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ABSTRACT

This paper is concerned with self-supervised learning for small models. The
problem is motivated by our empirical studies that while the widely used contrastive
self-supervised learning method has shown great progress on large model training,
it does not work well for small models. To address this problem, we propose a
new learning paradigm, named SElf-SupErvised Distillation (SEED), where we
leverage a larger network (as Teacher) to transfer its representational knowledge
into a smaller architecture (as Student) in a self-supervised fashion. Instead of
directly learning from unlabeled data, we train a student encoder to mimic the
similarity score distribution inferred by a teacher over a set of instances. We show
that SEED dramatically boosts the performance of small networks on downstream
tasks. Compared with self-supervised baselines, SEED improves the top-1 accuracy
from 42.2% to 67.6% on EfficientNet-B0 and from 36.3% to 68.2% on MobileNet-
v3-Large on the ImageNet-1k dataset.

1 INTRODUCTION

“Tell me and I forget, teach me and I may remember, involve me and I learn."

– Benjamin Franklin
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Figure 1: SEED vs. MoCo-v2 (Chen et al.,
2020c)) on ImageNet-1K linear probe accu-
racy. The vertical axis is the top-1 accuracy
and the horizontal axis is the number of learn-
able parameters for different network architec-
tures. Directly applying self-supervised con-
trastive learning (MoCo-v2) does not work well
for smaller architectures, while our method
(SEED) leads to dramatic performance boost.
Details of the setting can be found in Section 4.

The burgeoning studies and success on self-supervised
learning (SSL) for visual representation are mainly
marked by its extraordinary potency of learning from
unlabeled data at scale. Accompanying with the SSL is
its phenomenal benefit of obtaining task-agnostic repre-
sentations while allowing the training to dispense with
prohibitively expensive data labeling. Major ramifica-
tions of visual SSL include pretext tasks (Noroozi &
Favaro, 2016; Zhang et al., 2016; Gidaris et al., 2018;
Zhang et al., 2019; Feng et al., 2019), contrastive repre-
sentation learning (Wu et al., 2018; He et al., 2020; Chen
et al., 2020a), online/offline clustering (Yang et al., 2016;
Caron et al., 2018; Li et al., 2020; Caron et al., 2020;
Grill et al., 2020), etc. Among them, several recent
works (He et al., 2020; Chen et al., 2020a; Caron et al.,
2020) have achieved comparable or even better accuracy
than the supervised pre-training when transferring to
downstream tasks, e.g. semi-supervised classification,
object detection.

The aforementioned top-performing SSL algorithms all
involve large networks (e.g., ResNet-50 (He et al., 2016)
or larger), with, however, little attention on small net-
works. Empirically, we find that existing techniques like contrastive learning do not work well on
small networks. For instance, the linear probe top-1 accuracy on ImageNet using MoCo-v2 (Chen
et al., 2020c) is only 42.2% with MobileNet-v3 (large) (see Figure 1), which is much lower compared
with its supervised training accuracy 75.2% (Howard et al., 2019). For EfficientNet-B0, the accuracy
is 39.1% compared with its supervised training accuracy 77.1% (Tan & Le, 2019). We conjecture
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that this is because smaller models with fewer parameters cannot effectively learn discriminative
representation with large amount of data.

To address this challenge, we inject knowledge distillation (KD) (Buciluǎ et al., 2006; Hinton et al.,
2015) into self-supervised learning and propose self-supervised distillation (dubbed as SEED) as
a new learning paradigm. That is, train the larger, and distill to the smaller both in self-supervised
manner. Instead of directly conducting self-supervised training on a smaller model, SEED first trains
a large model (as the teacher) in a self-supervised way, and then distills the knowledge to the smaller
model (as the student). Note that the conventional distillation is for supervised learning, while the
distillation here is in the self-supervised setting without any labeled data. Supervised distillation can
be formulated as training a student to mimic the probability mass function over classes predicted by a
teacher model. In unsupervised knowledge distillation setting, however, the distribution over classes
is not directly attainable. Therefore, we propose a simple yet effective self-supervised distillation
method. Similar to the contrastive learning approach, we maintain a queue of negative instances.
Given an instance, we first use the teacher network to obtain its similarity scores with all the instances
in the queue as well as the instance itself. Then the student encoder is trained to mimic the similarity
distribution inferred by the teacher over these instances.

