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ABSTRACT

Combinatorial optimization lies at the core of many real-world problems. Espe-
cially since the rise of graph neural networks (GNNs), the deep learning community
has been developing solvers that derive solutions to NP-hard problems by learning
the problem-specific solution structure. However, reproducing the results of these
publications proves to be difficult. We make three contributions. First, we present
an open-source benchmark suite for the NP-hard MAXIMUM INDEPENDENT SET
problem, in both its weighted and unweighted variants. The suite offers a uni-
fied interface to various state-of-the-art traditional and machine learning-based
solvers. Second, using our benchmark suite, we conduct an in-depth analysis
of the popular guided tree search algorithm by [Li et al.|[NeurIPS 2018], testing
various configurations on small and large synthetic and real-world graphs. By
re-implementing their algorithm with a focus on code quality and extensibility, we
show that the graph convolution network used in the tree search does not learn a
meaningful representation of the solution structure, and can in fact be replaced by
random values. Instead, the tree search relies on algorithmic techniques like graph
kernelization to find good solutions. Thus, the results from the original publication
are not reproducible. Third, we extend the analysis to compare the tree search
implementations to other solvers, showing that the classical algorithmic solvers
often are faster, while providing solutions of similar quality. Additionally, we
analyze a recent solver based on reinforcement learning and observe that for this
solver, the GNN is responsible for the competitive solution quality.

1 INTRODUCTION

Various communities have been dealing with the question of how to efficiently solve combinatorial
problems, which frequently are NP-hard. These problems often have real-world applications in
industry, for instance in staff assignment (Peters et al., 2019)), supply chain optimization (Eskandarpour|
et al.,[20135)), and traffic optimization (Bother et al.| [2021)).

In recent years, also the machine learning community has been engaged in solving combinatorial
problems. One reason that learning-based approaches are interesting, even though commercial general
purpose solvers like Gurobi (Gurobi Optimization LLCL 2021)) exist, is that we might be able to learn
the solution structure of a specific family of instances, e.g., similar vehicle routing problems instances
are solved everyday (Khalil et al 2017; [Dong et al.| [2021)). Such a trained model can be used
together with an algorithmic component to find feasible solutions quickly; we outline in
the designs that past works have used.

However, these statistics-based techniques have the well-known problem of reproducibility (Ioannidis|
2005 |Baker, |2016)), which is a particular problem in machine learning research with untested or
even unpublished code and data sets (Kapoor & Narayanan, [2020; [Ding et al., [2020), and is the
reason for the interest in initiatives such as Papers With Code{T_-] and the ReScience J oumaﬂ Keeping
the importance of reproducibility in mind, we evaluate various machine learning approaches for
combinatorial optimization, and compare them to traditional solvers. We focus on the MAXIMUM
(WEIGHTED) INDEPENDENT SET problem (Miller & Muller} |1960; [Karpl [1972), as the previous
works we analyze have centered around variants of this problem. Overall, we contribute the following.

"nttps://paperswithcode.com/
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* We provide an open-source, extensible benchmark suite for MAXIMUM (WEIGHTED)
INDEPENDENT SET solvers. The software currently supports five state-of-the-art solvers,
INTEL-TREESEARCH (L1, Chen, and Koltun, 2018)), GUROBI (Gurobi Optimization LLC,
2021), KAMIS (Lamm et al., 2017; Hespe et al [2019; |[Lamm et al.| 2019), LEARNING
WHAT TO DEFER (Ahn, Seo, and Shin, |2020), and DGL-TREESEARCH. Our DGL-
TREESEARCH is a modern re-implementation of the INTEL-TREESEARCH, implemented in
PyTorch (Paszke et al.,2019) and the Deep Graph Library (Wang et al., |2019), with a focus
on clean, readable code, as well as performance, and it fixes various issues of the original
code. Our evaluation suite lays the ground for further research on hard combinatorial (graph)
problems and aims at providing a fair and comparable environment for further evaluations.

