
Under review as a conference paper at ICLR 2023

STATIC PREDICTION OF RUNTIME ERRORS
BY LEARNING TO EXECUTE PROGRAMS
WITH EXTERNAL RESOURCE DESCRIPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The execution behavior of a program often depends on external resources, such
as program inputs or file contents, and so the program cannot be run in isola-
tion. Nevertheless, software developers benefit from fast iteration loops where
automated tools identify errors as early as possible, even before programs can be
compiled and run. This presents an interesting machine learning challenge: can
we predict runtime errors in a “static” setting, where program execution is not
possible? Here, we introduce a competitive programming dataset and task for pre-
dicting runtime errors, which we show is difficult for generic models like Trans-
formers. We approach this task by developing an interpreter-inspired architecture
with an inductive bias towards mimicking program executions, which models ex-
ception handling and “learns to execute” descriptions of external resources. Sur-
prisingly, we show that the model can also predict the locations of errors, despite
being trained only on labels indicating error presence or absence and kind. In
total, we present a practical and difficult-yet-approachable challenge problem re-
lated to learning program execution behavior and we demonstrate promising new
capabilities of interpreter-inspired machine learning models for code.

1 INTRODUCTION

We investigate applying neural machine learning methods to the static analysis of source code for
early prediction of runtime errors. The execution behavior of a program is in general not fully
defined by its source code in isolation, because programs often rely on external resources like inputs,
the contents of files, or the network. Nevertheless, software developers benefit from fast iteration
loops where automated tools identify errors early, even when program execution is not yet an option.
Therefore we consider the following machine learning challenge: can we predict runtime errors in a
“static” setting, where program execution is not possible?

This runtime error prediction task is well suited as a challenge problem because it is difficult-yet-
approachable, has real-world value for software developers, requires novel modeling considerations
that we hypothesize will be applicable to a range of learning for code tasks, and with this work,
now has a suitable large dataset of complex human-authored code with error labels. The task is to
predict whether a program will exhibit a runtime error when it is run, and if so to determine the
error; even when static analysis cannot provide guarantees of an error in the code, patterns learned
from data may point to likely errors. Our dataset consists of 2.4 million Python 3 programs from
Project CodeNet (Puri et al., 2021) written by competitive programmers. We have run all programs
in a sandboxed environment on sample inputs to determine their error classes, finding the programs
exhibit 26 distinct error classes including “no error”. Each program relies on an external resource,
the stdin input stream, and we pair the programs with a natural language description of the behavior
of the stream. We make the task and dataset, along with all models considered in this work, available
for the research community to facilitate reproduction of this work and further research1.

To make progress on this challenging task, we identify a promising class of models from prior work,
interpreter-inspired models, and we demonstrate they perform well on the task. Instruction Pointer

1URL removed for double-blind review.

1

Under review as a conference paper at ICLR 2023

Attention Graph Neural Network (IPA-GNN) (Bieber et al., 2020) models simulate the execution
of a program, following its control flow structure, but operating in a continuous embedding space.
We make a number of improvements to IPA-GNN: scaling up to handle complex programs requir-
ing thousands of execution steps, adding the ability to “learn to execute” descriptions of external
resources, and extending the architecture to model exception handling and recover error locations.
We evaluate these interpreter-inspired architectures against Transformer, LSTM, and GGNN neu-
ral baselines, and against pylint as a static analysis baseline. Our combined improvements lead to
increased accuracy in predicting runtime errors and to interpretability allowing for prediction of er-
ror locations even though the models are only trained on error presence and error class, not error
location. In total, we summarize our contributions as:

• We introduce the runtime error prediction task and a large accompanying dataset, providing run-
time error annotations for millions of competition Python programs.

• We demonstrate that IPA-GNN architectures are practical for the complexity of real programs by
scaling them to handle competition programs, and there we find they outperform generic models.

• We demonstrate that external resource descriptions, such as Japanese or English descriptions of
stdin, can be leveraged to improve performance on the task across all model architectures.

• We extend the IPA-GNN to model exception handling, resulting in the Exception IPA-GNN, which
we find can localize errors even when only trained on error presence and kind, not error location.

2 RELATED WORK

Program analysis Program analysis is a rich family of techniques for detecting defects in pro-
grams, including static analyses which are performed without executing code (Livshits and Lam,
2005; Xie and Aiken, 2006; Ayewah et al., 2008) and dynamic analyses which are performed at
runtime (Cadar et al., 2008; Sen et al., 2005; Godefroid et al., 2005). Linters and type checkers
are popular error detection tools that use static analysis. Static analysis (e.g. symbolic execution)
does not typically use concrete inputs, while dynamic analysis requires concrete inputs and pro-
gram execution. Compared with traditional static analysis, our approach is more flexible in its input
representation, using a general “resource description” abstraction, which can represent the entire
spectrum from concrete inputs to input constraints to missing inputs.

Execution-aware models Several neural architectures draw inspiration from program interpreters
(Graves et al., 2014; Łukasz Kaiser and Sutskever, 2016; Reed and de Freitas, 2016; Graves et al.,
2016; Bošnjak et al., 2017; Gaunt et al., 2017; Dehghani et al., 2019; Bieber et al., 2020). Our work
is most similar to Bieber et al. (2020) and Bošnjak et al. (2017), focusing on how interpreters handle
control flow and exception handling, rather than on memory allocation and function call stacks.
Other works use program execution data directly, training with textual representations of execution
traces as inputs (Nye et al., 2021a; Pei et al., 2021; Nye et al., 2021b) or performing execution
during synthesis (Chen et al., 2019; Li et al., 2022; Shrivastava et al., 2021). Compared with these
our approach uses weaker supervision, using only runtime error labels for training.

Fault detection and localization datasets There has been considerable recent interest in applying
machine learning to identifying and localizing faults in source code (Allamanis et al., 2018a). Puri
et al. (2021) makes a large dataset of real world programs available, which we build on in construct-
ing our runtime errors dataset. Our dataset (i) is large (it has millions of examples), (ii) exhibits
many programming language features, (iii) is written by human authors, and (iv) has error labels
from the execution behavior of programs. Previous code datasets only exhibit a subset of these
properties: large real-world and competition code datasets (Hendrycks et al., 2021; Li et al., 2022;
Kanade et al., 2020; Raychev et al., 2016; Husain et al., 2019; Puri et al., 2021) exhibit properties i,
ii, and iii, but not iv, while learning to execute datasets (Zaremba and Sutskever, 2014; Bieber et al.,
2020) exhibit property iv but not i, ii, or iii. Recent program synthesis datasets (Chen et al., 2021;
Austin et al., 2021) exhibit ii and iii only. Other datasets obtain error labels by injecting synthetic
errors (Allamanis et al., 2018b; Karampatsis and Sutton, 2020; Pradel and Sen, 2018) (lacking the
realism of iii) or from commit messages (Just et al., 2014; Dinella et al., 2020) (lacking i and iv).

Fault localization approaches Fault localization approaches vary in (i) level of supervision –
weak (error labels) (Li et al., 2019) vs strong (explicit location labels) (Lou et al., 2021; Zhang et al.,

2

Under review as a conference paper at ICLR 2023

TARGET CLASS TRAIN # VALID # TEST #

No error 1881303 207162
205343 /
13289†

AssertionError 47 4 8
AttributeError 10026 509 1674

EOFError 7676 727 797
FileNotFoundError 259 37 22

ImportError 7645 285 841
IndentationError 10 0 12

IndexError 7505 965 733
KeyError 362 39 22

MemoryError 8 7 1
ModuleNotFoundError 1876 186 110

NameError 21540 2427 2422

TARGET CLASS TRAIN # VALID # TEST #

numpy.AxisError 20 2 3
OSError 19 2 2

OverflowError 62 6 11
re.error 5 0 0

RecursionError 2 0 1
RuntimeError 24 5 3
StopIteration 3 0 1
SyntaxError 74 4 3

TypeError 21414 2641 2603
UnboundLocalError 8585 991 833

ValueError 25087 3087 2828
ZeroDivisionError 437 47 125

Timeout 7816 1072 691
Other 18 8 2

Table 1: Distribution of target classes in the runtime errors dataset. † denotes the balanced test split.

2019; Zhou et al., 2019; Allamanis et al., 2021) – and (ii) localization granularity – statement-level
(Lou et al., 2021; Zhang et al., 2019; Allamanis et al., 2021) vs method-level (Li et al., 2019; Zhou
et al., 2019). Our approach uses weak supervision in the form of runtime error labels to indirectly
learn fault localization at a statement-level.

