

∑B
i=1 wij is the marginal probability of a cluster j with W . In practice, we find the126

optimal point W ∗ of the optimization problem Eq. 3.127

3.2 Solving strategy128

To solve efficiently, we propose a fixed-point iteration that guarantees convergence to the unique129

optimal solution W ∗ of our optimization problem. The method is based on the following proposition.130

Proposition 1. For β ∈ [0, 1), the problem Eq. 3 is a strictly convex optimization problem; has a131

unique optimal point W ∗ that satisfies the following necessary and sufficient condition.132

∀(i, j) ∈ {1, ..., B} × {1, ...,K}, w∗
ij =

w∗
− β

1−β
j p

1
1−β
ij∑K

k=1 w∗
− β

1−β
k p

1
1−β
ik

. (4)

The proposition is driven by proving the strict convexity and then applying the Karush–Kuhn–Tucker133

(KKT) condition. By substituting the necessary and sufficient condition (Eq. 4) of proposition 1 into134

wj =
1
B

∑B
i=1 wij , we get the necessary and sufficient condition with w∗:135

w∗
j = w∗−

β
1−β

j
1
B

∑B
i=1

p
1

1−β
ij∑K

k=1 w∗
− β

1−β
k p

1
1−β
ik

⇔ w∗
j =

[
1
B

∑B
i=1

p
1

1−β
ij∑K

k=1 w∗
− β

1−β
k p

1
1−β
ik

]1−β

. (5)

Based on Eq. 5, we propose the following update rule for {u(n)
j }Kj=1 ⊂ R+:136

∀j ∈ {1, ...,K}, u
(n+1)
j =

[
1
B

∑B
i=1

p
1

1−β
ij∑K

k=1(u
(n)
k )

− β
1−β p

1
1−β
ik

]1−β

, (6)

where u
(n)
j converges to w∗

j as n → ∞. We can easily get w∗
ij by Eq. 4 when the marginal137

probability w∗
j is given. The proof of the proposition and convergence is in the Appendix.138

By using the iterative updates of Eq. 6, we get our desirable pseudo-labels. This requires a few139

lines of code that are simple to implement. We find that a few steps of iterations are enough for140

training. This is supported by the convergence analysis in Sec. 4.3. We use this fixed point iteration141

for pseudo-labeling and name the method–Mutual Information Regularized Assignment (MIRA)142

since it finds the pseudo-labels that are regularized by the mutual information.143

3.3 Representation learning with MIRA144

We explain how our pseudo-labeling algorithm is applied to representation learning. We integrate the145

computed pseudo-labels with swapped prediction loss [8]. Specifically, given the two mini-batches of146
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differently augmented views X(1),X(2), MIRA outputs the pseudo-labels U (1),U (2) for each mini-147

batch independently. In parallel, model fθ provides the temperature τs scaled softmax predictions148

Q(1),Q(2) of each mini-batch. The swapped prediction loss is given as follows:149

L(X(1),X(2)) = ℓ(U (1),Q(2)) + ℓ(U (2),Q(1))

= − 1
B

∑B
i=1

∑K
j=1 u

(1)
ij log q

(2)
ij − 1

B

∑B
i=1

∑K
j=1 u

(2)
ij log q

(1)
ij . (7)

This loss function (Eq. 7) is minimized with respect to the parameters θ of the model fθ used to150

produce the predictions Q(1),Q(2). For more detailed information about swapped prediction loss,151

please refer to [8].152

In this paper, we verify our pseudo-labeling algorithm MIRA for a representation learning purpose153

with Eq. 7. For convenience, in the rest of this paper, we call the representation learning with154

MIRA also as MIRA. We note that MIRA can integrate recently suggested SSL components such as155

exponential moving average (EMA) or multi-crop augmentation strategy following the baselines [14,156

