
Recurrent Memory Transformer

Anonymous Author(s)
Affiliation
Address
email

Abstract

Transformer-based models show their effectiveness across multiple domains and1

tasks. The self-attention allows to combine information from all sequence ele-2

ments into context-aware representations. However, global and local information3

has to be stored mostly in the same element-wise representations. Moreover, the4

length of an input sequence is limited by quadratic computational complexity of5

self-attention. In this work, we propose and study a memory-augmented segment-6

level recurrent Transformer (Recurrent Memory Transformer). Memory allows7

to store and process local and global information as well as to pass information8

between segments of the long sequence with the help of recurrence. We implement9

a memory mechanism with no changes to Transformer model by adding special10

memory tokens to the input or output sequence. Then Transformer is trained to11

control both memory operations and sequence representations processing. Results12

of experiments show that our model performs on par with the Transformer-XL13

on language modeling for smaller memory sizes and outperforms it for tasks that14

require longer sequence processing. This makes Recurrent Memory Transformer a15

promising architecture for applications that require learning of long-term depen-16

dencies and general purpose in memory processing, such as algorithmic tasks and17

reasoning.18

1 Introduction19

Figure 1: Recurrent Memory Transformer.
Memory is added as tokens to the input se-
quence and memory output is passed to the
next segment. During training gradients flow
from the current segment through memory to
the previous segment.

Transformers (Vaswani et al., 2017) have been widely20

adopted across multiple domains and tasks (Radford21

et al., 2018; Dong et al., 2018; Devlin et al., 2019;22

Dosovitskiy et al., 2021; Ramesh et al., 2021; Jaegle23

et al., 2021). The key component of Transformer24

layer is a self-attention. Self-attention allows to up-25

date each sequence element representation with in-26

formation from all other elements in the sequence.27

As a result, rich contextual representation for every28

element is generated at the end of encoding. This29

way, global sequence-level and local information are30

stored in a single representation. However, this mix-31

ing of two types of information in a single represen-32

tation has limitations. Distributed storage of global33

features across all sequence elements results in global34

features "blurring" and makes it harder to access them.35

Another well-known deficiency of Transformers is poor scaling of self-attention with input sequence36

length that hurts its applications to long inputs (Child et al., 2019; Guo et al., 2019; Dai et al., 2019;37

Beltagy et al., 2020; Ainslie et al., 2020; Zaheer et al., 2020; Wang et al., 2020; Choromanski et al.,38

2020).39

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



Our work introduces a memory-augmented segment-level recurrent Transformer named Recurrent40

Memory Transformer (RMT). RMT uses a memory mechanism based on special memory tokens (Burt-41

sev et al., 2020) added to the input sequence. Memory tokens provide additional reserved capacity to42

the model that could be used to process information which is not directly representing any element in43

the input sequence. To process long sequences, we split them into segments and pass memory states44

from a previous to a current segment. This memory passing makes the model recurrent and removes45

the input sequence length limitations. RMT model can theoretically work with infinite lengths but, in46

practice, it is limited by memory capacity and the efficiency of memory access/update operations.47

Our implementation of both memory and recurrence in RMT requires no changes to the Transformer48

model because modifications are made only to the input and output sequences of the model.49

We tested RMT on the tasks that require a global information about the whole input sequence to be50

solved. We use copy, reverse, and associative retrieval tasks in the setting where the input sequence51

is split into segments. RMT and Transformer-XL perfectly solve these tasks, but exceeding some52

value of sequence length, RMT starts to outperform Transformer-XL. Also, we experimentally show53

that the proposed Recurrent Memory Transformer requires less memory size to perform closely to54

Transformer-XL on language modeling tasks. RMT code and experiments are available1.55

Contributions56

• In this study we augment Transformer with token based memory storage and segment-level57

recurrence.58

• We experimentally evaluate proposed architecture as well as vanilla Transformer and59

Transformer-XL on memory-intensive tasks such as copy, reverse, associative retrieval60

and language modeling. We show that RMT outperforms Transformer-XL for sequence61

processing tasks and on par with Transformer-XL on language modeling but requires less62

memory.63

• We analysed how the Transformer model learns to use memory. Specific interpretable64

memory read-write patterns of attention are shown.65

2 Related work66

In our study we add a memory to general purpose attention based neural architecture. Memory is67

a recurrent topic in neural networks research. It had started from the early works (McCulloch and68

Pitts, 1943; Stephen, 1956) and significantly progressed in 90’s with introduction of Backpropagation69

Through Time learning algorithm (Werbos, 1990) and Long-Short Term Memory (LSTM) (Hochreiter70

and Schmidhuber, 1997) neural architecture. Today memory-augmented neural networks (MANNs)71

usually rely on some kind of recurrent external-memory which is separate from the model’s pa-72

rameters. Neural Turing Machines (NTMs) (Graves et al., 2014) and Memory Networks (Weston73

et al., 2014) are equipped with a storage for vector representations that can be accessed with an74

attention mechanism. Memory Networks (Weston et al., 2014; Sukhbaatar et al., 2015) were designed75

to enable reasoning by sequential attention over to the content of a memory. NTMs followed by76

Differentiable Neural Computer (DNC) (Graves et al., 2016) and Sparse DNC (Rae et al., 2016)77

are implemented as recurrent neural networks able to write to memory storage over time. All these78

models are differentiable and can be trained via backpropagation through time (BPTT). Parallel line79

of research extends recurrent neural networks such as LSTM with data structures like stacks, lists,80

or queues (Joulin and Mikolov, 2015; Grefenstette et al., 2015). MANN architectures with a more81

advanced addressing mechanisms such as address-content separation and multi-step addressing were82

proposed in (Gulcehre et al., 2016, 2017; Meng and Rumshisky, 2018). The Global Context Layer83

model (Meng and Rumshisky, 2018) uses the idea of address-content separation to solve the difficulty84

of training content-based addressing in the canonical NTM.85

Recent rise of Transformer models also resulted in introduction of a number of new memory archi-86

tectures. Transformer-XL (Dai et al., 2019) introduces a segment-level recurrence at the level of87

hidden representations. These representations of a sequence are computed and stored in the cache88

to be reused as an extended context for the next segment. Compressive Transformer (Rae et al.,89

1anonymous link. Code, raw experiments results and hyperparameters are provided in supplementary
materials.

