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Abstract

Vision Transformers (ViTs) have triggered the most recent and significant break-1

throughs in computer vision. Their efficient designs are mostly guided by the2

indirect metric of computational complexity, i.e., FLOPs, which however has a3

clear gap with the direct metric such as throughput. Thus, we propose to use the4

direct speed evaluation on the target platform as the design principle for efficient5

ViTs. Particularly, we introduce LITv2, a simple and effective ViT which performs6

favourably against the existing state-of-the-art methods across a spectrum of differ-7

ent model sizes with faster speed. At the core of LITv2 is a novel self-attention8

mechanism, which we dub HiLo. HiLo is inspired by the insight that high fre-9

quencies in an image capture local fine details and low frequencies focus on global10

structures, whereas a multi-head self-attention layer neglects the characteristic of11

different frequencies. Therefore, we propose to disentangle the high/low frequency12

patterns in an attention layer by separating the heads into two groups, where one13

group encodes high frequencies via self-attention within each local window, and14

another group performs the attention to model the global relationship between the15

average-pooled low-frequency keys from each window and each query position in16

the input feature map. Benefit from the efficient design for both groups, we show17

that HiLo is superior to the existing attention mechanisms by comprehensively18

benchmarking on FLOPs, speed and memory consumption on GPUs. Powered by19

HiLo, LITv2 serves as a strong backbone for mainstream vision tasks including20

image classification, dense detection and segmentation.21

1 Introduction22

Real-world applications usually require a model to have an optimal speed and accuracy trade-off23

under limited computational budget, such as UAV and autonomous driving. This motivates substantial24

works toward efficient vision Transformer (ViT) design, such as PVT [40], Swin [25] and Focal25

Transformer [47], among others. To measure the computational complexity, a widely adopted metric26

in recent ViT design is the number of float-point operations, i.e., FLOPs. However, FLOPs is an27

indirect metric, which can not directly reflect the real speed on the target platform. For example,28

Focal-Tiny is much slower than Swin-Ti on GPUs although their FLOPs are comparable.29

In general, the discrepancy between the indirect metric (FLOPs) and the direct metric (speed) in30

recent ViTs can be attributed to two main reasons. First, although self-attention is efficient on31

low-resolution feature maps, the quadratic complexity in both memory and time makes it much32

slower on high-resolution images due to intensive memory access cost [27], where fetching data from33

off-chip DRAM can be speed-consuming. Second, some efficient attention mechanisms in ViTs have34

low theoretical complexity guarantee but are actually slow on GPUs due to particular operations that35
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Figure 1: Framework of HiLo attention. Nh refers to the total number of self-attention heads at this
layer. α denotes the split ratio for high/low frequency heads. Best viewed in color.

are not hardware-friendly or cannot be parallelized, such as the multi-scale window partition [47],36

recursion [35] and dilated window [15].37

With these observations, in this paper we propose to evaluate ViT by the direct metric, i.e., throughput,38

not only FLOPs. Based on this principle, we introduce LITv2, a novel efficient and accurate vision39

Transformer that outperforms most state-of-the-art (SoTA) ViTs on standard benchmarks while being40

practically faster on GPUs. LITv2 is bulit upon LITv1 [29], a simple ViT baseline which removes41

all multi-head self-attention layers (MSAs) in the early stages while applying standard MSAs in42

the later stages. Benefit from this design, LITv1 is faster than many existing works on ImageNet43

classification due to no computational cost from the early MSAs while the later MSAs only need to44

process downsampled low-resolution feature maps. However, the standard MSA still suffers from45

huge computational cost on high-resolution images, especially for dense prediction tasks.46

To address this problem, we propose a novel efficient attention mechanism, termed HiLo. HiLo is47

motivated by the fact that natural images contain rich frequencies where high/low frequencies play48

different roles in encoding image patterns, i.e., local fine details and global structures, respectively. A49

typical MSA layer enforces the same global attention across all image patches without considering50

the characteristics of different underlying frequencies. This motivates us to propose to separate an51

MSA layer into two paths where one path encodes high-frequency interactions via local self-attention52

with relatively high-resolution feature maps while the other path encodes low-frequency interactions53

via global attention with down-sampled feature maps, which leads to a great efficiency improvement.54