The simplicity and flexibility that SEED brings are self-evident. 1) It does not require any cluster-
ing/prototypical computing procedure to retrieve the pseudo-labels or latent classes. 2) The teacher
model can be pre-trained with any advanced SSL approach, e.g. MoCo-V2 (Chen et al., 2020c),
SimCLR (Chen et al., 2020a), SWAV (Caron et al., 2020). 3) The knowledge can be distilled to any
target small networks (either shallower, thiner, or totally different architectures).

To demonstrate the effectiveness, we comprehensively evaluate the learned representations on series
of downstream tasks, e.g., fully/semi-supervised classification, object detection, and also asses the
transferability on other domains. For example, on ImageNet-1k dataset, SEED improves the linear
probe accuracy of Efficientnet-B0 from 42.2% to 67.6% (a gain over 25%), and MobileNet-v3 from
36.3% to 68.2% (a gain over 31%), as shown in Figure 1 and Section 4.

Our contributions can be summarized as follows:

• We are the first to address the problem of self-supervised visual representation learning for
small models.

• We propose a self-supervised distillation (SEED) technique to transfer knowledge from a
large model to a small model without any labelled data.

• With the proposed distillation technique (SEED), we significantly improve the state-of-the-
art SSL performance on small models.

• We exhaustively compare a variety of distillation strategies to show the validity of SEED
under multiple settings.

2 RELATED WORK

Among the recent literature in self-supervised learning, contrastive based approach stands out as its
learned representations show prominent results on downstream tasks. Majority of the techniques along
this direction are stemming from noise-contrastive estimation (Gutmann & Hyvärinen, 2010) where
the latent distribution is estimated by contrasting with randomly or artificially generated noises. Varia-
tions of this idea have been successfully applied to series of tasks, e.g., language embedding (Mnih &
Kavukcuoglu, 2013), audio classification (Oord et al., 2018), face recognition (Sun et al., 2014; Zhang
et al., 2017), and so forth. Oord et al. (2018) first proposed Info-NCE to learn image representations
by predicting the future using an auto-regressive model for unsupervised learning. Follow-up works
include improving the efficiency (Hénaff et al., 2019), and using multi-view as positive samples (Tian
et al., 2019b). As these approaches can only have the access to limited negative instances, Wu et al.
(2018) designed a memory-bank to store the previously seen random representations as negative
samples, and treat each of them as independent categories (instance discrimination). However, this
approach also comes with a delicacy that the previously stored vectors are inconsistent with the
recently computed representations during the earlier stage of pre-training. Chen et al. (2020a)
mitigate this issue by sampling negative samples from a large batch with implementations on TPU.
Concurrently, He et al. (2020) improve the memory-bank based method and propose to use the
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momentum updated encoder for the remission of representation inconsistency. Other techniques
include Misra & Maaten (2020) that combines the pretext-invariant objective loss with contrastive
learning, and Wang & Isola (2020) that decomposes contrastive loss into alignment and uniformity
objectiveness.