» Using our re-implementation of the tree search, we propose and analyze additional tech-
niques aiming at improving the guided search. Employing the benchmark suite, we conduct
an exhaustive analysis of various configurations of the tree search algorithms, showing that
the results of the highly-cited INTEL-TREESEARCH approach are not reproducible, neither
with the original code nor with our re-implementation. When exploring the design space
further, we show that the various techniques used by the tree search algorithm to improve
the results, like graph kernelization, are the reason for good performance, especially on hard
data sets. In fact, replacing the GNN output with random values performs similar to using
the trained network.

* Having analyzed the configuration space, we compare the tree search approaches to the
classical solvers like GUROBI and KAMIS, showing that problem-tailored solvers are often
the superior approach. Without using techniques like graph reduction in the tree search,
classical solvers are superior. The classical solvers show to be more efficient even when
accessing these routines — that have been implemented for the algorithmic solvers in the first
place — in the tree search. Last, we show that LEARNING WHAT TO DEFER seems to be
able to find good results very quickly, indicating that unsupervised reinforcement learning
for combinatorial problems is a promising direction for future research.

2 INDEPENDENT SET SOLVERS AND MACHINE LEARNING FOR
COMBINATORIAL OPTIMIZATION

In this section, we formally introduce the MAXIMUM INDEPENDENT SET (MIS) problem as well as
the solvers included in our analysis, and discuss related work in the broader space of deep learning
for combinatorial optimization.

Given an undirected graph G = (V, E), an independent set is a set of vertices S C V for which for all
vertices u,v € S, (u,v) ¢ E. Foru € V, let w, be its weight, and let IS(G) be all independent sets
of G, then the MAXIMUM WEIGHTED INDEPENDENT SET (MWIS) problem aims at determining

arg Maxgers(c) Youes Wu-

The unweighted MIS problem is equivalent to the MWIS problem, where f.a. v € V, w, = 1. Both
problems are strongly NP-complete (Garey & Johnson, [1978). Next, we briefly explain the solvers
that we use to find such maximum independent sets.

Gurobi. GUROBI is a commercial mathematical optimization solver. There are various ways of
formulating the M(W)IS problem mathematically (Butenkol 2003). In the main paper, we formulate
the MWIS problem as the linear program above, and discuss other variants in

KaMIS. KAMIS is an open-source solver tailored towards the MIS and MWIS problems. It offers
support both for the unweighted case (Lamm et al.,2017; [Hespe et al.,[2019)) as well as the weighted
case (Lamm et al| 2019). It employs graph kernelization and an optimized branch-and-bound
algorithm to efficiently find independent sets. Note that the algorithms and techniques differ between
the weighted and unweighted cases. We use the code unmodified from the official repositoryﬂ

Intel-TreeSearch. In their influential paper, |Li et al.|(2018) propose a guided tree search algorithm
to find maximum independent sets of a graph. The idea is to train a graph convolutional network
(GCN) (Kipt & Wellingl 2017), which assigns each vertex a probability of belonging to the inde-
pendent set, and then greedily and iteratively assign vertices to the set. They furthermore employ

*https://github.com/KarlsruheMIS/KaMIS
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the reduction and local search algorithms by KAMIS to speed up the computation. We use their
published codeﬂ which unfortunately is not runnable in its default state. We apply a git patclﬂ to
make the code runnable, enable further evaluation by collecting statistics, and add command-line
flags for more fine-grained control of the solver configuration. In we give some details
on possible complications with the original code. Because a good knowledge of the algorithm is
important to follow the remainder of this paper, we briefly describe the algorithm. A pseudocode
description of the algorithm is found in The core element of the tree search is a queuef| P
of partial solutions S € {0,1,?}!V! to the MIS problem, i.e., labelings of the graph at hand marking
each vertex as either included in the MIS (1), excluded (0), or unlabeled (a decision is still to be
made, ?). To be a valid (partial) solution to the MIS problem, each element in the queue fulfills the

constraint that no two adjacent vertices can both be included. Furthermore, all vertices adjacent to an
included one must be excluded.