3 RUNTIME ERROR PREDICTION

Task The goal of the runtime error prediction task is to determine statically whether a program is
liable to encounter a runtime error when run, and if so, what error kind. The programs cannot be
executed directly, as they lack unit tests and depend on external resources which are not available.
A textual description of the external resources, which may be the program’s inputs, a file’s contents,
or network access, is provided. This makes reasoning about the execution behavior of the programs
plausible, even though actually performing the execution is not. We treat this task as one-class
classification, with each error type as its own class and with “no error” as an additional class.

Dataset We construct the runtime errors dataset using Python submissions to competitive pro-
gramming problems from Project CodeNet (Puri et al., 2021). Beginning with the 3.28 million
Python submissions in Project CodeNet, we filter the submissions to keep only those written in
Python 3, which are syntactically valid, which do not make calls to user-defined functions, and
which do not exceed a threshold length of 512 tokens once tokenized. By running each submission
in a sandboxed environment, we identify its ground truth runtime error class. Each submission is
associated with a competitive programming problem whose problem statement we parse to obtain
a description in either English or Japanese of the inputs the program is liable to receive at runtime.
This process results in a dataset of 2.44 million submissions, each paired with one of 26 target
classes. The “no error” target is most common, accounting for 93.4% of examples. For examples
with one of the other 25 error classes, we additionally note the line number at which the error occurs.

We divide the problems into train, validation, and test splits at a ratio of 80:10:10. All submissions to
the same problem become part of the same split. This reduces similarities between examples across
splits that otherwise could arise from the presence of multiple similar submissions for the same
problem. Since there is a strong class imbalance in favor of the no error class, we also produce a
balanced version of the test split by sampling the no error examples such that they comprise roughly
50% of the test split. We use this balanced test split for all evaluations. We report the number of
examples having each target class in each split in Table 1. We describe the full dataset generation
and filtering process in greater detail in Appendix A, and we evaluate the limitations of the dataset
quantitatively in Appendix B.

While there are many datasets in the literature that test understanding of different aspects of code
including bug-finding, we believe ours fills a gap: it is large-scale (millions of examples), it has
real-world implications and presents a practical opportunity for improvement using ML-based ap-
proaches, and it tests a combination of statistical reasoning and reasoning about program execution.

3

Under review as a conference paper at ICLR 2023

Algorithm 1 Interpreter for which the Exception IPA-GNN is a continuous relaxation
Input: Program x

1: h← ∅; p← 0 ▷ Initialize the interpreter.
2: while p /∈ {nexit, nerror} do
3: h← Evaluate(xp, h) ▷ Evaluate the current statement.
4: if Raises(xp, h) then
5: p← GetRaiseNode(xp, h) ▷ Raise exception.
6: else
7: if Branches(xp, h) then
8: p← GetBranchNode(xp, h) ▷ Follow branch.
9: else

10: p← p+ 1 ▷ Proceed to next statement.

4 APPROACH: IPA-GNNS AS RELAXATIONS OF INTERPRETERS

We make three modifications to the Instruction Pointer Attention Graph Neural Network (IPA-GNN)
architecture. These modifications scale the IPA-GNN to complex code, allow it to incorporate ex-
ternal resource descriptions into its learned executions, and add support for modeling exception
handling. The IPA-GNN architecture is a continuous relaxation of the standard interpreter (I) de-
fined by the pseudocode in Algorithm 1, minus the magenta text. We frame these modifications in
relation to specific lines of the algorithm: scaling the IPA-GNN to complex human-authored code
(Section 4.1) and incorporating external resource descriptions (Section 4.2) both pertain to interpret-
ing and executing statement xp at Line 3, and modeling exception handling adds the magenta text at
lines 4-6 to yield a new interpreter (I ′) (Section 4.3). We showcase the behavior of both interpreters
I and I ′ on a sample program in Figure 1, and illustrate an execution of the same program by a
continuous relaxation of interpreter I ′ (Ĩ ′) alongside it.

4.1 EXTENDING THE IPA-GNN TO REAL PROGRAMS

Bieber et al. (2020) interprets the IPA-GNN architecture as a message passing graph neural network
operating on the statement-level control-flow graph of the input program x. Each node in the graph
corresponds to a single statement in the program. At each step t of the architecture, each node
performs three steps: it executes the statement at that node (Line 3, Equation 2), computes a branch
decision (Lines 7-8, Equation 4), and performs mean-field averaging over the resulting states and
instruction pointers (Equations 5 and 6 in Bieber et al. (2020); Appendix C).

Unlike in Bieber et al. (2020) where program statements are simple enough to be uniformly encoded
as four-tuples, the programs in our runtime errors dataset consist of arbitrarily complex Python

n SOURCE

1 x = input()
2 if x > 0:
3 y = 4/3 * x
4 else:
5 y = abs(x)
6 z = y + sqrt(x)
7 <exit>
8 <raise>

(a) A sample program illustra-
tive of Algorithm 1 behavior,
which raises a ValueError if
x < 0 at line 6.

STDIN -3
STDIN DESCRIPTION "A SINGLE INTEGER -10..10"

(b) The resource description suggests values the program may receive on stdin.

t hA,B pI pI′ hĨ′ pĨ′

0 {} 1 1 10000000
1 {x: -3} 2 2 01000000
2 {x: -3} 5 5 00001000
3 {x: -3, y: 3} 6 6 00000100
4 ValueError: line 6 7 8 00000001

(c) Step-by-step execution of the program under interpreters I and I ′, and
continuous relaxation Ĩ ′. Distinct colors represent distinct embedding values.

Figure 1: A sample program and its execution under discrete interpreters I and I ′ (Algorithm 1) and
under continuous relaxation Ĩ ′ of interpreter I ′. pI t denotes the instruction pointer under I at step t.

4

Under review as a conference paper at ICLR 2023

statements authored by real programmers in a competition setting. The language features used are
numerous and varied, and so the statement lengths vary substantially, with a mean statement length
of 6.7 tokens; we report the full distribution of statement lengths in Figure 4.

The IPA-GNN architecture operates on a program x’s statement-level control-flow graph, and so
requires per-statement embeddings Embed(xn) for each statement xn. We first apply either a local
or global Transformer encoder to produce per-token embeddings, and we subsequently apply one
of four pooling variants to a span of such embeddings to produce a node embedding per statement
in a program. In the local approach, we apply an attention mask to limit the embedding of a token
in a statement to attending to other tokens in the same statement. In the global approach, no such
attention mask is applied, and so every token may attend to every other token in the program. We
consider four types of pooling in our hyperparameter search space: first, sum, mean, and max. The
resulting embedding is given by

Embed(xn) = Pool
(
Transformer(x)Span(x,n)

)
. (1)

First pooling takes the embedding of the first token in the span of node n. Sum, mean, and max
pooling apply their respective operations to the embeddings of all tokens in the span of node n.

Finally we find that the programs in our dataset require as many as 174 steps of the IPA-GNN under
the model’s heuristic for step limit T (x) (Appendix E). To reduce the memory requirements, we
apply rematerialization at each layer of the model (Griewank and Walther, 2000; Chen et al., 2016).

4.2 EXECUTING WITH RESOURCE DESCRIPTIONS

In our dataset, each program x may be accompanied by a description of what values stdin may
contain at runtime. We convert this description into embedding d(x); the embeddings, vocabulary,
and tokenizer used to produce d(x) are shared with those used to produce token embeddings from
program source. Analogous to Line 1 of Algorithm 1, IPA-GNN architectures initialize with per-
node hidden states h0,: = 0 and soft instruction pointer p0,n = 1{n = 0}. Here pt,n represents
the probability under the model that at node n is executing at step t. Following initialization, each
step of an IPA-GNN begins by simulating execution (Line 3) of each non-terminal statement with
non-zero probability under the soft instruction pointer to propose a new hidden state contribution

a
(1)
t,n = RNN(ht−1,n,Modulate(Embed(xn), d(x), ht−1,n)). (2)

The text in magenta shows our modification to the IPA-GNN architecture to incorporate external
resource descriptions. We consider both Feature-wise Linear Modulation (FiLM) (Perez et al., 2017)
and cross-attention (Lee et al., 2019) for the Modulate function, which we define in Appendix D.
Modulation allows the IPA-GNN to execute differently at each step conditioned on the information
in the resource description, whether that be type information, value ranges, or candidate values.