Specifically, HiLo employs two efficient attentions to disentangle High/Low frequencies in feature55

maps. As shown in Figure 1, in the upper path, we allocate a few heads to the high frequency attention56

(Hi-Fi) to capture fine-grained high frequencies by local window self-attention (e.g., 2× 2 windows),57

which is much more efficient than standard MSAs. The lower path, implementing the low-frequency58

attention (Lo-Fi), first applies average pooling to each window to obtain low-frequency signals. Then,59

we allocate the remaining heads for Lo-Fi to model the relationship between each query position60

in the input feature map and the average-pooled low-frequency keys from each window. Benefit61

from the reduced length of keys and values, Lo-Fi also achieves significant complexity reduction.62

Finally, we concatenate the refined high/low-frequency features and forward the resulting output into63

subsequent layers. Since both Hi-Fi and Lo-Fi are not equipped with time-consuming operations64

such as dilated windows and recursion, the overall framework of HiLo is fast on GPUs. We show by65

comprehensive benchmarks that HiLo achieves advantage over the existing attention mechanisms in66

terms of performance, FLOPs, throughput and memory consumption.67

Besides, we find the fixed relative positional encoding in LITv1 dramatically slows down its speed on68

dense prediction tasks due to the interpolation for different image resolutions. For better efficiency,69

we propose to adopt one 3 × 3 depthwise convolutional layer with zero-padding in each FFN to70

incorporate the implicitly learned position information from zero-padding [20]. Moreover, the71

3× 3 convolutional filters simultaneously help to enlarge the receptive field of the early multi-layer72

perceptron (MLP) blocks in LITv1. Finally, we conduct extensive experiments on ImageNet, COCO73

and ADE20K to evaluate the performance of LITv2. Comprehensive comparisons with SoTA models74

show that our architecture achieves competitive performance with faster throughput, making ViTs75

more feasible to run low-latency applications for real-world scenarios.76
2



2 Related Work77

Vision Transformers. Vision Transformers are neural networks that adopt self-attention mechanisms78

into computer vision tasks. In [13], Dosovitskiy et al. propose a ViT for image classification, which79

inherits the similar architecture from a standard Transformer [37] in natural language processing80

(NLP) tasks. Since then, subsequent works have been proposed to improve ViT by incorporating more81

convolutional layers [43, 48], introducing pyramid feature maps [40, 25], enhancing the locality [49],82

as well as automatically searching a well-performed architecture [4, 2] with neural architecture83

search (NAS). Some others also seek for token pruning to accelerate the inference speed of ViTs [30].84

Compared to existing works, this paper focuses on a general ViT-based backbone for computer vision85

(CV) tasks and aims to achieve better efficiency on GPUs while maintaining competitive performance.86

Efficient attention mechanisms. Efficient attention mechanisms aim to reduce the quadratic com-87

plexity of standard MSAs. Existing efforts in NLP can be roughly categories into low-rank decom-88

position [39], kernelization [21, 32], memory [33] and sparsity mechanism [7]. However, simply89

adopting these method usually performs suboptimally in CV tasks [25, 50]. In CV, representative90

efficient self-attention mechanisms includes spatial reduction attention (SRA) [40], local window91

attention [25] and Twins attention [9]. However, they only focus on either local or global attention92

at the same layer, which neglects the another. Some works consider both simultaneously, such as93

Focal attention [47] and QuadTree [35]. However, due to the inefficient operations which are not94

hardware-friendly and cannot be reflected in FLOPs (e.g., multi-scale window partition, recursion),95

they are slow on GPUs even compared to standard MSA. To this end, the proposed HiLo attention96

simultaneously captures rich local-global information at the same MSA layer and is faster and more97

memory-efficient compared to the existing works.98

Frequency domain analysis in vision. The frequency domain analysis in CV has been well studied in99

the literature. According to [10, 12], the low frequencies in an image usually capture global structures100

and color information while the high frequencies contain fine details of objects (e.g., sharp edges).101

Based on this insight, a plethora of solutions have been proposed for image super-resolution [52, 14],102

generalization [19], image re-scaling [44] and neural network compression [46, 5]. In the same spirit,103

HiLo separately deals with low and high frequencies in an MSA layer to achieve better efficiency.104