8, 9]. The pseudo-code for MIRA is provided in the Appendix. We discuss some further details as157

follows:158

Preventing collapse The MI term in Eq. 3 takes a minimum value when collapsing happens. MIRA159

naturally avoids collapsed solution via penalizing assignment that exhibits low MI. To be more160

specific, unless starting from the collapsed state, MIRA finds MI-maximizing points around the161

model prediction; will not choose collapsed pseudo-labels. Hence, the iterative training to predict162

such labels will not lead to collapsing whenever the prediction of pseudo-labels is achievable. Our163

empirical results verify that MIRA doesn’t require extra training techniques or artificial constraints to164

address collapsing.165

Comparison to SwAV and SeLa SeLa [2] and SwAV [8] assume the equipartition of data into166

clusters. They formulate their pseudo-labeling process into optimal transport (OT) problem; solving167

it with the iterative Sinkhorn-Knopp (SK) algorithm [16]. Mathematically, the difference to MIRA168

is in how to deal with the marginal entropy. SeLa and SwAV constrain the marginal entropy to169

maximum value–equipartition while MIRA decides marginal entropy by MI regularization2. Asano170

et al. [2] argue that their pseudo-labels with OT problem maximize the information between labels171

and data indices under the equipartition constraints. However, it more resembles assuming MI172

maximization and finding the assignments that are OT to the model probability. In contrast, MIRA173

directly maximizes the MI without artificial constraints. While SwAV performs better than SeLa in174

most self-supervised benchmarks, we empirically verify that MIRA improves over SwAV in various175

downstream tasks.176

4 Experiments177

In this section, we evaluate the representation quality learned via MIRA. We first provide the178

implementation details of our representation learning with MIRA (Sec. 4.1). We present our main179

results on linear, k-NN, semi-supervised learning, and transfer learning benchmarks in comparison to180

other self-supervised baselines (Sec. 4.2). Finally, we conduct an analysis of MIRA (Sec. 4.3).181

4.1 Implementation details182

We mostly follow the implementation details from our baselines [8, 9, 50]. More training details183

about evaluation procedures and analysis are described in the Appendix.184

Architecture The training model (network) consists of an encoder, projection head, and clas-185

sification head. We use a widely used ResNet50 [28] as our base encoder and use the output of186

average-pooled 2048d embedding as our representation for both representation training and down-187

stream evaluations. The projection head is a 3-layer fully connected MLP of sizes [2048, 2048, d];188

hidden layers are followed by batch normalization [32] and ReLU. The classification head is used to189

predict the pseudo-labels; is composed of an L2-normalization layer and a weight-normalized layer190

of the size d×K as in [8, 9]. We use d = 256 and K = 3000.191

2Adding the equipartition constraints, our optimization problem converts to the OT problem of SwAV.
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Table 1: Linear evaluation with respect to train-
ing epochs. All models use a ResNet-50 encoder and
trained on training set of ImageNet. † are results from
[12]. Results style: best, second best

Epochs

Method 100 200 400 800

without multi-crop augmentations
SimCLR† [10] 66.5 68.3 69.8 70.4
BYOL† [27] 66.5 70.6 73.2 74.3
SimSiam† [29] 68.1 70.0 70.8 71.3
MoCo-v3 [14] 68.9 - - 73.8

DeepCluster-v2 [8] - - 70.2 -
SwAV† [8] 66.5 69.1 70.7 71.8
TWIST [25] 70.4 70.9 71.8 72.6
MIRA 69.4 72.1 72.9 73.8

with multi-crop augmentations
DeepCluster-v2 [8] - - - 75.2
SwAV [8] 72.1 73.9 74.6 75.3
TWIST [25] 72.9 73.7 74.4 74.1
MIRA 73.5 74.8 75.5 -

Table 2: Linear evaluation on ImageNet. Comparison
with other self-supervised methods on ImageNet. SL
denotes for self-labeling by [25]. Results style: best