Knowledge distillation (Hinton et al., 2015) aims to transfer knowledge from a cumbersome model
to a smaller one without losing too much generalization power, which is also well investigated in
model compression (Buciluǎ et al., 2006). Instead of mimicking the teacher’s output logit, attention
transfer (Zagoruyko & Komodakis, 2016) formulates knowledge distillation on attention maps.
Similarly, works in (Ahn et al., 2019; Yim et al., 2017; Koratana et al., 2019; Huang & Wang, 2017)
have utilized different learning objectives including consistency on feature maps, consistency on
probability mass function, and maximizing the mutual information. CRD (Tian et al., 2019a), which
is derived from CMC (Tian et al., 2019b), optimizes the student network by a similar objective to Tian
et al. (2019b) using a derived lower bound on mutual information. However, the aforementioned
efforts all focus on task-specific distillation (e.g., image classification) during the fine-tuning phase
rather than a task-agnostic distillation in the pre-training phase. Several works on natural language
pre-training, such as DistillBert (Sanh et al., 2019), TinyBert (Jiao et al., 2019), and MobileBert (Sun
et al., 2020), have used knowledge distillation for model compression and shown their validity on
multiple downstream tasks. Similar works also emphasize the value of smaller and faster models
for representation learning by leveraging knowledge distillation (Turc et al., 2019; Sun et al., 2019).
SEED closely relates to the above techniques but aims to facilitate visual representation learning
during pre-training phase for small models, which as far as we know has not been investigated.

3 METHOD

3.1 KNOWLEDGE DISTILLATION IN SUPERVISED CLASSIFICATION

Traditional knowledge distillation is formulated as the process of training a student fSθ to mimic
the output class-probabilities predicted by a teacher fTθ . A commonly used loss function is the
cross-entropy loss for classification tasks (Hinton et al., 2015):

θ̂S = argmin
θS

N∑
i

−yT (xi; θT ) · log yS(xi; θS)︸ ︷︷ ︸
LDistill

−y · log yS(xi; θS)︸ ︷︷ ︸
LCE

, (1)

where y(x; θT ) denotes the model output for sample x, y denotes the ground-truth label, and θT and
θS are the model parameters of the teacher and the student, respectively. Other variants of LDistill
have also been proposed. Romero et al. (2014) use l2 distance as an intermediate representation.
CRD (Tian et al., 2019a) proposes to adopt contrastive learning to facilitate supervised distillation.
Yim et al. (2017) define distillation in terms of flow between layers. Until now, most of these works
focus on supervised distillation that requires annotations either for a teacher model’s pre-training or
distillation.

3.2 SELF-SUPERVISED DISTILLATION FOR VISUAL REPRESENTATION

Different from supervised distillation, SEED aims to transfer knowledge from a large model to a
small model without requiring labelled data. Since there are no labels, LDistill is not applicable.
Our idea is to inject knowledge distillation into contrastive learning. Similar to the contrastive
learning framework[], we also maintain a queue of instances. Given a new sample, we compute
its similarity scores with all the instances in the queue using both the teacher and the student
models. We require that the similarity score distribution of the student matches with that of the
teacher, which is formulated as minimizing the cross entropy of the student and the teacher’s
similarity score distributions. Specifically, for a randomly augmented view xi of image Ii, it is
first mapped and normalized into feature vector representations zTi = fTθ (xi)/||fTθ (xi)||2, and zSi =
fSθ (xi)/||fSθ (xi)||2, where zTi , z

S
i ∈ RD, and fTθ and fSθ denote the teacher and student encoders,

respectively. Let D = [d1...dK ] denote the instance queue where K is the queue length and dj is
the feature vector obtained from the teacher encoder. Similar to the constrastive learning framework,
D is progressively updated under the “first-in first-out” strategy as distillation proceeds. That is, we
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Figure 2: Illustration of our distillation pipeline. The student encoder is trained by minimizing the cross-entropy
of probabilities from teacher & student for an identical augmented view of an training image, computed with a
dynamically maintained queue. The teacher encoder is pre-trained by SSL and kept frozen during the distillation.

de-queue the earliest seen samples and en-queue the visual features of the current batch inferred by
the teacher.

Let pT (xi; θT ;D) denotes the similarity scores between xi and dj’s (j = 1, ...,K) computed by the
teacher model. pT (xi; θT ;D) is defined as

pT (xi; θT ,D) = [ pT1 ... p
T
K ] , where pTj =

exp(zTi · dj/τT )∑
dj∼D exp(zTi · dj/τT )

, (2)

and τT is a temperature parameter for the teacher.