3 Background105

Multi-head self-attention. Transformers are built upon multi-head self-attention, which enables to106

capture long-range relationships for tokens at different positions. Specifically, let X ∈ RN×D be the107

input sequence into a standard MSA layer, where N is the length of the input sequence and D refers108

to the number of hidden dimensions. Each self-attention head calculates the query Q, key K and109

value V matrices with a linear transformation from X,110

Q = XWq,K = XWk,V = XWv, (1)
where Wq , Wk, Wv ∈ RD×Dh are learnable parameters and Dh is the number of hidden dimensions111

for a head. Next, the output of a self-attention head is a weighted sum over N value vectors,112

SAh(X) = Softmax(
QK⊤
√
Dh

)V. (2)

For an MSA layer with Nh heads, the final output is computed by a linear projection of the concate-113

nated outputs from each self-attention head, which can be formulated by114

MSA(X) = concat
h∈[Nh]

[SAh(X)]Wo, (3)

where Wo ∈ R(Nh×Dh)×D is a learnable parameter. In practice, D is usually equal to Nh ×Dh.115

Overall, a standard MSA layer have the computational cost of 4ND2 + 2N2D, where 2N2D comes116

from Eq. (2), 3ND2 and ND2 comes from Eq. (1) and Eq. (3), respectively.117

Transformer blocks. A standard vision Transformer as described in [13] consists of a patch118

embedding layer, several blocks and a prediction head. Let l be the index of a block. Then each block119

contains an MSA layer and a position-wise feed-forward network (FFN), which can expressed as120

X
′

l−1 = Xl−1 +MSA(LN(Xl−1)), (4)

Xl = X
′

l−1 + FFN(LN(X
′

l−1)), (5)
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where LN denotes the LayerNorm [1] and an FFN consists of two FC layers with GELU [18] non-121

linearity in between. Recent works on ViT have proposed to divide the blocks into several stages122

(typically 4 stages) to generate pyramid feature maps for dense prediction tasks. Furthermore, to123

reduce the computational cost on high-resolution feature maps in the early stages, the MSA in Eq. (4)124

has been replaced with efficient alternatives, such as SRA [40] and W-MSA [25].125

Bottlenecks of LITv1. Recent studies have shown that the MSA layers in the early stages in a126

model still focus on local patterns [11]. With the same observation, LITv1 [29] removes all early127

MSAs (i.e., exclude Eq. (4) in each block) while applying standard MSAs at the later stages. This128

design principle has achieved better efficiency with competitive performance on ImageNet compared129

to PVT [40] and Swin [25]. However, LITv1 still has two main bottlenecks in speed: 1) Given a130

high-resolution image, the standard MSAs in the later stages still result in huge computational cost.131

2) The fixed relative positional encoding [25] dramatically slows down the speed when dealing with132

different image resolutions. This is due to interpolating the fixed-size positional encoding for each133

different image resolution. In the next section, we describe a novel attention mechanism with zero134

padding positional encoding to comprehensively accelerate LITv1.135

4 Method136

4.1 HiLo Attention137

Natural images contain rich frequencies where high frequencies capture local fine details of objects138

(e.g., lines and shapes) and low frequencies encode global structures (e.g., textures and colors).139

However, the global self-attention in a typical MSA layer does not consider the characteristics of140

different underlying frequencies. To this end, we propose to separately process high/low frequencies141

in a feature map at an attention layer. We name the new attention mechanism as HiLo, which is142

depicted in Figure 1. As it shows, HiLo contains a High-Frequency attention (Hi-Fi) and Low143

Frequency attention (Lo-Fi) to model the relationship on different frequencies in feature maps. In the144

next, we describe the two attentions in detail.145

High-frequency attention (Hi-Fi). Intuitively, as high frequencies encode local details of objects, it146

can be redundant and computationally expensive to apply global attention on a feature map. Therefore,147

we propose to design Hi-Fi to capture fine-grained high frequencies with local window self-attention148

(e.g., 2× 2 windows), which saves significant computational complexity. Furthermore, we employ149

the simple non-overlapping window partition in Hi-Fi, which is more hardware-friendly compared to150

the time-consuming operations such as window shifting [25] or multi-scale window partition [47].151