We also consider an additional method: injecting the description as a docstring at the start of the
program. This method yields a new valid Python program, and so any model can accommodate it.

4.3 MODELING EXCEPTION HANDLING

The final modification we make to the IPA-GNN architecture is to model exception handling. In
Algorithm 1, this corresponds to adding the magenta text to form interpreter I ′, computing a raise
decision (Lines 4-6, Equation 3). We call the architecture that results the “Exception IPA-GNN”.

Whereas execution always proceeds from statement to next statement in interpreter I and in the IPA-
GNN, interpreter I ′ admits another behavior. Under I ′ and the Exception IPA-GNN, execution may
proceed from any statement to a surrounding “except block”, if it is contained in a try/except frame,
or else to a special global error node, which we denote nerror. In the sample execution in Figure 1c
we see at step t = 4 the instruction pointer pB updates to nerror = 8.

We write that the IPA-GNN makes raise decisions as

bt,n,r(n), (1− bt,n,r(n)) = softmax
(
Dense(a

(1)
t,n)
)
. (3)

The dense layer here has two outputs representing the cases that an error is and is not raised. Here
r(n) denotes the node that statement n raises to; r(n) = nerror if n is not contained in a try/except
frame, and bt,n,n′ denotes the probability under the model of execution transitioning from n to n′.

5

Under review as a conference paper at ICLR 2023

Next the model makes soft branch decisions in an analogous manner; the dense layer for making
branch decisions has distinct weights from the layer for making raise decisions.

bt,n,n1
, bt,n,n2

= (1 − bt,n,r(n)) · softmax
(
Dense(a

(1)
t,n)
)
. (4)

The text in magenta corresponds to the “else” at Line 6. The model has now assigned probability
to up to three possible outcomes for each node: the probability that n raises an exception bt,n,r(n),
the probability that the true branch is followed bt,n,n1 , and the probability that the false branch is
followed bt,n,n2 . In the common case where a node is not a control node and has only a single
successor, the probability of reaching that successor is simply 1− bt,n,r(n).

Finally, we assign each program a step limit T (x) using the same heuristic as Bieber et al. (2020),
detailed in Appendix E. After T (x) steps of the architecture, the model directly uses the probability
mass at nexit and nerror to predict whether the program raises an error, and if so it predicts the error
type using the hidden state at the error node. We write the modified IPA-GNN’s predictions as

P (no error) ∝ pT (x),nexit and P (error) ∝ pT (x),nerror , with (5)

P (error = k | error) = softmax
(
Dense(hT (x),nerror)

)
. (6)

We train with a cross-entropy loss on the class predictions, treating “no error” as its own class.

4.4 UNSUPERVISED LOCALIZATION OF ERRORS

Since the Exception IPA-GNN makes soft decisions as to when to raise an exception, we aggregate
these soft decisions to obtain the model’s prediction for where a program raises an error. We use this
to evaluate the model’s localization accuracy despite training without error locations as supervision.

For programs that lack try/except frames, we compute the localization predictions of the model by
summing, separately for each node, the contributions from that node to the exception node across
all time steps. This gives an estimate of exception provenance as

p(error at statement n) =
∑
t

pt,n · bt,n,nerror . (7)

For programs with a try/except frame, we must trace the exception back to the statement that origi-
nally raised it. To do this we calculate a recurrence as detailed in Appendix H.

5 EXPERIMENTS

In our experiments we evaluate the following research questions:

RQ1: How does the adaptation of the IPA-GNN to realistic code compare against existing static
analysis and against standard architectures like GGNN, LSTM, and Transformer? (Section 5.1)

RQ2: What is the impact of including resource descriptions? What methods for incorporating them
work best? (Section 5.2)

RQ3: How interpretable are the soft instruction pointer values in the Exception IPA-GNN for local-
izing errors? How does unsupervised localization with the Exception IPA-GNN compare to alterna-
tive unsupervised localization approaches based on multiple instance learning? (Section 5.3)

5.1 EVALUATION OF IPA-GNN AGAINST BASELINES

We describe the experimental setup for our first experiment, comparing the IPA-GNN architec-
tures with Transformer (Vaswani et al., 2017), GGNN (Li et al., 2017), and LSTM (Hochreiter and
Schmidhuber, 1997) baselines. In all approaches, we use the 30,000 token vocabulary constructed
in Appendix A, applying Byte-Pair Encoding (BPE) tokenization (Sennrich et al., 2016) to tokenize
each program into a sequence of token indices. The Transformer operates on this sequence of to-
ken indices directly, with its final representation computed via mean pooling. For all other models
(GGNN, LSTM, IPA-GNN, and Exception IPA-GNN), the token indices are first combined via a
masked (local) Transformer to produce per-node embeddings, and the model operates on these per-
node embeddings as in Section 4.1. Following Bieber et al. (2020) we encode programs for a GGNN
using six edge types, and use a two-layer LSTM for the LSTM baseline and in all IPA-GNN variants.

6

Under review as a conference paper at ICLR 2023

(a) Accuracy, weighted F1, and weighted error F1 scores.

MODEL R.D.? ACC. W. F1 E. F1
B

A
S

E
-

L
IN

E
S

PYLINT 60.4 47.9 23.8
GGNN 62.8 58.9 45.8
TRANSFORMER 63.6 60.4 48.1
LSTM 66.1 61.4 48.4

A
B

L
A

T
IO

N
S GGNN " 68.3 66.5 56.8

TRANSFORMER " 67.3 65.1 54.7
LSTM " 68.1 66.8 58.3
IPA-GNN 68.3 64.8 53.8
E. IPA-GNN 68.7 64.9 53.3

O
U

R
S IPA-GNN " 71.4 70.1 62.2

E. IPA-GNN " 71.6 70.9 63.5

(b) Localization accuracy (%) for the MIL Trans-
formers and Exception IPA-GNN.

MODEL R.D.? LOCAL.

LOCAL MIL TRANSFORMER 33.0
LOCAL MIL TRANSFORMER ! 48.9
GLOBAL MIL TRANSFORMER 48.2
GLOBAL MIL TRANSFORMER ! 48.8
E. IPA-GNN 50.8
E. IPA-GNN + DOCSTRING ! 64.7
E. IPA-GNN + FILM ! 64.5
E. IPA-GNN + CROSS ATTENTION ! 68.8

Table 2: Error classification and error localization results on the balanced test set with and without
resource descriptions (R.D.).

In order to compare against the capabilities of a standard static analysis setup, we also consider a
baseline based on pylint. For this baseline, we map a subset of the findings that pylint can identify
to runtime error classes that they can indicate. The baseline predicts an error class if pylint identifies
a corresponding finding. The purpose of this baseline is to consider a standard tool used by Python
developers and see how it is performing on the task. We provide further details in Appendix G.

For each neural approach, we perform an independent hyperparameter search using random search.
We list the hyperparameter space considered and model selection criteria in Appendix E. The models
are each trained to minimize a cross-entropy loss on the target class using stochastic gradient descent
for up to 500,000 steps with a mini-batch size of 32. In order to more closely match the target
class distribution found in the balanced test set, we sample mini-batches such that the proportion of
examples with target “no error” and those with an error target is 1:1 in expectation. We evaluate
the selected models on the balanced test set, and report the results in Table 2a (see rows without
check marks; we consider resource descriptions in Section 5.2 for RQ2). Weighted F1 score (W. F1)
performs a weighted average of the per-class F1 scores by class frequency, and weighted error F1
score (E. F1) does the same while restricting consideration to those examples with a runtime error.

We perform additional evaluations using the same experimental setup but distinct initializations to
compute measures of variance, which we detail in Appendix F.

RQ1: The interpreter-inspired architectures show significant gains over the pylint, LSTM, GGNN
and Transformer baseline approaches on the runtime error prediction task. We observe that the pylint
baseline can make incorrect predictions because it correctly identifies an issue in the code under
analysis when that code does not result in a runtime error in our dataset; pylint’s lower performance
on runtime error prediction is not evidence against pylint’s performance for its intended use cases.
We attribute the interpreter-inspired architectures’ relative success over other neural architectures to
their inductive bias toward mimicking program execution.

5.2 INCORPORATING RESOURCE DESCRIPTIONS

We next evaluate methods of incorporating resource descriptions into the models. For each archi-
tecture we apply the docstring approach of processing resource descriptions of Section 4.2. This
completes a matrix of ablations, allowing us to distinguish the effects due to architecture change
from the effect of the resource description. We follow the same experimental setup as in Section 5.1,
and show the results again in Table 2a (compare rows with check marks to those without).