Given a graph G = (V, E), we start with an empty solution, i.e., f.a. v € V, S, = ?. In each step of
the tree search, a partial labeling is popped from the queue, and the residual graph G esigual cOnsisting
only of the unlabeled vertices is constructed. Next, we obtain a predefined number m of probability
maps, each of which contains a value for all vertices of the residual graph, posing the “probability
of being in the MIS”, by calling the trained GCN, which outputs its assignments from vertices to
probabilities, i.e., GCN(G) € [0, 1]IVI>*™,

From each of these probability maps, a new partial solution is derived as follows: The probabilities
of the maps are sorted in descending order. The vertex with the highest probability gets labeled as
included, and all adjacent vertices as excluded. This step is repeated until we would have to label
an already excluded vertex as included, in which case we break, and add the partial solution to the
queue. In case all vertices are labeled we obtained a full solution. This procedure is repeated for all
probability maps. For further modifications of this algorithm (e.g., reduction), we refer to

DGL-TreeSearch. Because the code provided by |Li et al.| (2018)) might be difficult to read and
maintain, and hence is prone to errors in the evaluation, we re-implement the tree search using
PyTorch (Paszke et al., 2019) and the established Deep Graph Library (Wang et al., 2019). Our
implementation aims at offering a more readable and modern implementation, which benefits from
improvements in the two deep learning libraries during recent years. Furthermore, it fixes various
issues of the original implementation that sometimes deviates from the paper. Additionally, we
implement further techniques to improve the search, like queue pruning, and weighted selection of
the next element, as well as multi-GPU functionality.

Learning What To Defer. We test LEARNING WHAT TO DEFER (LwD), an unsupervised deep
reinforcement learning-based solution introduced by |Ahn et al.|(2020). Their idea is similar to the
tree search, as the algorithm iteratively assigns vertices to the independent set. However, this is not
done using a supervised GCN, but instead by an unsupervised agent built upon the GraphSAGE
architecture (Hamilton et al.,[2017) and trained by Proximal Policy Optimization (Schulman et al.,
2017). There is no queue of partial solutions. We refer to the original paper for details on the
algorithm. As their codeﬂ does not work with generic input, we patch their code.

Our open-source benchmarking suiteﬂ integrates all these solvers in one easily accessible command-
line interface using Anaconda (Anaconda Inc.| [2020), with a unified input and output format. We
provide our code for DGL-TREESEARCH and our GUROBI interface directly, and download, compile,
and patch the other solvers on-demand. It handles the correct invocation of the solvers and allows to
quickly run experiments on various solvers in different configurations.

*nttps://github.com/isl-org/NPHard

SA git patch is a file transparently stating the changes we require to make the code compatible with our
benchmarking suite.

®We use the term queue to stay consistent with other works. However, P is not a traditional LIFO queue, but
a list (infinite-sized array).

"nttps://github.com/sungsoo-ahn/learning.what_to_defer

8Anonyrnous repository: https://anonymous.4open.science/r/mwis—benchmark
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2.1 RELATED WORK