Low-frequency attention (Lo-Fi). Recent studies have shown that the global attention in MSA helps152

to capture low frequencies [31]. However, directly applying MSA to high-resolution feature maps153

requires huge computational cost. As averaging is a low-pass filter [38], Lo-Fi firstly applies average154

pooling to each window to get low-frequency signals in the input X. Next, the average-pooled feature155

maps are projected into keys K ∈ RN/s2×Dh and values V ∈ RN/s2×Dh , where s is the window156

size. The queries Q in Lo-Fi still comes from the original feature map X. We then apply the standard157

attention to capture the rich low-frequency information in feature maps. Note that due to the spatial158

reduction of K and V, Lo-Fi simultaneously reduces the complexity for both Eq. (1) and Eq. (2).159

Head splitting. A naive solution for head assignment is to allocate both Hi-Fi and Lo-Fi the same160

number of heads as the standard MSA layer. However, doubling heads results in more computational161

cost. In order to achieve better efficiency, HiLo separates the same number of heads in an MSA into162

two groups with a split ratio α, where (1−α)Nh heads will be employed for Hi-Fi and the other αNh163

heads are used for Lo-Fi. By doing so, as each attention has a lower complexity than a standard MSA,164

the entire framework of HiLo guarantees a low complexity and ensures high throughput on GPUs.165

Moreover, another benefit of head splitting is that the learnable parameter Wo can be decomposed166

into two smaller matrices, which helps to reduce model parameters. Finally, the output of HiLo is a167

concatenation of the outputs from each attention168

HiLo(X) = [Hi-Fi(X);Lo-Fi(X)], (6)

where [·] denotes the concatenation operation.169
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Figure 2: FLOPs comparison for Hi-Fi and Lo-Fi under different image resolutions and equal number
of heads (Figures a and b). A larger window size helps HiLo achieve better efficiency on high-
resolution images (Figure c).

Complexity Analysis. Without loss of generality, we assume Hi-Fi and Lo-Fi have an equal number170

of heads (i.e., α = 0.5) and the feature map has equal width and height. Then, Hi-Fi and Lo-Fi have171

a computational cost of 7
4ND2 + s2ND and ( 34 + 1

s2 )ND2 + 1
s2N

2D, respectively. Derivation for172

this result can be found in the supplementary material. As shown in Figure 2-(a) and (b), under a173

small input image resolution and a small value of s (e.g., s = 2), both Hi-Fi and Lo-Fi are comparably174

efficient. However, with a much higher resolution, Lo-Fi will result in a huge computational cost as it175

still has a quadratic complexity in terms of N in Eq. (2), i.e., 1
s2N

2D. In this case, slightly increasing176

s (e.g., s = 4) helps Lo-Fi achieve better efficiency while preserving the accuracy. Combining the177

two attentions together, a larger window size also helps the overall framework of HiLo to reduce178

more FLOPs on high-resolution images, as shown in Figure 2-(c). Thus, we suggest a practical179

guideline for adopting HiLo into existing frameworks: increasing the window size in order to get180

better efficiency on high-resolution images. We further show in Section 5.2 that this principle helps181

LITv2 achieve a better speed and accuracy trade-off on downstream tasks, e.g., dense object detection.182

4.2 Positional Encoding183

Positional encoding is essential to self-attention due to its permutation-invariant property. In LITv1,184

the later MSAs adopt the same relative positional encoding (RPE) scheme as Swin [25]. This185

approach has significantly improves Swin by 0.7% in Top-1 accuracy on ImageNet compared to186

using absolute positional encoding [25]. However, on dense prediction tasks, the fixed RPE has to be187

interpolated for different image resolutions, which dramatically slows down the training/inference188

speed of LITv1. As a recent study [20] has shown that position information can be implicitly learned189

from zero-padding in CNNs, we propose to adopt one layer of 3× 3 depthwise convolutional layer190

with zero-padding in each FFN to replace the time-consuming RPE. Notably, due to the elimination191

of early MSAs, the early blocks in LITv1 only have FFNs left, which results in a tiny receptive field192

of 1× 1. To this end, we show in Section 5.4 that the 3× 3 convolutional filters adopted in each FFN193

also improve LITv2 by simultaneously enlarging the receptive field in the early stages.194