We also consider the FiLM and cross-attention methods of incorporating resource descriptions into
the IPA-GNN. Following the same experimental setup again, we show the results of this experiment
in Table 3. Note that the best model overall by our model selection criteria on validation data was
the IPA-GNN with cross-attention, though the Exception IPA-GNN performed better on test.

RQ2: Across all architectures, the results show external resource descriptions improve performance
on the runtime error prediction task. On the IPA-GNN architectures, we see further improvements
by considering architectures that incorporate the resource description directly into the execution step

7

Under review as a conference paper at ICLR 2023

BASELINE DOCSTRING FILM CROSS-ATTENTION
MODEL ACC. W. F1 E. F1 ACC. W. F1 E. F1 ACC. W. F1 E. F1 ACC. W. F1 E. F1

IPA-GNN 68.3 64.8 53.8 71.4 70.1 62.2 71.6 70.3 62.9 72.0 70.3 62.6
E. IPA-GNN 68.7 64.9 53.3 71.6 70.9 63.5 70.9 68.8 59.8 73.8 72.3 64.7

Table 3: A comparison of early and late fusion methods for incorporating external resource descrip-
tion information into interpreter-inspired models.

of the model, but these gains are inconsistent. The pylint baseline is unable to incorporate resource
descriptions. Critically, using any resource description method is better than none at all.

To understand how the resource descriptions lead to better performance, we compare in Figure 2
the instruction pointer values of two Exception IPA-GNN models on a single example (shown in
Table 4). The model with the resource description recognizes that the input() calls will read
input beyond the end of the stdin stream. In contrast, the model without the resource description
has less reason to suspect an error would be raised by those calls. The descriptions of stdin in our
runtime errors dataset also frequently reveal type information, expected ranges for numeric values,
and formatting details about the inputs. We visualize additional examples in Appendix K.

5.3 INTERPRETABILITY AND LOCALIZATION

We next investigate the behavior of the Exception IPA-GNN model, evaluating its ability to localize
runtime errors without any localization supervision. In unsupervised localization, the models predict
the location of the error despite being trained only with error presence and kind supervision.

Multiple Instance Learning Baselines Unsupervised localization may be viewed as multiple in-
stance learning (MIL) (Dietterich et al., 1997). Consider the subtask of predicting whether a partic-
ular line contains an error. In an n-line program, there are n instances of this subtask. The available
supervision only indicates if any one of these subtasks has an error, but not which one. By viewing
each instance as a bag of subtasks, we have cast the problem as MIL.

Using this view, we introduce two variations on the Transformer architecture as multiple instance
learning baselines. The first is the “Local MIL Transformer”, in which each statement in the program
is encoded individually, as in the local node embeddings computation of Section 4.1. The second is
the “Global MIL Transformer”, in which all tokens in the program may attend to all other tokens in
the Transformer encoder. In both cases, the models make per-line predictions, which are aggregated
to form an overall prediction as defined in Appendix I.

0 3 6 9 12 15 18

0

2

4

6

8

10

12

BASELINE

0 3 6 9 12 15 18

0

2

4

6

8

10

12

RESOURCE DESCRIPTION

Figure 2: Heatmap of instruction pointer values produced by BASELINE and DOCSTRING Exception
IPA-GNNs for the example in Table 4. The x-axis represents timesteps and the y-axis represents
nodes, with the last two rows respectively representing nexit and nerror. The BASELINE instruction
pointer value is diffuse, with most probability mass ending at nexit. The R.D. instruction pointer
value is sharp, with almost all probability mass jumping to nerror from node 2.

8

Under review as a conference paper at ICLR 2023

STDIN
DESCRIPTION

Input:
Input is given from Standard Input in the following format
Constraints: Each character of S is A or B. |S| = 3

n SOURCE BASELINE
Error contrib.

R.D. Error
contrib.

0 a = str(input()) 0.5 2.4
1 q = int(input()) 0.1 97.3
2 s = [input().split() for i in range(q)] 14.5 0.0
3,4 for i in range(q): 3.2 0.0
5 if int(s[i][0]) == 1 and len(a)>1: 1.2 0.0
6 a = a[::-1] 0.3 0.0
7 elif int(s[i][0])== 2 and int(s[i][1])==1: 0.2 0.0
8 a=s[i][2]+a 0.1

else: 0.0
9 a=a+s[i][2] 0.1 0.0
10 print(a) 3.3 0.0

Table 4: Per-node localization predictions from the BASELINE and DOCSTRING Exception IPA-
GNN models on a sample program from the validation split. The target class is EOFERROR, occur-
ring on line 2 (n = 1). BASELINE predicts NO ERROR with confidence 0.76, while R.D. correctly
predicts EOFERROR with confidence 0.99 and localizes it to line 2 (n = 1). The input description
shows the cause for error: there are more input() calls than the number of expected input lines.

Localization Experiment Using the same protocol as Section 5.1, we train each of the MIL Trans-
former and Exception IPA-GNN models. As before, the models are trained only to minimize cross-
entropy loss on predicting error kind and presence, receiving no error location supervision. We
report the localization results in Table 2b. Localization accuracy (“LOCAL.”) measures the percent
of the test examples with errors for which the model correctly predicts the error line number.

RQ3: The Exception IPA-GNN’s unsupervised localization capabilities far exceed that of baseline
approaches. In Figure 2 we see the flow of instruction pointer mass during the execution of a sample
program (Table 4) by two Exception IPA-GNN models, including the steps where the models raise
probability mass to nerror. Tallying the contributions to nerror from each node yields the exception
provenance values in the right half of Table 4. This shows how the model’s internal state resembles
plausible program executions and allows for unsupervised localization. As a beneficial side-effect
of learning plausible executions, the Exception IPA-GNN can localize the exceptions it predicts.

6 DISCUSSION

In this work, we introduce the task of predicting runtime errors in competitive programming prob-
lems and advance the capabilities of interpreter-inspired models. Our models support the complexity
of competition code and demonstrate that natural language descriptions of external resources can re-
duce the ambiguity that arises in a static analysis setting. We show that the interpreter-inspired
models outperform standard alternatives and that their inductive biases allow for interesting inter-
pretability in the context of unsupervised localization.

Though they perform best, current IPA-GNN models require taking many steps of execution, up
to 174 on this dataset. A future direction is to model multiple steps of program execution with a
single model step, to reduce the number of model steps necessary for long programs. Extending the
interpreter-inspired models with additional interpreter features, or supporting multi-file programs or
programs with multiple user-defined functions are also interesting avenues for future work.

Learning to understand programs remains a rich area of inquiry for machine learning research be-
cause of its complexity and the many aspects of code. Learning to understand execution behavior
is particularly challenging as programs grow in complexity, and as they depend on more external
resources whose contents are not present in the code. Our work presents a challenging problem
and advances interpreter-inspired models, both of which we hope are ingredients towards making
progress on these difficult and important problems.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine
learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4):81, 2018a.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018b.

Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-supervised bug detection
and repair. Advances in Neural Information Processing Systems, 34, 2021.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and John Penix. Using
static analysis to find bugs. IEEE Software, 25(5):22–29, 2008. doi: 10.1109/MS.2008.130.

David Bieber, Charles Sutton, Hugo Larochelle, and Daniel Tarlow. Learning to execute programs
with instruction pointer attention graph neural networks. In Advances in Neural Information
Processing Systems, 2020.

Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. Programming with a
differentiable forth interpreter, 2017.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, volume 8, pages 209–224, 2008.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In Interna-
tional Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=H1gfOiAqYm.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers, 2019.

Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. Solving the multiple in-
stance problem with axis-parallel rectangles. Artificial Intelligence, 89(1):31–71, 1997. ISSN
0004-3702. doi: https://doi.org/10.1016/S0004-3702(96)00034-3. URL https://www.
sciencedirect.com/science/article/pii/S0004370296000343.

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. Hoppity: Learning
graph transformations to detect and fix bugs in programs. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=SJeqs6EFvB.

Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable pro-
grams with neural libraries, 2017.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random testing.
In Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and
implementation, pages 213–223, 2005.

10

https://openreview.net/forum?id=H1gfOiAqYm
https://openreview.net/forum?id=H1gfOiAqYm
https://www.sciencedirect.com/science/article/pii/S0004370296000343
https://www.sciencedirect.com/science/article/pii/S0004370296000343
https://openreview.net/forum?id=SJeqs6EFvB

Under review as a conference paper at ICLR 2023

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hass-
abis. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471–476, October 2016. ISSN 00280836. URL http://dx.doi.org/10.1038/
nature20101.