Al for Combinatorial Optimization. Research at the intersection of artificial intelligence and com-
binatorial optimization is not limited to MIS. These methods differ in the problem they tackle, and
how algorithmic components and learned components interact. The evolutionary computation com-
munity, for example, has researched various NP-hard routing problems, like the VEHICLE ROUTING
PROBLEM (Berger & Barkaouil, |2003; [Potvinl 2009) and the MULTIPLE ROUTES problem (Bother|
et al.,|2021). In a nutshell, evolutionary optimization is an iterative improvement that is not guided by
a learned component, but instead tries to mutate and combine existing solutions randomly, in order to
find better solutions. ML-based solvers often are variants of branch-and-bound solvers. In general,
such solvers partition the search space by some rule set; for ML-based solvers, the partition rules are
not pre-defined, but given by a model that learned how to branch (Balcan et al., | 2018). The concrete
algorithms differ in the model used, how they utilize the model to branch within the search space, and
how the model is trained. For example, the INTEL-TREESEARCH trains a GCN on pre-labeled data,
and expects from its guidance model a probability for each vertex that describes how likely it is that
the vertex belongs to the MIS, and then greedily operates on these probabilities. In comparison to
that, LWD instead models the branching process as an unsupervised agent that can choose vertices in
a Markov Decision Process, that similarly to the tree search iteratively picks vertices, but for example
allows to roll-back invalid solutions, instead of greedily pushing forward. This methodology applies
to other combinatorial problems as well. For example, Kool et al.|(2019) propose an attention-based
encoder-decoder-architecture as a model for solving TRAVELLING SALESMAN PROBLEM (TSP)
instances, where the decoder iteratively outputs probabilties for each vertex to be visited next. They
analyze different algorithmic components that utilize that model, for example, greedily following the
most probable vertex, or sampling multiple tours and picking the best. Other research has shown that
the question of scaling such architectures to real-world instances poses a challenge by itself, and that
currently, algorithmic solvers often outperform ML-based solvers for larger instances (Joshi et al.|
2021)). A theoretical understanding of how such models extrapolate to different instance families is
also topic of current research (Xu et al.,[2021).

With this discussion, we want to show that the design space for ML-based solvers is broad, as on
the one hand, one has to design a model that learns how to solve a problem, and on the other hand
build an efficient algorithmic component that utilizes that model to actually find a solution. These
components can become very complex, as seen in recent work by |[Nair et al.|(2021)) which aims at
solving Mixed Integer Programs and uses two neural network components instead of one; the neural
diving component finds variable assignments, while the neural branching component guides the
branch-and-bound algorithm in its next step.

Other Solvers for Maximum Independent Set. Next to the solvers included in this paper, there are
some other solvers available. |Khalil et al.| (2017) propose S2V-DQN, in which they use Q-learning to
solve the minimum vertex cover problenﬂ Compared to LwD, which marks multiple vertices as part
of the MIS in a single step, S2V-DQN only labels a single vertex in each step. We mention the recent
publication by [Hespe et al.|(2021) introducing some new reduction rules for MIS, which have not yet
been included in KAMIS. Another heuristic for MIS that we do not consider in this paper in favor of
KAMIS is GRASP (Feo et al.l|[1994). Note that all of these solvers are heuristics and hence only
solve MIS approximately; exact solvers have been proposed by Jain & Seshadhri| (2020); | X1ao &
Nagamochi| (2017); Tomita et al.|(2010), for example, and theory has been working on understanding
why and in what models MIS poses to be difficult (Censor-Hillel et al.| 2017).

3 EVALUATION

In this section, we first introduce our experimental setup and then focus on the analysis of the
supervised tree search approach for combinatorial optimization in[Section 3.1] After having derived a
good configuration for the tree search algorithm, we continue to compare the tree search algorithms to
the other classical and reinforcement learning solvers in We investigate the scalability of

the approaches in[Section 3.3] and analyze the behavior on the weighted MIS problem in[Section 3.4]

Experimental Setup. We run all our experiments on an NVIDIA DGX-1 with two 20-Core Intel
Xeon E5-2698 CPUs at 2.2 GHz, leading to overall 40 physical and 80 logical cores, 512 GB of