Method Arch. Epochs Top-1 Top-5

Supervised R50 - - -

PCL [37] R50 200 67.6 -
SimSiam [12] R50 800 71.3 -
SimCLR-v2 [11] R50 800 71.7 -
InfoMin [44] R50 800 73 91.1
BarlowTwins [50] R50 1000 73.2 91.0
VicReg [3] R50 1000 73.2 91.1
SelfClassifier [1] R50 800 74.1 -
TWIST w/o SL [25] R50 800 74.1 -
BYOL [27] R50 1000 74.3 91.6
MoCo-v3 [14] R50 1000 74.6 -
DeepCluster-v2 [8] R50 800 75.2 -
SwAV [8] R50 800 75.3 -
DINO [8] R50 800 75.3 -
TWIST w/ SL [25] R50 450 75.5 -

MIRA R50 400 75.5 92.5

Training details We train our model on the training set of the ImageNet-1k ILSVRC-2012 dataset192

[18] without using class labels. We use the same data augmentation scheme (color jittering, Gaussian193

blur, and solarization) and multi-crop strategy (two 224× 224 and six 96× 96) used in [9]. We use194

a batch size of 4096 and employ the LARS optimizer [49] with a weight decay of 10−6. We use195

linearly scaled learning rate of lr × batch size/256 [26] with a base learning rate of 0.3. 3 We adjust196

the learning rate with 10 epochs of a linear warmup followed by cosine scheduling. We also use EMA197

network by default. When the EMA is used, we set the momentum update parameter to start from198

0.99 and increase to 1 by cosine scheduling. We use temperature scales of τs = 0.1, τt = 0.225 with199

trade-off coefficient β = 2/3. We assign soft pseudo-labels after 30 steps of the fixed point iteration.200

We further discuss this choice in Sec. 4.3. Otherwise stated, we use the encoder model trained by201

MIRA with 400 epochs training and multi-crop augmentations for the evaluations in this section.202

4.2 Main results203

Linear evaluation Tables 1 and 2 report linear evaluation results. We follow the linear evaluation204

settings in [27, 10]. We train a linear classifier on the top of the frozen trained backbone with the205

labeled training set of ImageNet. We train for 100 epochs using a LARS optimizer with a batch206

size of 1024. We use a base learning rate of 0.1 and adjust the learning rate by cosine annealing207

schedule. We apply random-resized-crop and horizontal flip augmentations for training. We evaluate208

the representation quality by the linear classifier’s performance on the validation set of ImageNet.209

Table 1 shows linear evaluation performance in top-1 accuracy for different un-/self-supervised210

representation training epochs. We train and evaluate MIRA with and without multi-crop augmen-211

tations. With multi-crop augmentations, MIRA consistently outperforms baselines while achieving212

75.5% top-1 accuracy with only 400 epochs of training. We also report that 200 epochs of training213

with MIRA can outperform the 800 epochs results of other baselines that don’t use multi-crops.214

Without multi-crop augmentations, MIRA is comparable to MoCo-v3 [14] and performs slightly215

worse than BYOL [27]. However, MIRA performs the best among the clustering-based [6, 8] and216

information-driven [50, 25] methods.217

In Table 2, we compare MIRA to other self-supervised methods with the final performance. MIRA218

achieves the state-of-the-art performance on linear evaluation of ImageNet with only 400 epochs of219

training. While TWIST can achieve similar performance to MIRA within 450 epochs, they require an220

extra training stage with self-labeling; without it, they achieve 74.1% accuracy with 800 epochs of221

training. In contrast, MIRA doesn’t require additional training.222

3Otherwise stated, we also use linearly scaled learning rate for evaluation training.
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Table 3: k-NN classification results on ImageNet
with respect to subsets. For 1% and 10% results,
we evaluate the baselines by models of official codes.
Other baseline results are from [9]. Results style: best