2



2019) adds the second layer of memory to Transformer-XL. This memory compresses and stores90

information from the cache. ∞-former (Martins et al., 2021) utilizes continuous-space attention and91

represents input sequence as a continuous signal to make long-term memory unbounded. Memory92

Layers (Lample et al., 2019) model has a product key memory layer instead of a feed-forward layer93

within Transformer block to increase model capacity.94

In many variations of Transformer different sorts of global representations are added. Among them95

are Star-Transformer (Guo et al., 2019), Longformer (Beltagy et al., 2020), GMAT (Gupta and Berant,96

2020), Extended Transformer Construction (ETC) (Ainslie et al., 2020) and Big Bird (Zaheer et al.,97

2020). All these architectures re-design self-attention mechanism to reduce it computational com-98

plexity with and ensure input coverage with the help of global representations. Memory Transformer99

(Burtsev et al., 2020) keeps Transformer model intact and adds memory by extending input sequence100

with special memory tokens. Perceiver IO (Jaegle et al., 2021) maps an entire arbitrary input to the101

fixed number of latent representations. Transformer layers do further processing over latent memory102

representations only.103

Segment-level recurrence in Transformers is actively explored in a number of studies. Transformer-104

XL, Compressive Transformer keep previous states and re-use them in subsequent segments. Ernie-105

Doc (Ding et al., 2021) improves processing by using same-layer recurrence instead of attending to106

previous layer outputs of a precedent segment. Memformer (Wu et al., 2020) introduces a dedicated107

memory module to keep previous hidden states in summarized representations. Memformer uses two108

special layers added to the Transformer model. Memory cross-attention layer reads from memory109

and memory slot attention layer updates it. MART (Lei et al., 2020) has a similar approach as110

Memformer but uses memory update rules analogous to LSTM (Hochreiter and Schmidhuber, 1997)111

and GRU (Cho et al., 2014). FeedBack Transformer (Fan et al., 2020) goes further with full, and not112

segment-level, recurrence. FeedBack Memory merges past hidden representations from all layers113

into a single vector and makes it accessible to the computations at any layer. The disadvantage of full114

recurrence is that it is less parallelizable. FeedBack Memory requires every sequence element to be115

processed sequentially. In segment-level recurrent models, all elements of a segment are processed by116

Transformer layers in parallel. Only segments are processed sequentially. Staircase Transformer (Ju117

et al., 2021) combines segment-level recurrence and depth recurrence. Staircase models use the118

output for previous segments and pass them as input for the next segment. Our Recurrent Memory119

Transformer is based on special memory tokens similar to Memory Transformer, segment-level120

recurrence as in Transformer-XL, and depth-recurrent mechanism for memory processing similar to121

Staircase.122

3 Recurrent Memory Transformer123

Figure 2: Comparison of Recurrent Memory Transformer and Transformer-XL architectures.
Recurrent Memory Transformer augments Transformer with global memory tokens and passes them
to allow a segment-level recurrence. Special read/write memory tokens are added to the input
sequence. Multiple memory tokens can be used in each read/write block. Updated representations
of write memory are passed to the next segment. During training, RMT uses BPTT to propagate
gradient to previous segments through memory tokens representation. Recurrence with memory has
no limitations on effective context length, whereas Transformer-XL can use only finite context with
cached states. All RMT memory/recurrence operations are made on the input and output level of the
Transformer model.

3



3.1 Background: Transformer-XL124

Transformer-XL (Dai et al., 2019) extends Transformer model with state re-use cache mechanism125

for segment-level recurrence and relative position encoding. Input sequence is split on segments126

processed sequentially. Hidden states computed for the previous segment Mn are cached for each127

transformer layer n. The input of the layer n consists of the last m states from the cached memory128

and output of previous Transformer layer for the current segment τ :129

H̃n−1
τ = [SG(Mn−1

−m:) ◦Hn−1
τ ], (1)

here, SG stands for stop-gradient, ◦ denotes concatenation. Cached states allow to increase effective130

context size of Transformer model and save on compute operations.131

Then, H̃n−1
τ goes to Transformer layer to produce layer n outputs for segment τ :132

Hn
τ = TransformerLayer(Qn

τ ,K
n
τ , V

n
τ ),

Qn
τ = Wn

q H
n−1
τ ;Kn

τ = Wn
k H̃

n−1
τ ;V n

τ = Wn
v H̃

n−1
τ .

In Transformer-XL, self-attention layers are modified to use relative position encodings to improve133

generalization to longer attention lengths. The overall architecture is shown in the Figure 2.134

3.2 Memory and recurrence135

Memory augmented Transformers such as GMAT, ETC, Memory Transformer (Gupta and Berant,136

2020; Ainslie et al., 2020; Burtsev et al., 2020) proposed to use special global tokens as storage137

for representations. Usually, memory tokens are added to the beginning of the input sequence.138

However, in decoder-only architectures the causal attention mask makes impossible for memory139

tokens at the start of the sequence to collect information from the subsequent tokens. On the other140

hand, if memory tokens are placed at the end of the sequence then preceding tokens unable to141

access their representations. To solve this problem we add a recurrence to the sequence processing.142

Representations of memory tokens placed at the end of the segment are used as an input memory143

representations at the start as well as at the end of the next segment.144

In the Recurrent Memory Transformer input is augmented with special [mem] tokens, processed in145

a standard way along with the sequence of tokens. Each memory token is a real-valued vector. m146

memory tokens are added at the beginning of the segment tokens representations H0
τ and the same m147

tokens are added at the end:148

H̃0
τ = [Hmem

τ ◦H0
τ ◦Hmem

τ ],

H̄N
τ = Transformer(H̃0

τ ),

[Hread
τ ◦HN

τ ◦Hwrite
τ ] := H̄N

τ ,

here N is a number of Transformer layers.149

The starting group of memory tokens functions as a read memory that allows sequence tokens to150

attend to memory states produced at the previous segment. The ending group works as a write151

memory that can attend to all current segment tokens and update representation stored in the memory.152

As result, Hwrite
τ contains updated memory tokens for the segment τ .153

Segments of the input sequence are processed sequentially. To enable recurrent connection between154

segments, we pass outputs of the memory tokens from the current segment to the input of the next155

segment:156

Hmem
τ+1 := Hwrite

τ ,

H̃0
τ+1 = [Hmem

τ+1 ◦H0
τ+1 ◦Hmem

τ+1 ].