“MVC is very related to the maximum independent set, as one can just flip the assignment.
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Table 1: Results of the tree searches in various configurations; the full table with more datasets and
more configuration options can be found in For all configurations, in the first row, we state
the average MIS size as well as the average approximation factor. In the second row, the average
time in seconds until the best solution was found, and, in brackets, the number of graphs where any
solution was found are given. The average values refer only to the graphs within a dataset for which a
solution was found. For Intel, here we show the default setting (d) and the setup with both reduction
and local search enabled (r+1s). For DGL, we explore the configuration space further, as we analyze
the default (d), reduction and local search (r+1s), queue pruning and weighted queue pop (gp+wp),
and the full configuration where we replace the GCN by randomly generated outputs (+rand). For
the random graphs of size 50-100, all solvers have a time limit of 15 seconds; for the SATLIB and PPI
datasets the time limit is 30 seconds; for VC-BM and DIMACS graphs, the time limit is 5 minutes.

Intel DGL
Graph Nodes d r+ls d r+ls qp+wp  gp+wp+r+ls+rand
so.100  20-58(098) 20.83 (1.00) 19.88 (0.95) 20.83 (1.00) 1916 (0.92) 20.83 (1.00)
ER i 1.70 (500) 0.02 (500) 3.53 (500) 0.28 (500) 3.39 (500) 031 (500)
200-800 39.90 (-) 44.08 (-) 37.13 () 43.90 (-) 34.79 (-) 44.02 (-)
i 12.00 (100) 16.81 (100) 13.63 (100) 12.82 (100) 9.1 (100) 10.08 (100)
so.l00 3362099 33.72 (1.00) 32.80 (0.97) 33.72(1.00)  30.93 (0.92) 33.72 (1.00)
HRG - 3.24 (495) 0.00 (500) 550 (500) 0.06 (500) 3.45 (500) 0.07 (500)
700800 -() 304.21(1.00) 221.80(0.75)  304.21(1.00)  245.29 (0.80) 304.21 (1.00)
i - 0.03 (100) 17.81 (5) 0.40 (100) 13.55 (98) 0.44 (100)
S() 42639(0.99) 34050 (0.79)  426.25(0.99)  356.93 (0.84) 426.48 (0.99)
SATLIB  1209-1347 - 6.89 (500) 18.48 (2) 9.55 (500) 17.91 211) 5.58 (500)
39.85 () 44.26 (-) 37.20 (-) 4435 () 35.42 () 44.58 (-)
VC-BM 430-153% 149,80 (80) 166.04 (78) 139.55 (80) 84.08 (80) 68.33 (80) 64.57 (80)
37.14 () 76.41 () 57.68 (-) 76.49 () 45.54.(-) 76.51 (-)
DIMACS 1254000 ;95 37) 43.12(37) 87.53 (37) 36.36 (37) 42.56 (37) 27.89 (37)
-()  1002.83 (1.00) 269.00 (0.97)  1002.67 (0.99)  804.38 (0.92) 100279 (0.99)
PPI 591-3480 24.70 (24) 23.56 (1) 3.70 (24) 20.11 (13) 4.11(24)

memory, and a total of eight NVIDIA Tesla V100 GPUs. For each experiment, we explicitly state the
number of threads and GPUs used. We run Ubuntu 20.04.1 LTS, using Linux kernel 4.15.0-124.

Datasets. We evaluate the various solvers and configurations using both real-world datasets as well
as generated random graphs in various sizes. We make use of the random graph models by Erdos &
Rényi| (1960) (ER),|Albert & Barabasi|(2002) (BA), Holme & Kim/(2002) (HK), |Watts & Strogatz
(1998) (WS) and the Hyperbolic Random Graph model (Krioukov et al.,|2010) (HRG). The graph
generation functionality, employing NetworkX (Hagberg et al), [2008)) and girgs (Blasius et al.|
2019) as backends, is integrated into our benchmark suite. For real-world datasets, we focus on
the hard SATLIB dataset (Hoos & Stiitzlel 2000), which consists of synthetic 3-SAT instances,
the vertex cover benchmark (VC-BM) (Xu et al., |2007) consisting of 40 graphs on which finding
the maximum independent set is synthetically made hard, and the DIMACS challenge graphs; we
also test various other graphs, like citation networks. Details on these datasets, as well as detailed
descriptions and splits of all mentioned datasets, and hyperparameters of graph generation, can be