Andreas Griewank and Andrea Walther. Algorithm 799: Revolve: An implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math.
Softw., 26(1):19–45, mar 2000. ISSN 0098-3500. doi: 10.1145/347837.347846. URL https:
//doi.org/10.1145/347837.347846.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps, 2021. URL https://arxiv.org/abs/2105.09938.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
https://doi.org/10.1162/neco.1997.9.8.1735.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Code-
searchnet challenge: Evaluating the state of semantic code search, 2019. URL https:
//arxiv.org/abs/1909.09436.

René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A Database of existing faults to enable
controlled testing studies for Java programs. In ISSTA 2014, Proceedings of the 2014 International
Symposium on Software Testing and Analysis, pages 437–440, San Jose, CA, USA, July 2014.
Tool demo.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and evaluating
contextual embedding of source code. In Hal Daumé III and Aarti Singh, editors, Proceed-
ings of the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 5110–5121. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/kanade20a.html.

Rafael-Michael Karampatsis and Charles Sutton. How often do single-statement bugs occur? Pro-
ceedings of the 17th International Conference on Mining Software Repositories, Jun 2020. doi:
10.1145/3379597.3387491. URL http://dx.doi.org/10.1145/3379597.3387491.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks, 2019.

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. Deepfl: Integrating multiple fault diagnosis
dimensions for deep fault localization. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 169–180, 2019.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks, 2017.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode, 2022. URL https://arxiv.org/abs/2203.07814.

V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in java applications with
static analysis. In USENIX security symposium, volume 14, pages 18–18, 2005.

11

http://dx.doi.org/10.1038/nature20101
http://dx.doi.org/10.1038/nature20101
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
https://arxiv.org/abs/2105.09938
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://proceedings.mlr.press/v119/kanade20a.html
https://proceedings.mlr.press/v119/kanade20a.html
http://dx.doi.org/10.1145/3379597.3387491
https://arxiv.org/abs/2203.07814

Under review as a conference paper at ICLR 2023

Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and Lingming Zhang.
Boosting coverage-based fault localization via graph-based representation learning. In Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pages 664–676, 2021.

Flemming Nielson and Hanne Riis Nielson. Interprocedural control flow analysis. In ESOP, 1999.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021a. URL https://arxiv.org/abs/2112.00114.

Maxwell Nye, Yewen Pu, Matthew Bowers, Jacob Andreas, Joshua B. Tenenbaum, and Armando
Solar-Lezama. Representing partial programs with blended abstract semantics, 2021b.

Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao, David Williams-King,
Vikas Ummadisetty, Junfeng Yang, Baishakhi Ray, and Suman Jana. StateFormer: Fine-Grained
Type Recovery from Binaries Using Generative State Modeling, page 690–702. Association for
Computing Machinery, New York, NY, USA, 2021. ISBN 9781450385626. URL https://
doi.org/10.1145/3468264.3468607.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer, 2017.

Michael Pradel and Koushik Sen. Deepbugs: A learning approach to name-based bug detection.
Proc. ACM Program. Lang., 2(OOPSLA), oct 2018. doi: 10.1145/3276517. URL https:
//doi.org/10.1145/3276517.

Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost, Luca Buratti, Saurabh
Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss. Codenet: A large-scale
ai for code dataset for learning a diversity of coding tasks, 2021.

Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with decision trees.
SIGPLAN Not., 51(10):731–747, oct 2016. ISSN 0362-1340. doi: 10.1145/3022671.2984041.
URL https://doi.org/10.1145/3022671.2984041.

Scott Reed and Nando de Freitas. Neural programmer-interpreters, 2016.

Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine for c. ACM
SIGSOFT Software Engineering Notes, 30(5):263–272, 2005.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units, 2016.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Learning to combine per-example solutions
for neural program synthesis, 2021. URL https://arxiv.org/abs/2106.07175.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. arXiv e-prints, art.
arXiv:1706.03762, Jun 2017.

Yun Wang, Juncheng Li, and Florian Metze. Comparing the max and noisy-or pooling functions in
multiple instance learning for weakly supervised sequence learning tasks, 2018.

Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting languages. In
USENIX Security Symposium, volume 15, pages 179–192, 2006.

Wojciech Zaremba and Ilya Sutskever. Learning to execute, 2014.

Zhuo Zhang, Yan Lei, Xiaoguang Mao, and Panpan Li. Cnn-fl: An effective approach for localiz-
ing faults using convolutional neural networks. In 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 445–455. IEEE, 2019.

12

https://arxiv.org/abs/2112.00114
https://doi.org/10.1145/3468264.3468607
https://doi.org/10.1145/3468264.3468607
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3022671.2984041
https://arxiv.org/abs/2106.07175

Under review as a conference paper at ICLR 2023

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulner-
ability identification by learning comprehensive program semantics via graph neural networks.
Advances in neural information processing systems, 32, 2019.

Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms, 2016.

13

Under review as a conference paper at ICLR 2023

A PYTHON RUNTIME ERROR DATASET DETAILS

We describe in detail the construction of the Python Runtime Error dataset from the submissions
in Project CodeNet (Puri et al., 2021). The Project CodeNet dataset contains over 14 million sub-
missions to 4,053 distinct competitive programming problems, with the submissions spanning more
than 50 programming languages. We partition the problems into train, valid, and test splits at an
80:10:10 ratio. By making all submissions to the same problem part of the same split we mitigate
concerns about potential data leakage from similar submissions to the same problem. We restrict our
consideration to Python submissions, which account for 3,286,314 of the overall Project CodeNet
submissions, with 3,119 of the problems receiving at least one submission in Python. In preparing
the dataset we execute approximately 3 million problems in a sandboxed environment to collect their
runtime error information, we perform two stages of filtering on the dataset, syntactic and complex-
ity filtering, and we construct a textual representation of the input space for each problem from the
problem description.

A.1 SYNTACTIC FILTERING

In this first phase of filtering, we remove submissions in Python 2 as well as those which fail to
parse and run from our dataset. We remove 76,888 programs because they are in Python 2, 59,813
programs because they contain syntax errors that prohibit parsing, 2,011 programs that result in
runtime errors during parsing, and 6 additional programs for which the python-graphs library fails
to construct a control-flow graph. A program may result in a runtime error during parsing if it
contains return, break, continue keywords outside of an appropriate frame.

A.2 PROGRAM EXECUTION

We attempt to run each submission in a sandboxed environment using the sample input provided
in the Project CodeNet dataset. The environment is a custom harness running on a Google Cloud
Platform (GCP) virtual environment. This allows us to collect standard out and standard error, to
monitor for timeouts, and to catch and serialize any Python exceptions raised during execution.
We restrict execution of each program to 1 second, marking any program exceeding this time as a
timeout error. If the program encounters a Python exception, we use the name of that exception as
the target class for the program. If an error type occurs only once in the dataset, we consider the
target class to be Other. Programs not exhibiting an error or timeout are given target class “no error”.

In addition to collecting the target class, we record for each runtime error the line number at which
the error occurs. We use these line numbers as the ground truth for the unsupervised error localiza-
tion task considered in Section 5.3.

A.3 EXTRACTING RESOURCE DESCRIPTIONS BY PARSING PROBLEM STATEMENTS

For each problem, we parse the problem statement to extract the input description and input con-
straints, if they exist. These two sections of the problem statement together form the external re-
source description that accompanies that problem. The problem statements in our dataset are each
written either in English or Japanese, and so we write our parser to support both languages. When
one or both of these sections are present in the problem statement, we construct the external resource
description for the problem by concatenating together the headers and contents of the sections that
are present. For the experiments that use the resource description as a docstring, we prepend to
each submission a docstring containing the resource description for problem that goes with that sub-
mission. Similarly these serve as the resource descriptions in the experiments that process resource
descriptions via either cross-attention or FiLM.

A.4 VOCABULARY CONSTRUCTION AND COMPLEXITY FILTERING

All experiments use the same vocabulary and tokenization procedure. For this, we select the stan-
dard Byte-Pair Encoding (BPE) tokenization procedure (Sennrich et al., 2016). We construct the
vocabulary using 1,000,000 submissions selected from the training split, along with the input space
descriptions constructed for all problems in the train split. We use a vocabulary size of 30,000.