Both memory and recurrence in the RMT are based only on global memory tokens. It allows to157

keep the backbone Transformer unchanged and make RMT memory augmentation compatible with158

any model from the Transformer family. Memory tokens operate only on the input and output of159

4



the model. In this study we implement RMT on top of the original Transformer-XL code. Both160

architectures are shown in Figure 2.161

Recurrence in the RMT is different compared to the Transformer-XL because the former stores only162

m memory vectors per segment. On the other hand, the Transformer-XL stores m×N vectors per163

segment. Also, in the RMT model memory representations from the previous segment are processed164

by Transformer layers together with the current segment tokens. This makes memory part of RMT165

effectively deeper in a number of applied Transformer layers τ × N . Additionally, we allow all166

memory tokens in the read/write block to access all other tokens in the same block. The causal167

attention mask is applied only to tokens of the input sequence. The RMT attention mask is shown in168

Figure 6 (d).169

We train the RMT with Backpropagation Through Time (BPTT). During backward pass, unlike in170

Transformer-XL, memory gradients are not stopped between segments. The number of previous171

segments to backpropagate is a hyperparameter of a training procedure. We vary BPTT unroll in our172

experiments from 0 to 4 previous segments. Increasing this parameter is computationally expensive173

and requires a lot of GPU RAM. However, such techniques as gradient checkpointing could be used174

to alleviate this problem.175

4 Experiments176

We designed our experiments to evaluate the ability of Recurrent Memory Transformers to preserve177

long-term dependencies across multiple input segments. The first set of experiments includes copy,178

reverse, associative retrieval and quadratic equations tasks. The second addresses language modeling179

task for word-level on WikiText-103 (Merity et al., 2017) and for character-level on enwik8 (Mahoney,180

2006). We compare Recurrent Memory Transformer with Transformer and Transformer-XL models.181

4.1 Algorithmic Tasks182

Firstly, we evaluate RMT on algorithmic tasks that require information about the whole input sequence183

to be solved successfully. In a recurrent setting, the model has to keep information about all previous184

segments to make predictions.185

Figure 3: Reverse task in one and four seg-
ments setting for decoder-only models. Dot-
ted lines show segment borders.

In the copy task, an input sequence should be repli-186

cated twice after a special start-to-generate token. In187

the reverse task, an input sequence should be gen-188

erated in a reverse order. Input for the associative189

retrieval task consists of N key-value pairs. Then one190

key is randomly selected, and the task is to produce191

an appropriate value for the selected key. Another192

task is to solve quadratic equations. One example193

consists of an equation, its solution with discriminant,194

and an answer. The task is to generate a solution and195

answer, while only answer quality is evaluated.196

For all tasks, input and output sequences are split197

into segments and processed by models sequentially. Datasets for algorithmic tasks were randomly198

pre-generated, and the same data was used in all experiments.199

Transformer-XL and RMT are decoder-only Transformer models. We do not compute loss over200

the input sequence before the start-to-generate token. The loss is computed over target sequence201

segments only. This procedure is illustrated in Figure 3.202

4.2 Language Modeling203

We use two standard benchmarks for language modeling: WikiText-103 and enwik8. WikiText-204

103 (Merity et al., 2017) is used for word-level language modeling and contains 103M words from205

English Wikipedia articles. Enwik8 (Mahoney, 2006) is used for character-level and consists of 108206

first bytes of XML text dump of the English Wikipedia.207

5



We compare Recurrent Memory Transformer with decoder-only Transformer and Transformer-XL208

as baselines. Model size and training parameters are selected to match Transformer-XL paper. For209

Wikitext-103 an input context length was set to 150 tokens, and for enwik8 it was set to 512 characters.210

Another set of experiments inspected how RMT handles long-term dependencies and recurrence. We211

increased the number of segments and recurrent steps by making segments smaller (50 tokens for212

WikiText-103, 128 characters for enwik8). The increased number of recurrent steps makes language213

modeling tasks harder for RMT because information has to be stored in the same amount of memory214

for more time steps.215

4.3 Implementation details216

Our RMT implementation is based on Transformer-XL repository2. We also use WikiText-103,217

enwik8 data and processing from this repository. Language modeling experiments follow the same218

model and training hyperparameters as Transformer-XL. WikiText-103 experiments use 16-layer219

Transformers, enwik8 – 12 layer Transformers. We refer to Transformer-XL with memory size equal220

to zero as a Baseline.221

With this experimental setup we were able to reproduce results for the Transformer-XL model close222

to the original paper (see Appendix A.4 for enwik8 and Table 2 for WikiText-103).223

5 Results224

Baseline, Tr-XL, RMT perform perfectly in the single segment setting on copy and reverse tasks225

(Figure 4). In this case models do not need recurrence because the whole sequence is available. When226

the number of segments is larger than one, non-recurrent baseline struggles to solve tasks, but both227

memory models demonstrate ability to retain required information from the previous segments in228

memory.229

Figure 4: RMT outperforms Transformer-XL on Copy and Reverse tasks as number of segments
increases. Panels show test set per-character accuracy on copy, reverse, and associative retrieval
tasks (from left to right). Memory/cache size equals to the length of a segment for the both models.
RMT does not pass gradients between segments in this experiment. MT results are the same as for
the Baseline. Source/target sequence lengths for copy, reverse and associative retrieval tasks: 24/48,
24/24, 10/1.