Similarly let pS(xi; θS ,D) denotes the similarity scores computed by the student model, which is
defined as

pS(xi; θS ,D) = [ pS1 ... p
S
K ] , where pSj =

exp(zSi · dj/τS)∑
dj∼D exp(zSi · dj/τS)

, (3)

and τS is a temperature parameter for the student.

Our self-supervised distillation can be formulated as minimizing the cross entropy between the
similarity scores of the teacher and the student over all the instances xi, that is,

LSEED = −
N∑
i

pT (xi; θT ,D) · logpS(xi; θS ,D), (4)

Note that the maintained samples in queue D are mostly irrelevant to the target instance xi. For
example, 4 softly contrasts xi with randomly selected samples without directly aligning with the
teacher encoder. To address this problem, we add the teacher’s embedding (zTi ) into the queue and
form D+ = [zTi ,d1...dK ]. Our student encoder is then trained by minimizing the cross entropy
between pT (xi; θT ,D

+) and pS(xi; θS ,D
+), that is,

θ̂S = argmin
θS

N∑
i

−pT (xi; θT ,D+) · logpS(xi; θS ,D+)

= argmin
θS

N∑
i

K+1∑
j

− exp(zTi · dj/τT )∑
d∼D+ exp(zSi · d/τT )

· log exp(zSi · dj/τS)∑
d∼D+ exp(zSi · d/τS)

.

(5)

Relations with other losses. Our distillation for the student encoder is composed of two objectives:
aligning with the embedding computed by the teacher and softly contrasting with samples maintained
in the queue. As the cosine similarity for the teacher representation (zTi ) in D+ remains constant (
1), the weight for the alignment term remains relatively high and can be consolidated by using the
temperature τT . Specifically, when τT → 0, the softmax computation for pT smoothly approaches
one-hot, yielding a similar form with Info-NCE loss (Oord et al., 2018) which is widely used in
contrastive-based SSL (see discussion in Appendix):

LNCE =

N∑
i

− log
exp(zTi · zSi /τ)∑

d∼D+ exp(zSi · d/τ)
(6)
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4 EXPERIMENT

4.1 IMPLEMENTATIONS AND SETTINGS

Self-Supervised Pre-training of Teacher Network. We use the adapted version of MoCo (Chen
et al., 2020c), MoCo-v2, as our self-supervised pre-training method for the pre-training of teacher
architecture. We also show results with several other self-supervised pre-trained methods as the
teacher of distillation in ablations, but yields similar conclusions. Following (Chen et al., 2020a),
we use ResNet as the network architecture with different depths/widths (e.g., 50, 101 and 152 layers
and ×1, ×2 parameters in ResBlock). MoCo-v2 has a multi-layer-perception layer at the end of the
encoder after the average pooling, which contains two linear layer and one ReLU (Nair & Hinton,
2010) activation layer. We use the produced 128d vector from the MLP as our image representation
z for both pre-training and distillation. The teacher networks are pre-trained for 200 epochs with
65,356 negative samples in queue on ImageNet ILSVRC-2012 dataset (Deng et al., 2009). Due to
the computational limit, we pre-train our teacher network as well as the distillation process for 200
epochs unless explicitly note.

Unsupervised Distillation on Student Network. In order to compare the effect of distillation
on various networks, we chose multiple smaller networks with less learnable parameters as the
distillation target: MobileNet-v3-Large (Howard et al., 2017), EfficientNet-b0 (Tan & Le, 2019),
and smaller residual neural networks with less layers (ResNet-18, 34 and 50). Similar to MoCo-
v2, we add one additional linear layer in the last MLP block on the basis of primitive design of
EfficientNet and MobileNet. We use a standard SGD optimizer with momentum 0.9 and a weight
decay parameter of 1e-4 for 200 epochs. The initial learning rate is set as 0.03 and updated by a
cosine decay scheduler (Loshchilov & Hutter, 2016) with 5 warm-up epochs. The teacher temperature
is set at a smaller value τT = 0.01 than the student temperature, τS = 0.2. During the distillation,
we maintain a standard queue with the length to be 65,536 as MoCo. In terms of the training cost, it
takes approximately 40 hours for the distillation of efficientNet-b0 from ResNet-50 with 8×NVIDIA
V100 GPUs on ImageNet without any special accelerating measure. We further discuss effect of
different hyper-parameters in ablations.