14

Under review as a conference paper at ICLR 2023

Figure 3: A histogram showing the distribution
of program lengths, measured in lines, repre-
sented in the runtime errors dataset train split.

Figure 4: The distribution of statement lengths,
measured in tokens, in the runtime errors
dataset train split.

We then apply size-based filtering, further restricting the set of programs considered. First, the
program length after tokenization is not to exceed 512 tokens, the number of nodes and edges in
the control-flow graph are each not to exceed 128, and the step limit T (x) for a program computed
in Appendix E is not to exceed 174. We select these numbers to trim the long tail of exceptionally
long programs, and this filtering reduces the total number of acceptable programs by less than 1%.
To achieve consistent datasets comparable across all experiments, we use the longest form of each
program (the program augmented with its input space information as a docstring) when computing
the program sizes for size-based submission filtering.

We further impose the restriction that no user-defined functions (UDFs) are called in a submission;
this further reduces the number of submissions by 682,220. A user-defined function is a function
defined in the submission source code, as opposed to being a built-in or imported from a third party
module. Extending the IPA-GNN models to submissions with UDFs called at most once is trivially
achieved by replacing the program’s control-flow graph with its interprocedural control-flow graph
(ICFG) (Nielson and Nielson, 1999). We leave the investigation of modeling user-defined functions
to further work.

A.5 FINAL DATASET DETAILS

After applying syntactic filtering (only keeping Python 3 programs that parse) and complexity fil-
tering (eliminating long programs and programs that call user-defined functions), we are left with a
dataset of 2,441,130 examples. The division of these examples by split and by target class is given
in Table 1. Figure 3 shows the distribution of program lengths in lines represented in the completed
dataset, with an average program length of 14.2 lines. The average statement length is 6.7 tokens,
with full distribution shown in Figure 4.

A.6 DATA LICENSE

The Project CodeNet (Puri et al., 2021) data that we use is available under the CDLA Permissive
v2.0 license, and we release our derived dataset under this same license.

B UNDER-APPROXIMATION OF ERROR LABELS

As described in Section 3, the ground truth error targets in our dataset are obtained by running
each submission on only a single input. We do this because we only have a single input available
from the online judges with which to execute the programs. As a result, the error labels we obtain
under-approximate the full set of errors liable to appear at runtime. Metadata obtained from (Puri
et al., 2021) indicates whether each submission encountered a runtime error on a larger set of inputs,
though it does not indicate the kind or location of these errors when they are present. We use this
metadata to determine the degree to which our labels are an under-approximation. We find that on
the balanced test set there are 1,076 submissions (4%) which, per the metadata, encounter an error,

15

Under review as a conference paper at ICLR 2023

but for which our evaluation finds no error. These are likely examples for which the program runs
without error on the input we have, but for which the program fails on some additional unavailable
input.

We next measure generalization from the labels in our dataset to the labels suggested by the metadata
without retraining. Since these labels are only binary indicators of error presence, we use our model
to perform binary classification by summing the predicted probabilities of all error kinds. The model
predicts “no error” on 76.2% of the examples for which our dataset finds no error. On the examples
for which the metadata indicates no error, this drops to 75.9%, and on the examples for which the
metadata indicates there is an error, this rises to 80.9%. These examples, where a single input detects
no error but multiple inputs detect an error, are difficult for the model to classify. We hypothesize
that the types of errors our labels omit systematically differ from those our labels include as an
explanation for this 4.7% discrepancy.

C IPA-GNN ARCHITECTURE

We provide a concise and precise definition of the IPA-GNN baseline architecture, following the
notation of Bieber et al. (2020). The IPA-GNN operates on the statement-level control-flow graph of
the input program x, maintaining per-node per-step hidden states ht,n and a soft instruction pointer
pt,n. At each step t, each node xn participates in execution, branch prediction, and aggregation.
First, the IPA-GNN models executing the statement at each node to produce per-node state proposals

a
(1)
t,n = RNN(ht−1,n,Embed(xn)) . (8)

Then, the model uses these to inform soft branch decisions at every control flow juncture, given as

bt,n,n1
, bt,n,n2

= softmax
(
Dense(a

(1)
t,n)
)
, (9)

where {n1, n2} = Nout(xn) when |Nout(xn)| = 2. When |Nout(xn)| = 1 we have bt,n,n′ = 1 for
n′ ∈ Nout(xn) indicating straight-line code. For all other n, n′, bt,n,n′ = 0. The state proposals and
branch decisions in turn feed into the computation of the new hidden states

ht,n =
∑

n′∈Nin(n)

pt−1,n′ · bt,n′,n · a(1)t,n (10)

and new instruction pointer values

pt,n =
∑

n′∈Nin(n)

pt−1,n′ · bt,n′,n. (11)

The hidden state at final time step T (x) at the program’s exit node nexit, given by hT (x),nexit are used
for downstream predictions.

D INPUT MODULATION

In Section 4.2, we consider both cross-attention (Lee et al., 2019) and Feature-wise Linear Modu-
lation (FiLM) (Perez et al., 2017) as options for the Modulate function. We provide the definitions
of these operations here. First, cross-attention modules the input as:

MultiHead(Embed(xn), d(x), ht−1,n) = Concat(Concat(head1, ..., headh)W
O,Embed(xn))

(12)

where headi = softmax

(
QK

′

√
dk

)
V (13)

Q = WQ
i Concat(Embed(xn), ht−1,n) (14)

K = WK
i d(x) (15)

V = WV
i d(x) (16)

16

Under review as a conference paper at ICLR 2023

Here, WO ∈ Rhdv×dmodel , WQ
i ∈ Rdk×(dmodel+dEmbed(xn)), WK

i ∈ Rdk×dd(x) , and WV
i ∈ Rdv×dd(x)

are learnable parameters. Similarly, for FiLM we modulate the input with the resource description
as follows:

FiLM(Embed(xn), d(x), ht−1,n) = Concat(β · d(x) + γ,Embed(xn)) (17)
where β = σ(Wβ Concat(xn, ht−1,n) + bβ), (18)

γ = σ(Wγ Concat(xn, ht−1,n) + bγ), (19)

where Wγ ∈ Rdd(x)×(dmodel+dEmbed(xn)), and Wγ ∈ Rdd(x)×(dmodel+dEmbed(xn)) are learnable parame-
ters.

E TRAINING DETAILS

Hyperparameter selection We select hyperparameters by performing a random search indepen-
dently for each model architecture. The hyperparameters considered by the search are listed in
Table 6. All architectures use a Transformer encoder, and the Transformer sizes considered in the
search are listed in Table 6 and defined further in Table 5.

HYPERPARAMETER T-128 T-256 T-512

EMBEDDING DIMENSION 128 256 512
NUMBER OF HEADS 4 4 8

NUMBER OF LAYERS 2 2 6
QKV DIMENSION 128 256 512

MLP DIMENSION 512 1024 2048

Table 5: Hyperparameter settings for each of the three Transformer sizes.

Step limit For the IPA-GNN and Exception IPA-GNN, the function T (x) represents the number
of execution steps modeled for program x. We reuse the definition of T (x) from Bieber et al. (2020)
as closely as possible, only modifying it to accept arbitrary Python programs, rather than being
restricted to the subset of Python features considered in the dataset of the earlier work. The scatter
plot in Figure 5 shows the relationship between T (x) and program length.

Parameter counts We provide in Table 7 the total number of parameters in each model, for the
best performing hyperparameters in each model class. For all model classes, the maximum number
of parameters considered is roughly equal (approximately 8.8 million).

Compute usage and model speeds All models are trained on Google Cloud Platform using
TPUv2 accelerators. We use approximately one TPU-week of compute in training each IPA-GNN
model. At inference time, IPA-GNN compute is proportional to the number of model steps, which

HYPERPARAMETER VALUE(S) CONSIDERED ARCHITECTURE(S)

OPTIMIZER {SGD} ALL
BATCH SIZE {32} ALL

LEARNING RATE {0.01, 0.03, 0.1, 0.3} LSTM, TRANSFORMERS, IPA-GNNS
LEARNING RATE {0.001, 0.003, 0.01, 0.03} GGNN

GRADIENT CLIPPING {0, 0.5, 1, 2} ALL
HIDDEN SIZE {64, 128, 256} ALL
RNN LAYERS {2} LSTM, IPA-GNNS
GNN LAYERS {8, 16, 24} GGNN

SPAN ENCODER POOLING {FIRST, MEAN, MAX, SUM} ALL
CROSS-ATTENTION NUMBER OF HEADS {1, 2} IPA-GNNS WITH CROSS-ATTENTION

MIL POOLING {MAX, MEAN, LOGSUMEXP} MIL TRANSFORMERS
TRANSFORMER DROPOUT RATE {0, 0.1} ALL

TRANSFORMER ATTENTION DROPOUT RATE {0, 0.1} ALL
TRANSFORMER SIZE {T-128, T-256, T-512} ALL

Table 6: Hyperparameters considered for random search during model selection.