ImageNet subset
Method 100% 10% 1%

BYOL [27] 64.8 57.4 45.2
SwAV [8] 65.7 57.4 44.3
BarlowTwins [50] 66.0 59.0 47.7
DeepCluster-v2 [8] 67.1 59.2 46.5
DINO [9] 67.5 59.3 47.2

MIRA 68.7 60.7 47.8

Table 4: Semi-supervised learning results on Ima-
geNet. The baselines results are from [50]. Results style:
best, second best

1% 10%
Top-1 Top-5 Top-1 Top-5

Supervised 25.4 48.4 56.4 80.4

SimCLR [10] 48.3 75.5 65.6 87.8
BYOL [27] 53.2 78.4 68.8 89
SwAV [8] 53.9 78.5 70.2 89.9
BarlowTwins [50] 55 79.2 69.7 89.3

MIRA 55.5 80.3 69.9 90.0

Table 5: Linear evaluation results on the transfer learning datasets. Following [21], we report top-1 accuracy
on Food, CIFAR-10/100, SUN397, Cars, DTD; mean-per-class accuracy on Aircraft, Pets, Caltech-101, Flowers;
11-point mAP metric on VOC2007. Results style: best

Aircraft Caltech101 Cars CIFAR10 CIFAR100 DTD Flowers Food Pets SUN397 VOC2007 avg.

Supervised 43.59 90.18 44.92 91.42 73.90 72.23 89.93 69.49 91.45 60.49 83.6 73.75

InfoMin [44] 38.58 87.84 41.04 91.49 73.43 74.73 87.18 69.53 86.24 61.00 83.24 72.21
MoCo-v2 [13] 41.79 87.92 39.31 92.28 74.90 73.88 90.07 68.95 83.3 60.32 82.69 72.31

SimCLR-v2 [11] 46.38 89.63 50.37 92.53 76.78 76.38 92.9 73.08 84.72 61.47 81.57 75.07
BYOL [27] 53.87 91.46 56.4 93.26 77.86 76.91 94.5 73.01 89.1 59.99 81.14 77.05

DeepCluster-v2 [8] 54.49 91.33 58.6 94.02 79.61 78.62 94.72 77.94 89.36 65.48 83.94 78.92
SwAV [8] 54.04 90.84 54.06 93.99 79.58 77.02 94.62 76.62 87.6 65.58 83.68 77.97

MIRA 59.06 92.21 61.05 94.20 79.51 77.66 96.07 78.76 89.95 65.84 84.10 79.86

Semi-supervised learning In Table 4, we evaluate the trained model on the semi-supervised223

learning benchmark of ImageNet. Following the evaluation protocol in [27, 10], we add a linear224

classifier on top of the trained backbone and fine-tune the model with ImageNet 1% and 10% subsets.225

We report top-1 and top-5 accuracies on the validation set of ImageNet. For the 1% subset, MIRA226

outperforms the baselines; both the top-1 and top-5 accuracies achieve the best. For the 10% subset,227

MIRA is comparable to SwAV [8].228

k-NN evaluation We further evaluate the quality of learned representation via the nearest neighbor229

classifier. We follow the procedures of [9]. First, representations of the labeled training data are stored.230

Then, the label of the new validation data is predicted with the majority vote of k-nearest stored231

representations. We use the same evaluation settings in [9] with 20 nearest neighbors, temperature232

scaling4 of 0.07, and cosine distance metric.233

Table 3 shows the k-NN classification accuracies on the validation set of ImageNet. We use 1/10/100%234

subsets of ImageNet training dataset to produce labeled representations. For ImageNet 1% and 10%235

subsets, we use the same subsets of semi-supervised learning evaluation. The results show that our236

method achieves state-of-the-art k-NN evaluation performance with ResNet50. To be more specific,237

our method outperforms the previous state-of-the-art DINO [9] on 100% and 10% subset evaluation238

by 1.2 ∼1.4%. We note that BarlowTwins [50], a method also motivated by information-maximization,239

shows a strong performance of 47.7% in the 1% subset evaluation.240

Transfer learning We further evaluate the representation learned by MIRA on the transfer learning241

benchmark following [21] that includes FGVC aircraft [39], Caltech-101 [24], Standford Cars [34],242