4.2 SCHEME FOR VALIDITY

In order to validate the effectiveness of self-supervised distillation, we choose to asses the performance
of representations of the student encoder on several downstream tasks. We first report its performances
of linear evaluation and semi-supervised linear evaluation on ImageNet ILSVRC-2012 (Deng et al.,
2009) dataset. To measure the feature transferability brought by distillation, we conduct evaluations on
other tasks, which includes object detection and segmentation on VOC07 (Everingham et al.) and MS-
COCO (Lin et al., 2014) datasets. At the end, we compare the transferability of the features learned
by distillation and ordinary self-supervised contrastive learning on the tasks of linear classification on
datasets from different domains.

Linear and KNN Evaluation on ImageNet. We conduct the supervised linear classification on
ImageNet-1M, which contains∼1.3M images for training, and 50,000 images for testing, spanning
1,000 categories. Following previous works in (He et al., 2020; Chen et al., 2020a), we train a single
linear layer classifier on the top of frozen network encoder after self-supervised pre-training. SGD
optimizer is used to train the linear classifier for 100 epochs with weight decay to be 0. The initial
learning rate is set at 30 and is reduced by a factor of 10 at 60 and 80 epochs (similar as Tian et al.
(2019a)). Notably, when training the linear classifier for MobileNet and EfficientNet, we reduce the
initial learning rate to 3. The results are reported with top-1 and top-5 accuracy. We also perform
classification using K-Nearest Neighbors (KNN) based on the learned 128d vector from the last MLP
layer. The sample is classified by taking the most frequent label of its K nearest neighbors, where we
set K = 10 consistently for all entries in experiment.

Semi-Supervised Evaluation on ImageNet. We then further evaluate the learned representations
on the classification task using only a subset of ImageNet. We follow the semi-supervised learning
protocol as in (Oord et al., 2018; Kornblith et al., 2019; Kolesnikov et al., 2019), where the fixed 1%
and 10% subsets of ImageNet labeled training data (provided by Chen et al. (2020a)) is utilized for
linear classification training. We report the Top-1 and Top-5 accuracy on the testing split.
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T
S Eff-b0 Eff-b1 Mob-v3 R-18 R-34

K T-1 T-5 K T-1 T-5 K T-1 T-5 K T-1 T-5 K T-1 T-5

7 30.0 42.2 68.5 34.4 50.7 74.6 27.5 36.3 62.2 36.7 52.5 77.0 41.5 57.4 81.6

R-50 46.0 61.3 82.7 44.6 58.4 80.3 44.8 55.2 80.3 43.4 57.6 81.8 45.2 58.5 82.6
∆ +16.0 +19.1 +14.2 +10.2 +7.7 +5.7 +17.3 +18.9 +18.1 +6.7 +5.1 +4.8 +3.7 +1.1 +1.0

R-101 50.1 63.0 83.8 50.3 61.2 84.8 48.8 59.9 83.5 48.6 58.9 82.5 50.5 61.6 84.9
∆ +20.1 +20.8 +15.3 +5.7 +10.5 +10.2 +21 .3 +23.6 +21.3 +11.9 +6.4 +5.5 +9.0 +4.2 +3.3

R-152 50.7 65.3 86.0 51.2 64.6 85.7 49.5 61.4 84.6 49.1 59.5 83.3 51.4 62.7 85.8
∆ +20.7 +23.1 +17.5 +16.8 +13.9 +11.1 +22.0 +25.1 +22.4 +12.4 +7.0 +6.3 +9.9 +5.3 +4.2