As the number of segments increases, Recurrent Memory Transformer starts to outperform230

Transformer-XL with memory sizes less than the number of all previous tokens. With the number of231

segments up to 6 mean accuracy of Transformer-XL drops by up to 0.2 points, and with 9 segments232

score plunges to an accuracy score of 0.2, close to the baseline without memory.233

Associative retrieval results are similar with the number of segments up to 4. RMT manages to234

solve the task with Transformer-XL closely behind. However, in the setting with 5 segments, RMT235

performance slightly decreases and Transformer-XL average accuracy rises higher.236

On the quadratic equations task (Table 1) we have checked that it is possible to solve the task with237

the Transformer baseline and no segmentation used. The baseline in this case defines upper bound238

2https://github.com/kimiyoung/transformer-xl

6

https://github.com/kimiyoung/transformer-xl


for this task. Enabling recurrence with multiple segments RMT solves the task perfectly, while239

Transformer-XL finds the task challenging.240

Table 1: Test set solve rate for quadratic equations.
Input sequence length is 180 tokens and consists
of quadratic equation, solution, and answer. The
input sequence is split into a number of segments
with an answer as the last segment. Accuracy is
1.0 if the full answer is predicted correctly.

MODEL MEMORY SEGMENTS ACC±STD

BASELINE 0 1 0.99 ± 0.01
TR-XL 30 6 0.93 ± NA

RMT 30 6 0.99 ± 0.002

Results of experiments on word-level language241

modeling on WikiText-103 are shown in Table 2.242

In the first section with a segment length of 150,243

Tr-XL and RMT outperform the baseline and244

Memory Transformer (MT) by a large margin.245

It shows the significance of increased effective246

context length by Tr-XL cache or RMT memory247

for language modeling.248

MT is slightly better than the Transformer base-249

line. This is due to the fact that MT adds special250

memory tokens only to the beginning of an in-251

put sequence. Autoregressive MT has no way252

to write to memory because of the causal at-253

tention mask and, therefore, is unable to pass254

information between segments. Thus, in the au-255

toregressive setting MT could be seen as equiv-256

alent to the prefix/promt-tuning (Li and Liang,257

2021; Lester et al., 2021).258

Table 2: Test set perplexity on WikiText-103. Av-
erage perplexity for the best performed variations
of RMT models reported (see full results in Ap-
pendix A.5). Underlined values show Tr-XL and
RMT models with close results. RMT models with
smaller memory sizes achieve similar scores to
Tr-XL models with larger memory.

MODEL MEMORY SEGMENT LEN PPL±STD

BASELINE 0 150 29.95 ± 0.15
MT 10 150 29.63 ± 0.06
TR-XL (PAPER) 150 150 24.0
TR-XL (OURS) 150 150 24.12 ± 0.05
TR-XL 75 150 24.68 ± 0.01
TR-XL 25 150 25.57 ± 0.02
RMT BPTT-3 10 150 25.04 ± 0.07
RMT BPTT-2 25 150 24.85 ± 0.31

BASELINE 0 50 39.05 ± 0.01
TR-XL 100 50 25.66 ± 0.01
TR-XL 50 50 26.54 ± 0.01
TR-XL 25 50 27.57 ± 0.09
TR-XL 10 50 28.98 ± 0.11
RMT BPTT-1 1 50 28.71 ± 0.03
RMT BPTT-3 10 50 26.37 ± 0.01

RMT improves over MT memory mechanism259

with read/write blocks. The best RMT models260

with memory size 10 and 25 show similar perfor-261

mance as Transformer-XL with a memory size262

equal to 75. RMT learns to use smaller memory263

more effectively than Transformer-XL. Addi-264

tionally, the smaller memory size of RMT leads265

to reducing required GPU memory for running266

the model.267

Decreasing the size of segments to 50, we force268

models to work with longer recurrent dependen-269

cies as the number of recurrent steps increases.270

RMT with memory consisting of a single vec-271

tor shows similar results to Transformer-XL272

with memory size 10. It is worth noting that273

Transformer-XL memory consists of hidden rep-274

resentations from all layers (in this case, it is275

10 × 16 vectors) when RMT memory is only276

memory_size vectors. Transformer-XL with memory size 50 and RMT with memory size 5 shows277

similar perplexity values.278

On enwik8 RMT models with memory size 5 and Transformer-XL with memory size 40 show279

similar results. Confirming that RMT learns to use smaller amounts of memory representation more280

effectively. All experiments results on enwik8 dataset are in Appendix A.4 and Table 3.281

We analyze how number of segments, sequence length, length of training context, and memory size282

affect models’ performance on different tasks in Figure 5. As we split sequence into more segments283

it becomes more crucial to be able to pass information between segments. For the copy task, we284

split 360 tokens sequence into multiple segments. In Figure 5a we observe that Tr-XL performance285

starts to degrade and eventually falls to the baseline model performance as the number of segments286

increases. In contrast, RMT continues to solve the task perfectly. In the more extreme setting, when287

we keep memory size fixed, but increase the total length of sequence Tr-XL fails shortly, while RMT288

starts to degrade on 720 tokens sequence length (Figure 5b).289

Recurrent Memory Transformer learns to make predictions depending on #BPTT_unrolls previous290

segments +1 current segment. Transformer-XL does not use BPTT and relies only on memory_size291

cached states and current segment making in total: memory_size + segment_length tokens. In292

7



1 2 3 4 5 6 7 8 9
Number of segments

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra

cy

Copy 120

Baseline
Transformer-XL
RMT BPTT-0

(a) Increasing number of
segments for a fixed se-
quence length of 360 to-
kens.

200 400 600 800 1000
Source + Target sequence length

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra

cy

Copy

(b) Increasing sequence
length up to 1080 tokens
with 120 tokens segment
and memory size 60.

50 75 100 125 150 175 200 225 250
Visible context while training

25

26

27

28

29

30

31

32

pp
l

1

5
10

25

50

1

5

10

25

50
100

200

Transformer-XL
RMT BPTT-0
RMT BPTT-1
RMT BPTT-2
RMT BPTT-3
RMT BPTT-4

(c) Dependency of test set
perplexity on visible con-
text length at training time.