CIFAR-10/100 [35], DTD [15], Oxford 102 Flowers [40], Food-101 [5], Oxford-IIIT Pets [41],243

SUN397 [45], and Pascal VOC2007 [23] datasets. We follow the linear evaluation procedure in [21]244

that fits a multinomial logistic regression model on the extracted representations of 2048d from the245

trained backbone. First, we perform a hyperparameter search on the L2-normalization coefficient of246

the logistic regression model; then the final performance is evaluated on the model that is retrained247

on all training and validation sets with the found coefficient.248

4The temperature scaling τ is used to calculate contributions αi ∼ exp(distancei/τ) and voting is weighted
by the contributions of the nearest neighbors.
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Figure 2: Convergence analysis of MIRA and Sinkhorn-Knopp. We observe the converging behavior of
MIRA (blue) and Sinkhorn-Knopp (yellow). We experiment with trained models of MIRA (left) and SwAV
(right). Since both methods are proven to converge, we iterate each method 1000 steps and regard the results as
ground truth. We report the sum-squared error (SSE) with respect to the converging point in the log scale.

Table 5 shows the performance of our algorithm compared to other baselines in 11 datasets. MIRA249

outperforms supervised representation on 10 out of 11 datasets. Compared to the other self-supervised250

methods, representation learned by MIRA achieves the best performance in 9 out of 11 datasets251

and improves 0.9% over the second-best baseline method on average. The results confirm that the252

representation trained with MIRA has a strong generalization ability for classification.253

4.3 Analysis254

Convergence of pseudo-label assignment We study the speed of convergence of the proposed255

fixed-point iteration in MIRA. We also experiment with the Sinkhorn-Knopp (SK) algorithm [16]256

used in SwAV [8] as a baseline. We experiment with both methods on the ImageNet with a batch257

size of 512. We observe the converging behavior with the pre-trained models from MIRA and SwAV.258

Results are averaged over 1000 randomly sampled batches.259

Figure 2 shows the result of the converging behavior of our method (blue) and SK algorithm (yellow)260

on trained models of MIRA (left) and SwAV (right). Our fixed-point iteration converges faster than261

the SK algorithm in both pre-trained models. Especially our default setting of 30 steps of updates are262

sufficent for our fixed point iteration.263

Multi-crop and EMA Table 6 reports an ablation study on how EMA and multi-crop augmentation264

affects our representation quality. We train a model for 200 epochs in the settings with and without265

EMA or Multi-crop. Both EMA and Multi-crop augmentations greatly improve the linear evaluation266

performance as in [8, 9]. We take a further comparison with baselines that are in the same setups. With267

the only difference in the pseudo-labeling algorithm, our method outperforms SwAV [8] by 1.3% in268

top-1 accuracy. While DINO [9] also uses both multi-crop and EMA, our method outperforms DINO269

with fewer training epochs. The results validate the effectiveness of our pseudo-labeling algorithm.270

These results validate the effectiveness of our pseudo-labeling algorithm.

Table 6: Ablation study about EMA and multi-crop augmentation. We report top-1 accuracy with linear
evaluation on validation set of ImageNet. The results of SwAV is from [29].