R50×2∗ 57.4 67.6 87.4 60.3 67.8 87.6 55.9 68.2 88.2 55.3 63.0 84.9 58.2 65.7 86.8
∆ +27.4 +25.4 +28.4 +25.9 +17.1 +13.0 +18.9 +31.9 +26.0 +18.6 +10.5 +7.9 +16.7 +8.3 +5.2

Table 1: ImageNet-1k test accuracy (%) under KNN and linear classification across multiple students and deeper,
MoCo-v2 pre-trained teacher architectures. 7 denotes MoCo-V2 self-supervised learning baselines before
distillation. * indicates using a stronger teacher encoder pre-trained by SWAV with additional small-patches
during distillation. K, T-1 and T-5 denote Top-1 accuracy for KNN and Top-1/5 accuracy for linear evaluation.
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Figure 3: ImageNet-1k Top-1 test accuracy for semi-supervised evaluations using 1% 10% label fractions w/o
distillation under different Teachers.

Table 1 summarizes the performances of representations from various networks by SEED distillation
under KNN and linear evaluation on ImageNet. We list the baseline of contrastive self-supervised
pre-training using MoCo-v2 (Chen et al., 2020c) in the first row per each student architecture. We
can see clearly that smaller networks tend to perform rather worse, that MobileNet-v3 can only
reach 36.3% using contrastive pre-training with ∼5M learnable parameters. This aligns well with
previous conclusions from (Chen et al., 2020a;b), that the bigger models are more likely to perform
better in contrastive based self-supervised pre-training. We conjecture that this is mainly caused
by the inability of smaller network handling large-scale dataset. The results clearly demonstrate
that the distillation from a larger network help boosting the performances on all tasks, and show
obvious improvement compared with ordinary contrastive self-supervised pre-training. Concretely, by
leveraging a larger network like ResNet-152, EfficientNet-b0 (with only∼5M learnable parameters)
achieves 65.3%@Top-1 Acc., leading MoCo-v2 using ResNet-34 (4×larger than EfficientNet-b0)
by a large margin of 8.0%, and even approaching the performances of MoCo-v2 using ResNet-50
on the linear evaluation task. This is also consistent with the results on KNN and semi-supervised
evaluating protocols (see Figure 3). We list results of distillation from a stronger SSL pre-trained
ResNet-50×2 model with additional small patches utilized and trained for 800 epochs (see last row
of Table 1), where EfficientNet-b0 further reaches 67.6% Top-1 Acc. on ImageNet-1k. We also
report the distillation results using ResNet-50 as larger student encoder (see Appendix), and observe
same improvement trend: it reaches 74.3% Top-1 Acc. with a ResNet-50×2 as Teacher trained
for 800 epochs. We note that the gain benefited from distillation becomes more distinct on smaller
architectures and we further study the effect of various distilling sources in ablations.

Comparisons with Different Teachers. We compare the performances of distillation from different
teachers. In particular, Figure 4 summarizes the testing accuracy of ResNet-18 and EfficientNet-
b0 distilling from wider ResNet architectures (×1, ×2 parameters in ResBlock) when no small
patches are used. We see clear performance improvement as depth and width increase: comparing to
ResNet-50, deeper (ResNet-101) and wider (ResNet-50×2) substantially improve the testing accuracy.
However, further architectural enlargement has relatively limited effects: ResNet-152×2 does not
obviously affect the performances. We additionally show the distillation results of a ResNet-18 from
various methods of self-supervised ResNet-50 in Table 2. To be specific, we compare the distillation
results of MoCo-v1 (He et al., 2020), MoCo-v2 (Chen et al., 2020c) trained 200 and 800 epochs,
SimCLR (Chen et al., 2020a), and SWAV (Caron et al., 2020). We observe that both longer Teacher
SSL pre-training and distillation epochs can yield beneficial effects. Notably, the aforementioned
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Figure 4: Accuracy (%) of student networks
(EfficientNet-b0 and ResNet-18) on ImageNet dis-
tilled from wider MoCo-v2 pre-trained ResNet
(ResNet-50/101/152×2).