0 1 5 10 25 50
Memory size

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Te
st

 p
pl

Baseline
Transformer-XL
RMT BPTT-0
RMT BPTT-1
RMT BPTT-2

(d) Increased memory size
and deeper recurrence re-
sult in better performance.

Figure 5: (a) RMT is able to solve copy task perfectly with multiple recurrent steps, while Tr-XL
fails. (b) RMT learns to use memory of the same fixed size more effectively than TR-XL as sequence
length increases. (c&d) WikiText-103 with 50 tokens segment length. (c) Marker size corresponds to
memory size. Visible context at training time can be increased by enlarging Tr-XL cache or using
more BPTT unrolls for RMT. Increasing visible context leads to lower perplexity for both models.
(d) Test set perplexity for different memory sizes. When memory size is zero Tr-XL and RMT are
just baseline Transformer models without recurrence.

Figure 5c, we compare RMT and Tr-XL according to the described value of visible context at training293

time.294

RMT with a single memory vector could be trained to achieve lower perplexity as Transformer-XL295

with memory size 10. It means that RMT can learn to store information from previous observations296

more compactly. Another observation is that RMT with memory sizes 10 and 25 performs worse but297

closely to Transformer-XL even when Transformer-XL has access to more non-compressed states298

(50, 100, 200) from previous segments. Furthermore, we observed instabilities and out-of-memory299

issues during RMT training for a larger number of BPTT unrolls and memory sizes.300

Recurrent Memory Transformer does not benefit from increasing memory size from 5 to 50, but301

results of Transformer-XL better scale with memory size (Figure 5d). RMT models with memory302

size 5 have close results to Transformer-XL with cache 50, confirming that RMT learns to store more303

compact representations. Dynamic of RMT perplexity suggests that there is some optimal memory304

size for RMT to solve the task, and further increase does not add much. Training RMT with one305

BPTT unroll drastically improves its results showing the importance of BPTT training (Figure 5d).306

(a) (b) (c) (d)

Co
py

Re
ve
rs
e

update 
read
mem

update 
write
mem

read
from 
mem

rewrite
mem

write
to
mem

seq 
to 
seq

0 0

0
0

Co
py

Re
ve

rs
e

Figure 6: Selected attention map patterns of memory models. (a) - write to memory, (b) - read
from memory (RMT, segment length=24, memory size=24), (c) - rewrite from read memory to
write memory (RMT, segment length=8, memory size=8), (d) - read from previous hidden states
(Transformer-XL, segment length=24, memory size=24)

8



To get an understanding of memory operations, learned by models during training algorithmic tasks,307

it is useful to look at attention maps. Figure 6 shows some heatmaps from attention layers of models308

trained on copy and reverse. The darkness of each pixel shows how much the element from the309

corresponding row "attends" to its column.310

In each RMT attention map sequence tokens are preceded by read memory, located at the top left311

corner, and followed by write memory at the bottom right. Lines at the central part of (a), top image312

shows classic attention of token sequence to itself, but the bottom line represents the operation of313

writing of sequence tokens to memory in straight order. When completing reverse, the (a), bottom314

image model learns to write the sequence in the reversed order, which is in line with common sense.315

When it comes to reproducing the target sequence, model accesses memory, Figure 6 (b) and writes316

to the output sequence. Another operation (c) is rewriting from read memory to write memory. It is317

commonly used by RMT in settings with larger number of segments to keep information about recent318

segments longer.319

Transformer-XL mechanism of accessing memory (d) does not allow straightforward writing to mem-320

ory without changing sequence token representations. Sequential reading from cache is represented321

by straight lines on Transformer-XL attention maps.322

Using token representations as storage harms model performance in tasks with larger number of323

segments. On reverse with 4 segments Transformer-XL with limited memory size 6, Figure 8 (b)324

attempts to mix representations of tokens and read multiple symbols from one cached state in next325

segments. This results in the average accuracy of 0.8 on the given task. Despite having the same326

memory size, RMT manages to compress the whole segment in memory tokens Figure 8 (a) and327

achieve mean accuracy 1.0.328

Visualizations from Figure 6 and Figure 8 provide evidence to support our hypotheses that Tr-XL329

has to mix representations from previous and current segments in the same hidden states to pass330

information between segments. Also, visualizations show how memory tokens in RMT help mitigate331

such kind of mixing.332

RMT ability of sequence compression to memory is illustrated in Figure 7. For copy with 6333

segments RMT compresses and then reads the sequence of 12 tokens with just 6 memory tokens.334

For Transformer-XL decreasing memory size harms the accuracy score significantly with number of335

segments larger than 2.336

6 Conclusions337

In this paper we introduced Recurrent Memory Transformer a simple recurrent memory augmentation338

of Transformer model. RMT is implemented by extension of an input sequence with special global339

memory tokens and segment-level recurrence.340

In our experiments we compared RMT with Transformer baseline and Transformer-XL which341

is a well-known modification of Transformer for long sequences. RMT almost perfectly solves342

Copy, Reverse as well as quadratic equations tasks for sequences consisting of multiple segments343

outperforming Transformer-XL. It also demonstrates quality for associative retrieval task on par344

with Transformer-XL. As expected, baseline Transformer fails to solve these tasks for multi-segment345

settings.346

RMT trained as language model significantly ahead of Transformer baseline and shows quality347

metrics similar to Transformer-XL but for up to 10 times smaller memory size. Experimental results348

demonstrate that for fixed memory size backpropagating gradients for more segments improves349

performance of RMT. Analysis of attention maps suggests that better RMT performance can be350

related to more effective storage of input representations in dedicated memory tokens compared to351

mixing representations storage in Transformer-XL. Overall, results of the study show that dedicated352

memory storage and recurrence provided by Recurrent Memory Transformer make it a promising353

architecture for applications that require learning of long-term dependencies and general purpose354

in-memory processing, such as algorithmic tasks and reasoning. Furthermore, we believe that RMT355

could open the way for adding memory and recurrence to other models in the Transformer family.356