found in[Appendix i

3.1 ANALYSIS OF THE TREE SEARCH

In this subsection, we analyze the INTEL-TREESEARCH and DGL-TREESEARCH. These supervised
approaches require training a GCN (Kipf & Welling, 2017). Following|Li et al.|(2018), we train
both on the SATLIB dataset for 20 epochs using the Adam optimizer (Kingma & Ba,|2015). As the
GCN outputs multiple probability maps (c.f.[Appendix B}, we employ the hindsight loss, which, for
multiple choices, outputs the loss of the best choice (Guzman-Rivera et al., 2012; |Chen & Koltun,
2017). We fix the number of probability maps to 32, to enable comparison with |Li et al.| (2018]).
We test the solvers in different configurations on various graphs; these configurations are assorted
with increasing levels of complexity and intuitively should improve the solution quality. Details on
what effects the individual configuration options have are outlined in An excerpt of our

results can be found in the full table can be found in the [Appendix Alin[Table 2}

Random Graph Results. First, we discuss the results of the random graphs. For all small graphs, both
tree searches in all configurations find solutions most of the time. These are close to optimal as soon
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Figure 1: Violin plots of time to solution and MIS sizes of the tree searches in various configurations
on a selection of data sets.

as reduction (+r) and local search (+1s) are involved. Notably, on larger non-ER random graphs, in
the default variants, where neither reduction nor local search is enabled, both INTEL-TREESEARCH
and DGL-TREESEARCH do not often find a solution. This shows that for medium-sized graphs,
vanilla tree searches cannot discover solutions within a feasible time limit. The reductions often
single-handedly solve the problem instance, as seen for example on the simple BA graphs, where a
solution is found instantaneously.

Queue Pruning and Weighted Queue Pop. To approach the issue of requiring hand-tailored
reduction techniques to obtain any solution, with DGL-TREESEARCH, we analyze queue pruning
and the weighted queue pop. While queue pruning itself performs similar to the default configuration
for all graphs, the weighted pop vastly increases the number of solutions found. For example, for
large hyperbolic random graphs, in the default configuration, the DGL-TREESEARCH was only
able to find solutions for 5 graphs (and the INTEL-TREESEARCH was not able to find any solution),
whereas using queue pruning together with the weighted queue pop, we find solutions for 98 % of
all large HRGs. A similar observation can be made for WS graphs. Interestingly, it seems like the
MIS problem is harder to address with the default approach on graphs that try to model real-world
networks, such as the just mentioned HRGs and WS graphs (Blasius et all 2018). Overall, queue
pruning might be desirable to reduce memory consumption, but its impact on solving quality and
time is limited; on the other hand, weighted queue popping is a general idea that brings some more
depth-search-like behavior into the breadth-search-like approach at hand, and thus enables the solver
to find a lot more solutions.

Importance of Reduction. For small and large BA, HK, WS graphs as well as HRGs, the reduction
itself already leads to an achieved average approximation of 1. Only for the large ER graphs, for
which GUROBI was not able to find provably optimal assignments, the local search further improves
the average independent set size. Multithreading cannot improve the results of the random graphs.

Hard Real-World Graph Results. Now, we discuss the results for the hard benchmark datasets.
Unlike previously, where we just aimed at finding an MIS on random graphs, solving the MIS problem
on SATLIB is equivalent to finding a satisfiable assignment to synthesized hard 3-SAT instances.
Thus, one can expect this data set to be particularly hard. Our experiments confirm this, as both
implementations rarely find solutions within the time limit without reduction enabled. We can see
that, similar to the random graphs, the weighted queue pop enables the search to at least find some
solution, as this configuration is at least able to find 211 instead of no results at all. However, the
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average independent set size is 357, which is not very good, considering each MIS in this dataset
contains at least 403 vertices.