4.3 Model Architecture195

LITv2 has three variants: LITv2-S, LITv2-M and LITv2-B, corresponding to the small, medium and196

base settings in LITv1, respectively. For a fair comparison, we keep the network width and depth197

as the same as LITv1. The overall modifications are simply in two steps: 1) Adding one layer of198

depthwise convolution with zero-padding in each FFN and removing all relative positional encodings199

in all MSAs. 2) Replacing all attention layers with the proposed HiLo attention. Detailed architecture200

configurations can be found in the supplementary material.201

5 Experiment202

In this section we conduct experiments to validate the effectiveness of the proposed LITv2. Following203

common practice [40, 25, 9, 47], we experiment LITv2 on three tasks, including image classification204

on ImageNet-1K [34], object detection and instance segmentation on COCO [24] and semantic205

segmentation on ADE20K [51].206
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Table 1: Image classification results on ImageNet-1K. By default, the FLOPs, throughput and
memory consumption are measured based on the resolution 224× 224. We report the throughput and
training/test time memory consumption with a batch size of 64. Throughput is tested on one NVIDIA
RTX 3090 GPU and averaged over 30 runs. ResNet results are from "ResNet Stikes Back" [42].
“↑ 384” means a model is finetuned at the resolution 384× 384. “OOM” means “out-of-memory”.

Model
Param
(M)

FLOPs
(G)

Throughput
(imgs/s)

Train
Mem (GB)

Test
Mem (GB)

Top-1
(%)

ResNet-50 [42] 26 4.1 1,279 7.9 2.8 80.4
ConvNext-Ti [26] 28 4.5 1,079 8.3 1.7 82.1
PVT-S [40] 25 3.8 1,007 6.8 1.3 79.8
Swin-Ti [25] 28 4.5 961 6.1 1.5 81.3
CvT-13 [43] 20 4.5 947 6.1 1.5 81.6
Focal-Tiny [47] 29 4.9 384 12.2 3.3 82.2
Twins-PCPVT-S [9] 24 3.8 998 6.8 1.2 81.2
LITv1-S [29] 27 4.1 1,298 5.8 1.2 81.5
LITv2-S 28 3.7 1,471 5.1 1.2 82.0
ResNet-101 [42] 45 7.9 722 10.5 3.0 81.5
ConvNext-S [26] 50 8.7 639 12.3 1.8 83.1
PVT-M [40] 44 6.7 680 9.3 1.5 81.2
Twins-SVT-B [9] 56 8.3 621 9.8 1.9 83.2
Swin-S [25] 50 8.7 582 9.7 1.7 83.0
LITv1-M [29] 48 8.6 638 12.0 1.4 83.0
LITv2-M 49 7.5 812 8.8 1.4 83.3
ResNet-152 [42] 60 11.6 512 13.4 2.9 82.0
ConvNext-B [26] 89 15.4 469 16.9 2.9 83.8
Twins-SVT-L [9] 99 14.8 440 13.7 3.1 83.7
Swin-B [25] 88 15.4 386 13.4 2.4 83.3
LITv1-B [29] 86 15.0 444 16.4 2.1 83.4
LITv2-B 87 13.2 602 12.2 2.1 83.6
DeiT-B↑ 384 [36] 86 55.4 159 39.9 2.5 83.1
Swin-B↑ 384 [25] 88 47.1 142 OOM 6.1 84.5
LITv2-B↑ 384 87 39.7 198 35.8 4.6 84.7

5.1 Image Classification on ImageNet-1K207

We conduct image classification experiments on ImageNet-1K [34], a large-scale image dataset which208

contains ∼1.2M training images and 50K validation images from 1K categories. We measure the209

model performance by Top-1 accuracy. Furthermore, we report the FLOPs, throughput, as well as210

training/test memory consumption on GPUs. We compare with two CNN-based models [42, 26]211

and several representative SoTA ViTs [40, 25, 43, 47, 9]. Note that this paper does not consider212

mobile-level architectures [6, 28]. Instead, we focus on models with the similar model size. Besides,213

we are also not directly comparable with NAS-based methods [2, 4] as LITv2 is manually designed.214

Implementation details. All models are trained for 300 epochs from scratch on 8 V100 GPUs. At215

training time, we set the total batch size as 1,024. The input images are resized and randomly cropped216

into 224×224. The initial learning rate is set to 1×10−3 and the weight decay is set to 5×10−2. We217

use AdamW optimizer with a cosine decay learning rate scheduler. All training strategies including218

the data augmentation are same as in LITv1. For HiLo, the window size s is set to 2. The split219

ratio α is set to 0.9, which is chosen from a simple grid search on ImageNet-1K. The depthwise220

convolutional layers in FFNs are set with a kernel size of 3× 3, stride of 1 and zero padding size of 1.221