9



References357

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Philip Pham, Anirudh Ravula, and Sumit Sanghai. Etc:358

Encoding long and structured data in transformers, 2020.359

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast weights to attend360

to the recent past. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural361

Information Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.362

neurips.cc/paper/2016/file/9f44e956e3a2b7b5598c625fcc802c36-Paper.pdf.363

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv preprint364

arXiv:2004.05150, 2020.365

Mikhail S Burtsev, Yuri Kuratov, Anton Peganov, and Grigory V Sapunov. Memory transformer. arXiv preprint366

arXiv:2006.11527, 2020.367

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers,368

2019.369

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural370

machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax,371

Semantics and Structure in Statistical Translation, pages 103–111, Doha, Qatar, October 2014. Association for372

Computational Linguistics. doi: 10.3115/v1/W14-4012. URL https://aclanthology.org/W14-4012.373

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,374

Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers.375

arXiv preprint arXiv:2009.14794, 2020.376

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov. Transformer-xl:377

Attentive language models beyond a fixed-length context, 2019.378

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional379

Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American380

Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long381

and Short Papers), pages 4171–4186, 2019. URL https://aclweb.org/anthology/papers/N/N19/382

N19-1423/.383

SiYu Ding, Junyuan Shang, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. ERNIE-Doc:384

A retrospective long-document modeling transformer. In Proceedings of the 59th Annual Meeting of the385

Association for Computational Linguistics and the 11th International Joint Conference on Natural Language386

Processing (Volume 1: Long Papers), pages 2914–2927, Online, August 2021. Association for Computational387

Linguistics. doi: 10.18653/v1/2021.acl-long.227. URL https://aclanthology.org/2021.acl-long.388

227.389

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: A no-recurrence sequence-to-sequence model for390

speech recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing391

(ICASSP), pages 5884–5888, 2018. doi: 10.1109/ICASSP.2018.8462506.392

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,393

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An394

image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on395

Learning Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.396

Angela Fan, Thibaut Lavril, Edouard Grave, Armand Joulin, and Sainbayar Sukhbaatar. Addressing some397

limitations of transformers with feedback memory. arXiv preprint arXiv:2002.09402, 2020.398

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines, 2014.399

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska,400

Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia,401

Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield,402

Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis. Hybrid computing using a neural network with403

dynamic external memory. Nature, 538(7626):471–476, October 2016. ISSN 00280836. URL http:404

//dx.doi.org/10.1038/nature20101.405

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to transduce with406

unbounded memory, 2015.407

10

https://proceedings.neurips.cc/paper/2016/file/9f44e956e3a2b7b5598c625fcc802c36-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/9f44e956e3a2b7b5598c625fcc802c36-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/9f44e956e3a2b7b5598c625fcc802c36-Paper.pdf
https://aclanthology.org/W14-4012
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclanthology.org/2021.acl-long.227
https://aclanthology.org/2021.acl-long.227
https://aclanthology.org/2021.acl-long.227
https://openreview.net/forum?id=YicbFdNTTy
http://dx.doi.org/10.1038/nature20101
http://dx.doi.org/10.1038/nature20101
http://dx.doi.org/10.1038/nature20101


Caglar Gulcehre, Sarath Chandar, Kyunghyun Cho, and Yoshua Bengio. Dynamic neural turing machine with408

soft and hard addressing schemes. arXiv preprint arXiv:1607.00036, 2016.409

Caglar Gulcehre, Sarath Chandar, and Yoshua Bengio. Memory augmented neural networks with wormhole410

connections. arXiv preprint arXiv:1701.08718, 2017.411

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang. Star-transformer, 2019.412

Ankit Gupta and Jonathan Berant. Gmat: Global memory augmentation for transformers. arXiv preprint413

arXiv:2006.03274, 2020.414

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780,415

November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/416

neco.1997.9.8.1735.417

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda418

Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A general architecture for419

structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021.420

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets, 2015.421

Da Ju, Stephen Roller, Sainbayar Sukhbaatar, and Jason Weston. Staircase attention for recurrent processing of422

sequences. arXiv preprint arXiv:2106.04279, 2021.423

Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. Large424

memory layers with product keys, 2019.425

Jie Lei, Liwei Wang, Yelong Shen, Dong Yu, Tamara L. Berg, and Mohit Bansal. Mart: Memory-augmented426

recurrent transformer for coherent video paragraph captioning, 2020.427

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In428

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3045–3059,429

Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.430

doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243.431

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings432

of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International433

Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597, Online,434

August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353. URL435

https://aclanthology.org/2021.acl-long.353.436

Matt Mahoney. Large text compression benchmark, 2006. URL http://www.mattmahoney.net/dc/text.437

html.438

Pedro Henrique Martins, Zita Marinho, and André FT Martins. ∞-former: Infinite memory transformer. arXiv439

preprint arXiv:2109.00301, 2021.440

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin441

of mathematical biophysics, 5(4):115–133, 1943.442

Yuanliang Meng and Anna Rumshisky. Context-aware neural model for temporal information extraction. In443

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long444

Papers), pages 527–536, 2018.445

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.446

In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,447

2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?448

id=Byj72udxe.449

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understand-450

ing by generative pre-training. 2018. URL https://www.cs.ubc.ca/~amuham01/LING530/papers/451

radford2018improving.pdf.452

Jack W Rae, Jonathan J Hunt, Tim Harley, Ivo Danihelka, Andrew Senior, Greg Wayne, Alex Graves, and453

Timothy P Lillicrap. Scaling memory-augmented neural networks with sparse reads and writes, 2016.454

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. Compressive transformers for455

long-range sequence modelling, 2019.456

11

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353
http://www.mattmahoney.net/dc/text.html
http://www.mattmahoney.net/dc/text.html
http://www.mattmahoney.net/dc/text.html
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf


Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya457

Sutskever. Zero-shot text-to-image generation. In Marina Meila and Tong Zhang, editors, Proceedings of458

the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning459

Research, pages 8821–8831. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/460

ramesh21a.html.461

C Stephen. Kleene. representation of events in nerve nets and finite automata. Automata studies, 1956.462