Considering VC-BM, due to the higher time limit, the default configurations are already able to
find some solution. Interestingly, for VC-BM, the reductions do not improve the performance of
the solvers. Hence, the weighted queue pop is very important for finding results quickly, shrinking
the time needed from the default 140 seconds to under 70 seconds. For DIMACS, we see similar
behavior to SATLIB, i.e., the reduction and local search techniques improve the average MIS, and the
weighted queue pop enables faster discovery of solutions.

Impact of the Findings. These results are interesting for various reasons. First, the models are
trained on SATLIB instances, but the default configuration does not find any independent set for other
instances of the this family, which was one motivation for using machine learning for optimization
(c.f.[Section T)). The results contradict the original paper by [Li et al| (2018), which claims an average
MIS of 426 and related work by |Ahn et al.| (2020), claiming an average MIS of 418. Additionally to
our own trained weights, we test the model weights provided in the official INTEL-TREESEARCH
repository, but do not find any differences in the results. |/Ahn et al.| (2020) mention that they modified
the official INTEL-TREESEARCH code. Unfortunately, neither the paper documents how exactly
their queue pruning has been implemented, nor were the authors themselves able to provide us their
modifications to the original INTEL-TREESEARCH repository when we contacted them. Hence,
it remains unclear whether the difference in the SATLIB results between |Ahn et al.| (2020) and
our experiments stems from how they implemented queue pruning, or from some unwanted side
effects in their experiments (e.g., the reduction may have been still enabled). Furthermore, we
unsuccessfully contacted L1 et al.| (2018]) about our findings. As both the INTEL-TREESEARCH and
our re-implementation DGL-TREESEARCH, which was written from scratch, exhibit this behavior,
we suspect that there must be an undocumented modification or problem in the experiments that leads
to|Ahn et al.| (2020) obtaining rather good results with the default configuration. Overall, neither
the original code with the original weights, nor the original code with newly trained weights, nor
our reimplementation are performing as originally claimed. In order to be as transparent as possible
about our findings, we provide all of our code changes applied to the Intel repository as a patch and
provide the entire source code of the re-implemented DGL-TREESEARCH as well.

Replacing the GCN with Random Values. Next, we analyze the replacement of the outputs of the
GCN with random values. We start with the randomized default configuration, i.e., no techniques like
reduction are enabled. In this case, we find that for all small random graphs, the tree search is still
able to find solutions; however, the quality of these MIS seems to be slightly worse than the default
results. For 80 % of the larger random graphs — except for ER graphs — the randomized tree search is
not able to find solutions. As the default configuration is not able to find any solution for SATLIB, it
is to be expected that the random configuration does not find any solution either.

Randomness for Other Real-World Graphs. For the other real-world graphs, the reddit datasets
are the only datasets where the default configuration performed reasonably well. We find that the
randomness here in fact increases the performance of the algorithm.

Robustness. Most ouf our datasets consist of multiple instances. In order to shed light onto the
distribution of both the solution size as well as the time until the solution was found, in
we show violin plots for some data sets and tree search configurations. Note in most real world
scenarios, we do not know when we can terminate, hence the run time will always be the maximum
time limit configured. In these plots, we can for example again confirm that the combination of
queue pruning and weighted popping enables us to find solutions quicker. We also see that as soon as
reduction and local search are enabled, the solution distributions of the tree searches are very similar,
no matter whether whether we query the GCN or use random values; for SATLIB, we see that using
random values the distribution of the time to solution is even narrower towards 0, because no GPU
computation is required.