Results. In Table 1, we report the experiment results on ImageNet-1K. First, compared to LITv1 base-222

lines, LITv2 achieves consistent improvement on Top-1 accuracy while using less FLOPs. Moreover,223

benefit from HiLo, LITv2 achieves faster throughput and significant training time memory reduction224

(e.g., 13%, 27%, 36% inference speedup for the small, medium and base settings, respectively)225

compared to LITv1. Second, compared to CNNs, LITv2 models outperform all counterparts of226

ResNet and ConvNext in terms of FLOPs, throughput and memory consumption while achieving227

comparable performance. Last, compared to SoTA ViTs, LITv2 surpasses many models in terms228

of throughput and memory consumption with competitive performance. For example, under the229
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Table 2: Object detection and instance segmentation performance on the COCO val2017 split using
the RetinaNet [23] and Mask R-CNN [16] framework. APb and APm denote the bounding box AP
and mask AP, respectively. “*” indicates the model adopts a local window size of 4 in HiLo.

Backbone RetinaNet Mask R-CNN
Params (M) FLOPs (G) FPS APb Params (M) FLOPs (G) FPS APb APm

ResNet-50 [17] 38 239 18.5 36.3 44 260 27.1 38.0 34.4
PVT-S [40] 34 273 13.0 40.4 44 292 16.2 40.4 37.8
Swin-T [25] 38 251 17.0 41.5 48 270 21.1 42.2 39.1
Twins-SVT-S [9] 34 225 15.5 43.0 44 244 20.4 43.4 40.3
LITv1-S [29] 39 305 3.3 41.6 48 324 3.2 42.9 39.6
LITv2-S 38 242 18.7 44.0 47 261 18.7 44.9 40.8
LITv2-S* 38 230 20.4 43.7 47 249 21.9 44.7 40.7
ResNet-101 [17] 57 315 15.2 38.5 63 336 20.9 40.4 36.4
PVT-M [40] 54 348 10.5 41.9 64 367 10.8 42.0 39.0
Swin-S [25] 60 343 13.3 44.5 69 362 15.8 44.8 40.9
Twins-SVT-B [9] 67 358 10.8 45.3 76 377 12.7 45.2 41.5
LITv2-M 59 348 12.2 46.0 68 367 12.6 46.8 42.3
LITv2-M* 59 312 14.8 45.8 68 315 16.0 46.5 42.0

similar amount of FLOPs, LITv2-S achieves faster inference speed than PVT-S and Twins-PCPVT-S230

with better performance. Although Focal-Tiny achieves better Top-1 accuracy than LITv2-S, it runs231

much slower (i.e., 384 vs. 1,471 images/s) and requires a large amount of memory to train. Besides,232

when finetuning on a higher resolution, LITv2-B outperforms both DeiT-B and Swin-B with a faster233

throughput and lower complexity.234

5.2 Object Detection and Instance Segmentation on COCO235

In this section, we conduct experiments on COCO 2017, a common benchmark for object detection236

and instance segmentation which contains ∼118K images for the training set and ∼5K images for the237

validation set. Following common practice [9, 40], we experiment with two detection frameworks:238

RetinaNet [23] and Mask R-CNN [16]. We measure model performance by Average Precision (AP).239

Implementation details. All backbones are initialized with pretrained weights on ImageNet-1K.240

We train each model on 8 GPUs with 1× schedule (12 epochs) and a total batch size of 16. For a241

fair comparison, we adopt the same training strategy and hyperparameter settings as in LITv1 [29].242

Note that we pretrain LITv2 with a local window size of 2 and α = 0.9 on ImageNet-1K. Under243

the same α, a larger window size helps to achieve lower complexity and thus improves the speed at244

high resolution, as explained in Section 4.1. In this case, we also train models with a slightly larger245

window size of s = 4 for better efficiency, which we denote with “*”. By default, FLOPs is evaluated246

based on the input resolution of 1280× 800. FPS is measured on one RTX 3090 GPU based on the247

mmdetection [3] framework.248

Results. In Table 2, we report the experimental results on COCO. In general, LITv2 outperforms249