Teacher P-E D-E T. Top-1 S. Top-1 S. Top-5

7 7 7 7 52.5 77.0
MoCo 200 200 60.6 52.1 77.0
SimCLR 200 200 65.6 57.5 81.7
MoCo-v2 200 200 67.4 57.6 81.8

800 200 71.1 60.5 83.5
SWAV 800 100 75.3 61.1 83.8

800 200 75.3 61.7 84.2
800 400 75.3 62.0 84.4

SWAV∗ 800 200 75.3 62.6 84.8

Table 2: ImageNet-1k test Accuracy (%) of student
network (ResNet-18) distilled from variants of self-
supervised ResNet-50. P-E/D-E represent pre-training
and the distillation epochs. T./S.-Top represent testing
accuracy of Teacher and Student. ∗ represents distil-
lation using additional small patches. First row is the
ResNet-18 SSL baseline using MoCo-v2 trained for 200
epochs.

S T VOC Obj. Det. COCO Obj. Det. COCO Inst. Segm.

APbb APbb
50 APbb

75 APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

R-18

7 46.1 74.5 48.6 35.2 54.1 37.9 31.2 51.3 33.3
R-50 46.1( 0.0) 74.8(+0.3) 49.1(+0.5) 35.5(+0.3) 54.3(+0.2) 37.9( 0.0) 31.4(+0.2) 51.3( 0.0) 33.4(+0.1)

R-101 46.8(+0.7) 75.8(+1.3) 49.3(+0.7) 35.4(+0.2) 54.2(+0.1) 38.0(+0.1) 31.3(+0.1) 51.4(+0.1) 33.5(+0.2)

R-152 46.8(+0.7) 75.9(+1.4) 50.2(+1.6) 35.4(+0.2) 54.3(+0.2) 38.0(+0.1) 31.4(+0.2) 51.4(+0.1) 33.5(+0.2)

Table 3: Object detection and instance segmentation results using contrastive self-supervised learning and
SSD distillation using ResNet-18 as backbone: bounding-box AP (APbb) and mask AP (APmk) evaluated
on VOC07-val and COCO testing split. More results on different backbones can be found in the Appendix.
Subscript in green represents improvement is larger than 0.3.

methods all unanimously adopt contrastive based pre-training except SWAV, which is based upon
online clustering. We find that our SEED is pre-training agnostic that the distillation can be indeed
conducted on clustering based self-supervised model.

Transferring to Other Tasks. In order to comprehensively assess the transferability of the represen-
tations from SEED, we test it on different downstream tasks, e.g., object detection and segmentation.
Following He et al. (2020), we fine-tune all the layers of a Faster R-CNN (Ren et al., 2015) with
C4-backbone on the VOC-07+12 train+val set, and evaluate it on VOC-07 test split. Specifically, the
backbone in the detector contains only the convolutional layers from ResNet ends at conv4 stage,
and the mask/box prediction head consists of the conv5 stage (with global pooling layer). Similarly,
we use Mask R-CNN (He et al., 2017) with the C4 backbone for COCO segmentation. During
training, we tune the Batch-Normalization layer as (He et al., 2020). In Table 3, we exhibit both the
detection and segmentation results evaluated using AP50 and AP75 metric (threshold of IoU = 50, 75)
and bounding box AP (APbb), mask AP (APmk). By distilling from the larger architecture, SEED
improves the performances on the detection task: +0.7 on AP, +1.4 on AP50 and +1.6 on AP75 than
the MoCo-v2 baseline. Consistently, we observe same trend in segmentation results. Comparisons of
performances using different backbones and the tine-tuning details can be found in the Appendix.