17

Under review as a conference paper at ICLR 2023

MODEL PARAMETER COUNT TRAIN LATENCY INFERENCE LATENCY

GGNN 4,831,903 0.055 0.040
TRANSFORMER 8,578,975 0.054 0.051

LSTM 4,361,823 0.058 0.057
IPA-GNN 4,368,161 0.727 0.294

E. IPA-GNN 8,856,099 1.167 0.435

Table 7: The parameter count, training latency (sec/step), and inference latency (sec/batch) for the
best performing instance of each model variant. Training and inference latencies use batch size 32.

is up to 174 for examples in our dataset. We measure the average inference time on the test set: 0.43
seconds per batch of 32. We also measure the training speed in seconds per step for each method,
which we report in Table 7. We observe that the IPA-GNN train times are slower than those of the
generic models, a drawback of the IPA-GNN model family in its current implementations. That
said, we also note that the IPA-GNN models do not benefit from the same optimizations as basic
implementations of the well known general purpose models (GGNN, Transformer, and LSTM), and
with further optimizations the IPA-GNN performance can be improved.

Figure 5: A scatter plot showing the relationship between
program length and the number of model steps T (x).

F METRIC VARIANCES

Under the experimental conditions of Section 5.1, we perform three additional training runs to cal-
culate the variance for each metric for each baseline model, and for the Exception IPA-GNN model
using the docstring strategy for processing resource descriptions. For these new training runs, we
use the hyperparameters obtained from model selection. We vary the random seed between runs (0,
1, 2), thereby changing the initialization and dropout behavior of each model across runs. We report
the results in Table 8; ± values are one standard deviation.

METHOD R.D.? ACC. W. F1 E. F1

GGNN 61.98 ± 1.24 56.62 ± 2.96 41.24 ± 5.51
TRANSFORMER 63.82 ± 0.62 59.86 ± 0.52 46.75 ± 0.93

LSTM 66.43 ± 0.60 62.33 ± 1.12 50.10 ± 1.94
EXCEPTION IPA-GNN " 71.44 ± 0.15 70.78 ± 0.07 63.54 ± 0.03

Table 8: Mean and standard deviation for each metric is calculated from three training runs per
model, using the hyperparameters selected via model selection.

18

Under review as a conference paper at ICLR 2023

ERROR CLASS PYLINT FINDING

AssertionError bad-thread-instantiation (W1506)

AttributeError misplaced-format-function (E0119)
no-member (E1101)
not-context-manager (E1129)
missing-format-attribute (W1306)
not-async-context-manager (E1701)

ImportError import-error (E0401)
relative-beyond-top-level (E0402)
no-name-in-module (E0611)

IndexError potential-index-error (E0643)
too-few-format-args (E1306)
invalid-format-index (W1307)

KeyError missing-format-argument-key (W1303)
missing-format-string-key (E1304)

NameError used-before-assignment (E0601)
undefined-variable (E0602)

RuntimeError misplaced-bare-raise (E0704)
modified-iterating-dict (E4702)
modified-iterating-set (E4703)

SyntaxError syntax-error (E0001)
return-outside-function (E0104)
yield-outside-function (E0105)
duplicate-argument-name (E0108)
too-many-star-expressions (E0112)
invalid-star-assignment-target (E0113)
star-needs-assignment-target (E0114)
nonlocal-and-global (E0115)
nonlocal-without-binding (E0117)
used-prior-global-declaration (E0118)
await-outside-async (E1142)
yield-inside-async-function (E1700)
invalid-unicode-codec (E2501)
bidirectional-unicode (E2502)

TypeError abstract-class-instantiated (E0110)
bad-reversed-sequence (E0111)
invalid-slots-object (E0236)
invalid-slots (E0238)
inherit-non-class (E0239)
inconsistent-mro (E0240)
duplicate-bases (E0241)
invalid-enum-extension (E0244)
invalid-length-returned (E0303)
invalid-bool-returned (E0304)

ERROR CLASS PYLINT FINDING

TypeError (cont.) invalid-index-returned (E0305)
invalid-repr-returned (E0306)
invalid-str-returned (E0307)
invalid-bytes-returned (E0308)
invalid-hash-returned (E0309)
invalid-length-hint-returned (E0310)
invalid-format-returned (E0311)
invalid-getnewargs-returned (E0312)
invalid-getnewargs-ex-returned (E0313)
unpacking-non-sequence (E0633)
raising-bad-type (E0702)
bad-exception-cause (E0705)
raising-non-exception (E0710)
notimplemented-raised (E0711)
catching-non-exception (E0712)
bad-super-call (E1003)
not-callable (E1102)
isinstance-. . . -not-valid-type (W1116)
no-value-for-parameter (E1120)
too-many-function-args (E1121)
unexpected-keyword-arg (E1123)
redundant-keyword-arg (E1124)
missing-kwoa (E1125)
invalid-sequence-index (E1126)
invalid-slice-index (E1127)
invalid-unary-operand-type (E1130)
unsupported-binary-operation (E1131)
repeated-keyword (E1132)
not-an-iterable (E1133)
unsupported-membership-test (E1135)
unsubscriptable-object (E1136)
unsupported-assignment-operation (E1137)
unsupported-delete-operation (E1138)
dict-iter-missing-items (E1141)
unhashable-member (E1143)
bad-format-character (E1300)
mixed-format-string (E1302)
format-needs-mapping (E1303)
bad-string-format-type (E1307)
invalid-envvar-value (E1507)
invalid-envvar-default (W1508)

ValueError return-in-init (E0101)
class-variable-slots-conflict (E0242)
unbalanced-tuple-unpacking (W0632)
bad-format-string (W1302)
format-combined-specification (W1305)
bad-open-mode (W1501)

Table 9: The pylint baseline for runtime error prediction predicts the error class shown when it
encounters any of the corresponding pylint findings. Many of pylint’s 235 finding types do not
indicate runtime errors. This table shows the mapping used by the pylint baseline.

G STATIC ANALYSIS BASELINE

Our work builds towards a developer tool that predicts runtime errors in programs without running
the program, treating the task as static analysis. Existing static analysis tools already inspect Python
source code for possible issues, though they are not generally designed with runtime error prediction
in mind. Among the most popular such tools are the linters pylint and flake8, the type analyzer
pytype, and the formatter black. We elect to compare against pylint as it is the most common of
these tools and hence most representative of a modern developer workflow. Additionally, a formatter
is not well suited to the task of predicting errors, and type analysis benefits from type annotations
which are rarely utilized in competition code. In our comparison of machine learning methods
against pylint (Section 5), we build a runtime error classifier based on pylint’s output. For each kind
of error or warning that pylint can detect, we determine whether it is indicative a runtime error class.
For example, pylint’s error no-member (E1101) indicates the AttributeError runtime error. The
pylint baseline predicts a runtime error class whenever pylint’s errors or warnings indicate that error
class, and “no error” otherwise. Table 9 shows the mapping from pylint findings to runtime error.

19

Under review as a conference paper at ICLR 2023

Only eleven of twenty-six the runtime error classes (those listed in Table 9, and “no error”) can be
predicted by this baseline. Additionally, the presence of a pylint finding that corresponds to an error
does not guarantee the error would actually be present when running the program; for example an
undefined variable may appear on an unused control-flow path, benign at runtime. The results of
this baseline are reported in Section 5.

H LOCALIZATION BY MODELING EXCEPTION HANDLING

For programs that lack try/except frames, we compute the localization predictions of the Exception
IPA-GNN model by summing, separately for each node, the contributions from that node to the
exception node across all time steps. This gives an estimate of exception provenance as

p(error at statement n) =
∑
t

pt,n · bt,n,nerror . (20)

For programs with a try/except frame, however, we must trace the exception back to the statement
that originally raised it. To do this, we keep track of the exception provenance at each node at each
time step; when an exception raises, it becomes the exception provenance at the statement that it
raises to, and when a statement with non-zero exception provenance executes without raising, it
propagates its exception provenance to the next node unchanged.