LITv1 by a large margin in almost all metrics. Besides, our LITv2 significantly surpasses ResNet250

in terms of AP, though it runs slightly slower in some cases. More importantly, our LITv2 beats all251

the compared SoTA ViTs, achieving the best AP with compelling fast inference speed. Furthermore,252

by adopting a larger window size (i.e., s = 4), LITv2 achieves better efficiency with a slightly253

performance drop.254

5.3 Semantic Segmentation on ADE20K255

In this section, we evaluate LITv2 on the semantic segmentation task. We conduct experiments on256

ADE20K [51], a widely adopted dataset for semantic segmentation which has ∼20K training images,257

∼2K validation images and ∼3K test images. Following prior works, we adopt the framework of258

Semantic FPN [22] and measure the model performance by mIoU. We train each model on 8 GPUs259

with a total batch size of 16 with 80K iterations. All backbones are initialized with pretrained weights260

on ImageNet-1K. The stochastic depth for the small, medium and base models of LITv2 are 0.2, 0.2261

and 0.3, respectively. All other training strategies are the same as in LITv1 [29].262

Results. In Table 3, we compare LITv2 with ResNet and representative ViTs on ADE20K. In general,263

LITv2 achieves fast speed while outperforming many SoTA models. For example, our LITv2-S,264
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Table 4: Performance comparisons with other efficient attention mechanisms in ViTs based on
LITv2-S. We report the Top-1 accuracy on ImageNet-1K.

Method
Param
(M)

FLOPs
(G)

Throughput
(imgs/s)

Train Memory
(GB)

Test Memory
(GB)

Top-1
(%)

MSA 28 4.1 1,293 6.5 1.2 82.3
SRA [40] 32 4.0 1,425 5.1 1.3 81.7
W-MSA [25] 28 4.0 1,394 5.3 1.2 81.9
T-MSA [9] 30 4.0 1,462 5.0 1.3 81.8
HiLo 28 3.7 1,471 5.1 1.2 82.0
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Figure 3: Comparison with other attention mechanisms based on LITv2-S. We report the FLOPs,
throughput, and training/test time memory consumption. Evaluations are based on a batch size of 64
on one RTX 3090 GPU. The black cross symbol means “out-of-memory”.

LITv2-M and LITv2-B surpass Swin-Ti, Swin-S and Swin-B by 2.8%, 0.5% and 1.2% in mIoU with265

higher FPS, respectively.266

5.4 Ablation Study267

Table 3: Semantic segmentation performance of
different backbones on the ADE20K validation set.
FLOPs is evaluated based on the image resolution
of 512× 512.

Backbone
Params

(M)
FLOPs

(G) FPS
mIoU
(%)

ResNet-50 [17] 29 45 45.4 36.7
PVT-S [40] 28 40 38.7 39.8
Swin-Ti [25] 32 46 39.6 41.5
Twins-SVT-S [9] 28 37 34.5 43.2
LITv1-S [29] 32 46 18.1 41.7
LITv2-S 31 41 42.6 44.3
ResNet-101 [17] 48 66 36.7 38.8
PVT-M [40] 48 55 29.7 41.6
Swin-S [25] 53 70 24.4 45.2
Twins-SVT-B [9] 60 67 28.0 45.3
LITv2-M 52 63 28.5 45.7
PVT-L [40] 65 71 20.5 42.1
Swin-B [25] 107 107 25.5 46.0
Twins-SVT-L [9] 104 102 25.9 46.7
LITv2-B 90 93 27.5 47.2

In this section, we provide ablation studies for268

LITv2, including the comparison with other effi-269

cient attention variants, the effect of α in HiLo,270

as well as the effect of architecture modifica-271

tions. By default, the throughput and memory272

consumption are measured on one RTX 3090273

GPU with a batch size of 64 under the resolution274

of 224× 224.275

Comparing HiLo with other attention mech-276

anisms. Based on LITv2-S, we compare the277

performance of HiLo with other efficient atten-278

tion mechanisms on ImageNet-1K, including279

spatial reduction attention (SRA) in PVT [40],280

shifted-window based attention (W-MSA) in281

Swin [25] and alternated local and global at-282

tention (T-MSA) in Twins [9]. In our imple-283

mentation, we directly replace HiLo with each284

compared method. The results are reported in285

Table 4. In general, HiLo reduces more FLOPs286

while achieving better performance and faster287

speed than the compared methods. Furthermore,288

in Figure 3, we provide comprehensive benchmarks for more attention mechanisms based on different289

image resolutions, including Focal [47], QuadTree [35] and Performer [8]. Suffering from weak290

parallelizability, they are even slower than that of using standard MSAs on GPUs. Compared to them,291