Method Multi-Crop EMA Epochs Top-1

SwAV ✗ ✗ 200 69.1
DINO ✓ ✓ 300 74.5

MIRA
✗ ✗ 200 70.4
✗ ✓ 200 72.1
✓ ✓ 200 74.8

271

Scalability We further validate MIRA’s scalability on the small-and medium-scaled datasets.272

ResNet-18 is used as a base encoder throughout the experiments. While changing the base encoder,273

other architectural details remain the same as in ImageNet-1k. We do not apply multi-crop augmen-274

tations while using the EMA. We use image sizes of 32×32 and 256×256 for small and medium275

datasets, respectively. Following the procedures in [17], we report the linear evaluation performance276
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on the validation set. More experimental details about the optimizer, batch size, augmentations, etc.,277

are provided in the Appendix.278

Table 7: Linear evaluation performance in small-and medium-scaled datasets. We report top-1 and top-5
accuracies of linear evaluation on validation dataset. The training results are based on 1000 and 400 epochs of
training on CIFAR-10/100 and ImageNet-100, respectively. Results style: best, second best

Method Arch. CIFAR-10 CIFAR-100 ImageNet-100

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

BarlowTwins [50] R18 92.10 99.73 70.90 91.91 80.16 95.14
BYOL [27] R18 92.58 99.79 70.46 91.96 80.32 94.94

DeepCluster-v2 [8] R18 88.85 99.58 63.61 88.09 75.36 93.10
DINO [8] R18 89.52 99.71 66.76 90.34 74.90 92.78
SwAV [8] R18 89.17 99.68 64.88 88.78 77.83 95.06

MIRA R18 93.02 99.87 70.65 92.23 81.00 95.56

The results are in Table 7. In CIFAR-10 and ImageNet-100, our method outperforms other self-279

supervised baselines by 0.4% and 0.7% in top-1 accuracy, respectively. For CIFAR-100, our method280

is comparable to the best performing baseline–BarlowTwins; MIRA performs better in top-5 accuracy.281

Training with small batch Throughout the experiments in Sec. 4.2, we use a batch size of 4096.282

While such batch size is commonly used in self-supervised methods, large amounts of GPU memory283

are required; hence limiting the accessibility. In Table 8, we test our method with a smaller batch284

size of 512 that can be used in an 8 GPU machine with 96GB memory. In this setting, we use the285

SGD optimizer with a weight decay of 10−4. We also test the robustness of pseudo-labeling with the286

Sinkhorn-Knopp algorithm in SwAV [8] reproduced by us and compare the results.287

We report a top-1 linear evaluation performance of both methods after 100 epochs of training. In the288

result, the performance gap between our method and SwAV is amplified from 2.9% to 6% in the289

reduced batch size of 512. One possible explanation is that since SwAV is based on the equipartition290

constraint, the performance of SwAV harshly degrades when the batch size is not enough to match291

the number of clusters.

Table 8: Linear evaluation performance with smaller batch size. All results are based on ImageNet training.
We also report the GPU memory usage and time spent for one epoch training. † is result by us.

Method Batch size Epochs GPU GPU memory Time per Epoch Top-1

SwAV† 512 100 8 × TITAN V 71 GB 23 min 62.3
MIRA w/o EMA 512 100 8 × TITAN V 71 GB 23 min 66.3

MIRA 512 100 8 × TITAN V 73 GB 29 min 68.3

SwAV [12] 4096 100 - - - 66.5
MIRA w/o EMA 4096 100 16 × A100 486 GB 9 min 68.7

MIRA 4096 100 16 × A100 504 GB 9 min 69.4

292

5 Discussion293

Conclusion This paper proposes the mutual information maximization inspired pseudo-labeling294

algorithm MIRA. We formulate pseudo-labeling into an optimization problem and solve it in a295

principled way. We apply MIRA to representation learning and demonstrate its effectiveness in296

self-supervised learning benchmarks. We hope that our simple yet theoretically guaranteed approach297

to information maximization will guide many future applications.298

Limitation and negative social impact Our information maximization perspective pseudo-labeling299

seems applicable to various tasks and domains, e.g., semi-supervised training [36]. We validate300

the effectiveness only in self-supervised visual representation learning. Furthermore, despite our301

improved training efficiency, the self-supervised learning methods still require a huge amount of302

computations compared to supervised learning. Such computational requirements may accelerate the303

environmental problems of global warming.304
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