Define vt,n,n′ as the amount of “exception probability mass” at time step t at node n′ attributable to
an exception starting at node n. Then we write

vt,n,n′ =
∑

k∈Nin(n′)

vt−1,n,k · bt,k,n′ · pt,k + (1−
∑

vt−1,:,n) · bt,n,n′ · pt,n · 1{n′ = r(n)}. (21)

The first term propagates exception provenance across normal non-raising execution, while the sec-
ond term introduces exception provenance when an exception is raised. We then write precisely

p(error at statement n) = vT (x),n,nerror , (22)

allowing the Exception IPA-GNN to make localization predictions for any program in the dataset.

I LOCALIZATION BY MULTIPLE INSTANCE LEARNING

The Local Transformer and Global Transformer models each compute per-statement node embed-
dings Embed(xn) given by Equation 1. In the multiple instance learning setting, these are trans-
formed into unnormalized per-statement class predictions

ϕ(class = k, lineno = l) = Dense (Embed(xn)) . (23)

We consider three strategies for aggregating these per-statement predictions into an overall predic-
tion for the task. Under the logsumexp strategy, we treat ϕ as logits and write

log p(class = k) ∝ log

(∑
l

expϕ(k, l)

)
, (24)

log p(lineno = l) ∝ log

(∑
k∈K

expϕ(k, l)

)
(25)

where K is the set of error classes.

The max and mean strategies meanwhile follow Wang et al. (2018) in asserting

p(class = k | lineno = l) = softmax (ϕ(k, l)) , (26)

compute the location probabilities as

p(lineno = l) ∝
∑
k∈K

p(class = k | lineno = l), (27)

20

Under review as a conference paper at ICLR 2023

and compute the outputs as

log p(class = k) ∝ logmax
l

p(class = k | lineno = l), and (28)

log p(class = k) ∝ log
1

L

∑
l

p(class = k | lineno = l) (29)

respectively, where L denotes the number of statements in x. As with all methods considered,
the MIL models are trained to minimize the cross-entropy loss in target class prediction, but these
methods still allow reading off predictions of p(lineno).

J BROADER IMPACT

Our work builds toward improvements to developer tools, suggesting the possibility of future tools
that predict runtime errors in code even when that code lacks unit tests. However, the false positive
rate under the current best models present a challenge. A developer tool built using these models may
present the developer with incorrect predictions. This could cause the developer to make mistakes,
or to lose trust in the tooling, lowering productivity in the short term and making it harder to win
back trust in the long term when tools are built upon higher quality models with fewer errors. We
therefore recommend that tool developers use a combination of cautious judgement and data driven
evaluations when deciding when to implement features that rely on models like the ones we present.

21

Under review as a conference paper at ICLR 2023

K EXAMPLE VISUALIZATIONS

We sample three examples at random from the Python Runtime Error dataset validation split, and
visualize them here. As in Figure 2, we show instruction pointer heatmaps for both the BASELINE
and DOCSTRING Exception IPA-GNN model variants.

In the heatmaps, the x-axis represents time steps and the y-axis represents nodes, with the last two
rows representing the exit node nexit and the exception node nerror. Note that for loop statements are
associated with two spans in the statement-level control-flow graph, one for construction of the loop
iterator, and a second for assignment to the loop variable. Hence we list two indexes for each for
loop statement in these figures, and report the total error contribution for the line.

STDIN
DESCRIPTION

Input:
Input is given from Standard Input in the following format:
N
a 1 a 2 ... a N
Constraints: All values in input are integers.
1 <= N , a i <= 100

n SOURCE BASELINE
Error contrib.

R.D. Error
contrib.

0 N = int(input()) 0.9 0.0
1 A = list(map(int, input().split())) 1.1 63.1
2 res = 0 0.3 0.0
3,4 for i in range(1, len(A)+1, 2): 4.4 0.5
5 res += A[i] % 2 0.3 2.0
6 print(res) 1.5 1.5

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

BASELINE

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

RESOURCE DESCRIPTION

Figure 6: The target error kind is INDEXERROR, occuring on line 5 (n = 5). BASELINE incorrectly
predicts NO ERROR with confidence 0.91. DOCSTRING incorrectly predicts NO ERROR with confi-
dence 0.33. Both BASELINE and DOCSTRING instruction pointer values start out sharp and become
diffuse when reaching the for-loop. The BASELINE instruction pointer value ends with most prob-
ability mass at nexit. The DOCSTRING instruction pointer value has a small amount of probability
mass reaching nexit, with most probability mass ending at nerror.

22

Under review as a conference paper at ICLR 2023

STDIN
DESCRIPTION

Input:
Input is given from Standard Input in the following format:
H N
A 1 A 2 ... A N
Constraints: 1 <= H <= 10ˆ9 1 <= N <= 10ˆ5 1 <= A i <= 10ˆ4
All values in input are integers.

n SOURCE BASELINE
Error contrib.

R.D. Error
contrib.

0 H,N,A = list(map(int, input().split())) 1.3 2.1
1,2 for i in A[N]: 9.9 34.0
3 if H <= 0: 4.7 0.8

break
else:

4 H -= A[i] 0.3 3.5
5 if set(A): 3.5 15.7
6 print("Yes") 1.2 2.3

else:
7 print("No") 2.0 0.9

0 2 4 6 8 10 12 14 16

0

2

4

6

8

BASELINE

0 2 4 6 8 10 12 14 16

0

2

4

6

8

RESOURCE DESCRIPTION

Figure 6: The target error kind is VALUEERROR, occurring on line 1 (n = 0). BASELINE incor-
rectly predicts NOERROR with confidence 0.78. DOCSTRING incorrectly predicts NOERROR with
confidence 0.40. Both BASELINE and DOCSTRING instruction pointer values start out sharp and
branch out at the conditional. DOCSTRING predicts that more probability mass ends up at nerror.

23

Under review as a conference paper at ICLR 2023

STDIN
DESCRIPTION

Input:
n m
d1 d2 ... dm
Two integers n and m are given in the first line. The
available denominations are given in the second line.
Constraints: 1 <= n <= 50000 1 <= m <= 20
1 <= denomination <= 10000
The denominations are all different and contain 1.

n SOURCE BASELINE
Error contrib.

R.D. Error
contrib.

0 from itertools import combinations with replacement
as C

46.3 23.4

1 n, m = map(int, input().split()) 10.0 0.0
2 coin = sorted(list(map(int,

input().split())))
1.3 0.3

3 if n in coin: 1.9 4.6
4 print(1) 0.0 0.0

else:
5 end = n // coin[0] + 1 0.1 0.4
6 b = False 0.0 0.3

7,8 for i in range(2, end): 3.8 1.9
9,10 for tup in list(C(coin, i)): 3.0 0.0
11 if sum(tup) == n: 0.1 0.3
12 print(i) 0.1 0.4
13 b = True 0.0 2.4

break
14 if b: break 0.0 0.1

0 3 6 9 12 15 18

0

2

4

6

8

10

12

14

16

BASELINE

0 3 6 9 12 15 18

0

2

4

6

8

10

12

14

16

RESOURCE DESCRIPTION

Figure 7: The target error kind is NO ERROR. BASELINE correctly predicts NO ERROR with confi-
dence 0.47. DOCSTRING also correctly predicts NO ERROR with confidence 0.64. The BASELINE
instruction pointer value makes its largest probability mass contribution to nerror at n = 0 and ends
up with mass split between nexit and nerror. The DOCSTRING instruction pointer value also accumu-
lates most nerror probability contribution at n = 0 but ends up with most probability mass in nexit.

24

	Introduction
	Related Work
	Runtime Error Prediction
	Approach: IPA-GNNs as Relaxations of Interpreters
	Extending the IPA-GNN to Real Programs
	Executing with Resource Descriptions
	Modeling Exception Handling
	Unsupervised Localization of Errors

	Experiments
	Evaluation of IPA-GNN Against Baselines
	Incorporating Resource Descriptions
	Interpretability and Localization

	Discussion
	Python Runtime Error Dataset Details
	Syntactic Filtering
	Program Execution
	Extracting Resource Descriptions by Parsing Problem Statements
	Vocabulary Construction and Complexity Filtering
	Final Dataset Details
	Data License

	Under-approximation of Error Labels
	IPA-GNN Architecture
	Input Modulation
	Training Details
	Metric Variances
	Static Analysis Baseline
	Localization by Modeling Exception Handling
	Localization by Multiple Instance Learning
	Broader Impact
	Example Visualizations