HiLo achieves competitive results in terms of the FLOPs, throughput and memory consumption.292

Effect of α. As shown in Figure 4, since the complexity of Lo-Fi is lower than Hi-Fi under the293

resolution of 224 × 224 and the window size of 2, a larger α helps to reduce more FLOPs as we294

allocate more heads to Lo-Fi. Moreover, we found HiLo performs badly with α = 0, in which case295

only the Hi-Fi is left and HiLo only focuses on high frequencies. We speculate that low frequencies296
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Figure 4: Effect of α based on LITv2-S.

Table 5: Effect of architecture modifications based
on LITv1-S. “ConvFNN” means we add one layer of
3× 3 depthwise convolutional layer into each FFN.
“RPE” refers to relative positional encoding [25].

Name
ImageNet-1K COCO (RetinaNet)

FLOPs
(G)

Mem
(GB)

Top-1
(%)

FLOPs
(G)

FPS AP

LITv1-S [29] 4.1 5.8 81.5 305 3.3 41.6
+ ConvFFN 4.1 6.5 82.5 306 3.1 45.1
+ Remove RPE 4.1 6.5 82.3 306 13.3 44.7
+ HiLo 3.7 5.1 82.0 224 18.7 44.0

Hi-Fi

Lo-Fi

Figure 5: Frequency magnitude (14× 14) from 8 output channels of Hi-Fi and Lo-Fi in LITv2-B.
The magnitude is averaged over 100 samples. The lighter the color, the larger the magnitude. A pixel
that is closer to the centre means a lower frequency.

play an important role in self-attention. For other values of α, we find the performance difference is297

around 0.2%, where α = 0.9 achieves the best performance.298

Effect of architecture modifications. Based on LITv2-S, we explore the effect of architecture299

modifications. As shown in Table 5, benefit from the enlarged receptive field in the early stages, the300

adoption of depthwise convolutions improves the performance on both ImageNet and COCO. Next,301

by removing the relative positional encoding, we significantly improve FPS on dense prediction tasks302

with a slightly performance drop on both datasets. Also note that since depthwise convolutions have303

encoded positional information by zero paddings [20], the elimination of RPE does not result in a304

significant performance drop compared to prior works [25]. Finally, benefit from HiLo, we achieve305

more gains in model efficiency on both ImageNet and COCO.306

Spectrum analysis of HiLo. In Figure 5, we visualize the frequency magnitude of the output feature307

maps from Hi-Fi and Lo-Fi attentions, respectively. The visualisation indicates that Hi-Fi captures308

more high frequencies and Lo-Fi mainly focuses on low frequencies. This strongly aligns with our309

aim of disentangling high and low frequencies in feature maps at a single attention layer. We will310

provide more visualisation examples in the supplementary material.311

6 Conclusion and Future Work312

In this paper, we have introduced LITv2, a novel efficient vision Transformer backbone with fast313

speed on GPUs and outperforms most SoTA models on ImageNet and downstream tasks. We have314

also presented HiLo attention, the core of LITv2 which helps to achieve better efficiency especially315

on high-resolution images. With competitive performance, HiLo achieves great advantage over the316

existing attention mechanisms across FLOPs, throughput and memory consumption. Future work317

may include incorporating convolutional stem [45] and overlapping patch embedding [41] for better318

performance, or extending HiLo on more tasks such as speech recognition and video processing.319

Limitations and societal impact. HiLo adopts a head splitting ratio to assign different numbers320

of heads into Hi-Fi and Lo-Fi. In our experiments, this ratio is determined by a grid search on321

ImageNet (i.e., α = 0.9). However, different tasks may have different importance on high and low322

frequencies. Thus, the optimal value of α is task-specific and needs to be set manually. Besides, our323

work potentially brings some negative societal impacts, such as the huge energy consumption and324

carbon emissions from large-scale training on GPU clusters.325
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