Additional Classification Results on Other Domains. To further study whether the improvement
of learned representation of distillation is confined to ImageNet dataset, we evaluate on additional
classification datasets to study the generalization and transferability of the features. We strictly follow
the linear evaluation and fine-tuning settings from (Kornblith et al., 2019; Chen et al., 2020a; Grill
et al., 2020), that a linear layer is trained on the basis of frozen features. We report Top-1 Accuracy of
models before and after distillation from various architectures on CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), SUN-397 (Xiao et al., 2010) datasets. More details regards the pre-processing and
training can be found in Appendix. Notably, we observe that our distillation surpass the contrastive
self-supervised pre-training consistently on all benchmarks, verifying the effectiveness of SEED.
This also proves the representations from distillation is generically beneficial to a wide-span of
downstream tasks.
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Figure 5: ImageNet-1k test Accuracy (%) of student network (EfficientNet-b0 and ResNet-18) transferred to
other domains (CIFAR-10, CIFAR-100, SUN-397 datasets) w/o distillation from lager architectures (ResNet-
50/101/152).

Method Top-1 Acc. Top-5 Acc.

L2 Distance 55.3 80.3
K-Means (4k) 51.0 75.8

Online Clustering 56.4 81.2
Binary Contr. Loss 57.1 81.5

SSD 57.9 82.0
Table 4: Top-1/5 accuracy of linear classifica-
tion results on ImageNet using different distillation
strategies on ResNet-18 (student) and ResNet-50
(teacher) architectures.

τT ImageNet CIFAR-10 CIFAR-100

Top-1 Top-5 Top-1 Top-1

0.3 54.8 80.0 78.7 46.6
0.1 54.9 80.1 83.0 50.1
0.05 56.5 81.3 84.4 56.2
0.01 57.9 82.0 87.5 60.6
1e-3 57.6 81.8 86.9 60.8

Table 5: Effect of τT for the distillation of ResNet-18
(student), ResNet-50 (teacher) on multiple datasets.

Ablations on Strategies of Distillation and Hyper-Parameters. We finally compare our SEED,
with other several distillation strategies, which include minimizing the l2-distance of the embed-
ding (Romero et al., 2014), pseudo-label classification using K-Means Clustering (Li et al., 2017),
online clustering (Snell et al., 2017), and the contrastive-akin distillation method CRD (Tian et al.,
2019a) in Table 4. It’s worth noting that, by simply minimizing the l2-distance of the student
as teacher’s visual embedding yields a decent performance: 55.3% on ImageNet test split using
ResNet-18 as the student and a pre-trained ResNet-50 as the teacher. This observation aligns with
the conclusion in (Grill et al., 2020), where the visual representation is trained by learning to mimic
the representations of just augmented views of positive samples. K-Means Clustering constructs
pseudo-labels as cross-entropy targets by clustering features from the teacher encoder in an offline
manner. During practice, we find that when a smaller number of K is set, the assigned categorical
center for a sample can be less aligned: samples assigned with identical label are discriminating with
each others. Thus, in contrary to l2-distance, K-Means clustering innately lays particular emphasis
on discriminating with different samples than the alignment of different views from identical images.
In particular, we note that CDR is indeed a variation of contrastive distillation by minimizing an
upper-bound of Info-NCE objectiveness (Oord et al., 2018), but was designed to facilitate the super-
vised distillation. We apply it on our self-supervised distillation task as a binary form of Info-NCE
loss, therefore it is expected to produce a close result with SEED. Table 5 summarizes the distillation
performances on multiple datasets under different temperature τT when τS is fixed at 0.2. We observe
a better performance with the decreasing of τT to 0.01 for ImageNet-1k, CIFAR-10 and CIFAR-100
datasets. We further discuss the detailed configurations for each baseline in the Appendix.

5 CONCLUSIONS

Contrastive based Self-Supervised Learning is established upon instance discrimination, while a
critical impedance for the pre-training on smaller architecture comes from its incapacity of dealing
enormous number of instances. Instead of directly learn from the un-labeled data, we propose SEED,
that learns its representation by just distillation from a bigger, and self-supervised model. We show
that as a novel self-supervised learning paradigm, SEED achieves state-of-the-art results on various
benchmarks of small architectures.
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