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks, 2015.463

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,464

and Illia Polosukhin. Attention is All you Need. In Advances in neural information processing systems, pages465

5998–6008, 2017. URL http://papers.nips.cc/paper/7181-attention-is-all-you-need.466

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear467

complexity, 2020.468

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10):469

1550–1560, 1990.470

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks, 2014.471

Qingyang Wu, Zhenzhong Lan, Jing Gu, and Zhou Yu. Memformer: The memory-augmented transformer. arXiv472

preprint arXiv:2010.06891, 2020.473

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip474

Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for longer sequences,475

2020.476

Checklist477

1. For all authors...478

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s479

contributions and scope? [Yes]480

(b) Did you describe the limitations of your work? [Yes] We mention training instabilities481

and GPU RAM issues in Section 5.482

(c) Did you discuss any potential negative societal impacts of your work? [No] The483

proposed model and method do not have any specific impacts. All general negative484

societal impacts applicable to the field could be potentially relative.485

(d) Have you read the ethics review guidelines and ensured that your paper conforms to486

them? [Yes]487

2. If you are including theoretical results...488

(a) Did you state the full set of assumptions of all theoretical results? [N/A]489

(b) Did you include complete proofs of all theoretical results? [N/A]490

3. If you ran experiments...491

(a) Did you include the code, data, and instructions needed to reproduce the main exper-492

imental results (either in the supplemental material or as a URL)? [Yes] We include493

code, training scripts, and raw experimental data in the supplementary material. The494

supplemental materials would be published on github with the final version of the paper.495

Instructions for language modeling data&experiments are taken from Tr-XL repo.496

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were497

chosen)? [Yes] See Section 4.3, Appendix A, and provided supplementary material.498

(c) Did you report error bars (e.g., with respect to the random seed after running exper-499

iments multiple times)? [Yes] All the key experiments results are reported with std.500

Furthermore, we provide raw experimental data in the supplementary materials.501

(d) Did you include the total amount of compute and the type of resources used (e.g., type502

of GPUs, internal cluster, or cloud provider)? [Yes] We used different GPUs depending503

on the task: 1080Ti, V100, A100. We provide this information in Appendix A for each504

task.505

12

https://proceedings.mlr.press/v139/ramesh21a.html
https://proceedings.mlr.press/v139/ramesh21a.html
https://proceedings.mlr.press/v139/ramesh21a.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need


4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...506

(a) If your work uses existing assets, did you cite the creators? [Yes] We refer to the507

original Tr-XL code and Tr-XL paper. We use it for establish baselines and setting our508

methods. See Section 4.3509

(b) Did you mention the license of the assets? [No] Tr-XL licence is Apache 2.0 and510

available at its github repo.511

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]512

Our code is in the supplemental material.513

(d) Did you discuss whether and how consent was obtained from people whose data you’re514

using/curating? [No] We used publicly available Tr-XL code (Apache 2.0) and datasets.515

(e) Did you discuss whether the data you are using/curating contains personally identifiable516

information or offensive content? [No] We use either synthetic data or datasets collected517

from the Wikipedia (Wikitext-103, enwik8).518

5. If you used crowdsourcing or conducted research with human subjects...519

(a) Did you include the full text of instructions given to participants and screenshots, if520

applicable? [N/A]521

(b) Did you describe any potential participant risks, with links to Institutional Review522

Board (IRB) approvals, if applicable? [N/A]523

(c) Did you include the estimated hourly wage paid to participants and the total amount524

spent on participant compensation? [N/A]525

A Training details and additional results526

A.1 Algorithmic tasks527

Datasets were randomly generated by uniformly sampling tokens from dictionary into task sequences528

and generating targets accordingly to the tasks. After generation, datasets are fixed for all experiments.529

Copy and reverse use sequences of sizes 24, 40, 120, 240, and 360, making total copy/reverse530

input length 48/72, 80/120, 240/360, 480/720, 720/1080. The associative retrieval task consists of 4531

key-value pairs and one randomly selected key; the answer consists of one value. Train, validation532

and test sizes of copy 24, reverse 24 and associative retrieval datasets are 100000, 5000 and 10000.533

Transformer-XL had the same cache size on training and validation to match RMT.534

For training all models on copy and reverse, we used constant learning rate 1e-4 with reduction on535

plateau with decay factor of 0.5. Copy and reverse were solved by models with 4 layers and 4 heads,536

associative retrieval models had 6 layers and 4 heads. Models with the same context size and memory537

size were trained for the same number of steps and the same training parameters.538

Experiments with sequence length 24 were conducted on a single Nvidia GTX 1080 Ti GPU from 1539

hour to 2-3 days. Copy and reverse on longer sequence lengths were done on more powerful Tesla540

V100 using 1-3 devices with training time varying from 1 hour to 3-4 days.541

Figure 7: Test set per-character accuracy on copy (a), reverse with a sequence length 24 (b) and 120
(c). Memory size is limited to half of the length of a segment for (a) and (b) and to 60 tokens for (c).
Target sequence length equals source length for reverse and doubles for the copy.

13



A.2 Associative retrieval542

We used code for the task dataset generation from (Ba et al., 2016)3.543

A.3 Quadratic equations544

This dataset consists of equations with integer coefficients with step-by-step solutions using a545

discriminant. Process of equation generation is started from uniformly sampling real roots x1, x2546

from -100 to 100. The answer of an equation is represented as x1, x2. Next, we find the equation as547

multiplication of two parentheses (x− x1)(x− x2) = 0, which is expanded to x2 − (x1 + x2)x+548

x1x2 = 0. Next, we multiply all coefficients by a random natural number α from 1 to 10. The final549

equation form is αx2 − α(x1 + x2)x + αx1x2 = 0. A dataset sample is made of these stages in550

reversed order. We also provide a string with the discriminant calculation to help find the equation551

roots. 20 percent of equations in the dataset do not have real roots.552

Example equation string:553

-4*xˆ2+392*x-2208=0,554

solution string:555

xˆ2-98*x+552=0;D=98ˆ2-4*1*552=7396=86ˆ2;x=(98-86)/2=6;x=(98+86)/2=92 ,556

and answer:557

6,92558

Each solution step is tokenized on char level and padded to the length of 30 tokens. The total length559

of each training sample is 180, the dataset has 100000 training, 10000 validation and 20000 test560

samples.561

For this task we used models with 6 layers, 6 heads and segment sizes 180 and 30. Trained was562

performed with the same schedule as copy and reverse on a single GTX 1080 ti for 1-2 days. Memory563

size for RMT and Transformer-XL was chosen equal to the segment length.564

A.4 Enwik8565

We verified our experimental setup by reproducing Transformer-XL results on enwik8 dataset566

(Table 3). We used 12-layer Baseline (Transformer), Transformer-XL, RMT in all enwik8 experiments.567

All results on enwik8 dataset are in Table 3. We used 2 NVIDIA A100 80Gb GPUs, training time568

varied from 10 to 30 hours depending on sequence length, memory size, and number of BPTT unrolls.569

A.5 WikiText-103570

We used 16-layer models in all experiments on WikiText-103 dataset. Training hyperparameters were571

used from (Dai et al., 2019) and authors PyTorch scripts4. All results on WikiText-103 dataset are in572

Table 4. In most of the WikiText-103 experiments, we used 2 NVIDIA A100 80Gb GPUs, training573

time varied from 10 to 30 hours depending on sequence length, memory size, and number of BPTT574

unrolls.575

3https://github.com/GokuMohandas/fast-weights/blob/539fb10e3c384d5f782af2560bf28631cd0eaa61/
fw/data_utils.py

4https://github.com/kimiyoung/transformer-xl

14

https://github.com/GokuMohandas/fast-weights/blob/539fb10e3c384d5f782af2560bf28631cd0eaa61/fw/data_utils.py
https://github.com/GokuMohandas/fast-weights/blob/539fb10e3c384d5f782af2560bf28631cd0eaa61/fw/data_utils.py
https://github.com/kimiyoung/transformer-xl


Table 3: Test set bits-per-character on enwik8. Our experimental setup shows similar scores to the
original paper (Dai et al., 2019) with segment length 512.

MODEL MEMORY SEGMENT LEN BPC±STD

TR-XL (DAI ET AL., 2019) 512 512 1.06
TR-XL (OURS) 512 512 1.071

TR-XL 200 128 1.140
TR-XL 100 128 1.178
TR-XL 75 128 1.196
TR-XL 40 128 1.230 ± 0.001

TR-XL 20 128 1.261
TR-XL 10 128 1.283 ± 0.001

RMT BPTT-1 5 128 1.241 ± 0.002

RMT BPTT-2 5 128 1.231 ± 0.002

RMT BPTT-1 10 128 1.240 ± 0.006

RMT BPTT-2 10 128 1.228 ± 0.003

RMT BPTT-0 20 128 1.301
RMT BPTT-1 20 128 1.229
RMT BPTT-2 20 128 1.222

15



Table 4: Test set perplexity on WikiText-103. All experiments with RMT and Tr-XL models.

MODEL MEMORY SEGMENT LEN PPL±STD

BASELINE 0 150 29.95 ± 0.15

MT 10 150 29.63 ± 0.06

MT 25 150 29.67 ± 0.03

MT 75 150 29.69 ± 0.02

MT 150 150 29.82 ± 0.35

TR-XL (PAPER) 150 150 24.0
TR-XL (OURS) 150 150 24.12 ± 0.05

TR-XL 75 150 24.68 ± 0.01

TR-XL 25 150 25.57 ± 0.02

RMT BPTT-0 10 150 26.85 ± 0.02

RMT BPTT-1 10 150 25.92 ± 1.07

RMT BPTT-2 10 150 25.32 ± 0.61

RMT BPTT-3 10 150 25.04 ± 0.07

RMT BPTT-0 25 150 29.73
RMT BPTT-1 25 150 24.91
RMT BPTT-2 25 150 24.85 ± 0.31

BASELINE 0 50 39.05 ± 0.01

TR-XL 200 50 25.14
TR-XL 100 50 25.66 ± 0.01

TR-XL 50 50 26.54 ± 0.01

TR-XL 25 50 27.57 ± 0.09

TR-XL 10 50 28.98 ± 0.11

TR-XL 5 50 30.06 ± 0.07

TR-XL 1 50 32.35 ± 0.03

RMT BPTT-0 1 50 31.33 ± 1.26

RMT BPTT-1 1 50 28.71 ± 0.03

RMT BPTT-2 1 50 28.44
RMT BPTT-3 1 50 28.40 ± 0.03

RMT BPTT-0 5 50 30.32 ± 0.18

RMT BPTT-1 5 50 27.05 ± 0.20

RMT BPTT-2 5 50 26.83 ± 0.18

RMT BPTT-3 5 50 26.75 ± 0.26

RMT BPTT-4 5 50 26.67 ± 0.03

RMT BPTT-0 10 50 30.69 ± 0.01

RMT BPTT-1 10 50 27.95 ± 1.32

RMT BPTT-2 10 50 26.62 ± 0.34

RMT BPTT-3 10 50 26.37 ± 0.01

RMT BPTT-4 10 50 26.25 ± 0.19

RMT BPTT-0 25 50 29.75
RMT BPTT-1 25 50 26.32
RMT BPTT-2 25 50 27.31
RMT BPTT-0 50 50 29.75
RMT BPTT-1 50 50 26.03

16



B Operations with Memory576

Figure 8: Approaches to compression and decompression of sequence with length 12 and memory
with size 6. (a) - RMT, (b) - Transformer-XL.

17


	Introduction
	Related work
	Recurrent Memory Transformer
	Background: Transformer-XL
	Memory and recurrence

	Experiments
	Algorithmic Tasks
	Language Modeling
	Implementation details

	Results
	Conclusions
	Training details and additional results
	Algorithmic tasks
	Associative retrieval
	Quadratic equations
	Enwik8
	WikiText-103

	Operations with Memory