Final Considerations. We conclude that the guidance by the GCN does not help our tree search
algorithm; for some datasets, it is not able to generalize well (randomness beats the GCN), for
others, there is no performance difference between random values and the GCN. If we focus on the
configuration of the tree search that could be considered the production Versiorm i.e., with at least

10Recall that the default version is not able to solve the SATLIB dataset without the help of reduction and
local search techniques.
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reduction and local search enabled, we find that random outputs lead to identical performance, with
very minor differences in the time until the final solution discovery. Overall, major contributing
factors to solution quality are the reduction and local search by KAMIS, and in fact, the tree search
algorithm is a “smarter brute-force” approach that does not gain any performance by being guided by
a machine learning model. Instead, the search space is only narrowed by techniques such as data
reduction and weighted queue popping, instead of good guidance by the ML model.

3.2 COMPARING TREE SEARCH SOLVERS TO OTHER SOLVERS

Having understood the implications of the various possible configurations of tree searches, next, we
compare INTEL-TREESEARCH and DGL-TREESEARCH to KAMIS, a heuristic solver optimized for
the MAXIMUM INDEPENDENT SET problem, the mathematical optimization tool GUROBI, and the
reinforcement learning tool LEARNING WHAT To DEFER. For LWD, we train for 20 000 iterations
of proximal policy optimization on the SATLIB dataset, using the hyperparameters given for SATLIB
in Table 5 (Appendix A.1) of |Ahn et al.| (2020). Due to space constraints, the detailed results are

given in[Appendix Alin [Table 3]

KAMIS and GUROBI. As we can see, the sophisticated state-of-the-art solver KAMIS can solve
almost all instances perfectly; for example, for the large ER graphs, the multithreaded INTEL-
TREESEARCH has a slightly higher average MIS, and a faster time until a solution is found. For other
graphs, especially the SATLIB dataset, KAMIS is very fast, while obtaining very high-quality results.
These results are in line with|Ahn et al.| (2020), who also observed KAMIS outperforming the tree
search. Regarding the general-purpose solver GUROBI, we find that it performs similar to KAMIS
on simple instances, however, on harder datasets such as SATLIB or VC-BM, we see that Gurobi
takes significantly more time to find good solutions, and the average MIS is a little smaller (e.g., for
large ER graphs, KAMIS achieves 44.57, compared to 37.79 for GUROBI). Note that GUROBI and
KAMIS have to rely on the CPU, while the tree search employs one one or more GPUs, unless it
uses random values. Evening when assigning eight V100 GPUs to the multithreaded tree search, the
computational advantage of the tree search does not help to outperform the other solvers, showing
that the workload is not GPU-bound.

LwD. We analyze LWD first in its default configuration and then, similar to the tree search, replace
the output of the graph neural network with a random tensor. First, LWD is very fast, even though it
requires neural network inference. For example, on the DIMACS data set, LWD finds solutions on
average in just 4 seconds, while KAMIS takes 121 seconds. Quality-wise, except for the VC-BM
dataset, it always finds near-optimal solutions. Note that we did not use the local search or reduction
techniques for LWD, which could further improve solution quality. When using random output instead
of the neural network, unlike the tree search algorithms, the solution quality degrades noticeably.
These promising results show that LwD did not only learn the solution structure of the SATLIB
instance family, but additionally is able to generalize over different datasets.

Robustness. Due to space constraints, we show violin plots of the results in[Appendix Alin|Figure 2|
We clearly see the impact of randomness on LWD, and can visually compare the time difference
between GUROBI and KAMIS, for example on VC-BM.

Final Considerations. For tree search approaches, we see that state-of-the-art algorithmic techniques
are required to find good solutions. As the fully-configured versions of the tree searches employ these
KAMIS-internal routines, one can argue that the purely algorithmic solvers are the better choice,
because the quality difference is negligible, while KAMIS is faster than the tree searches. Purely
algorithmic solvers do not come with the overhead of a machine learning environment (training
as well as execution are more complicated), and the important algorithmic techniques need to be
developed in any case. Our results are in line with observations by [Joshi et al.| (2021) who have
compared algorithmic and classical solvers to deep learning solutions for TSP, and observe that
DL-based solutions are often outperformed, especially on larger instances.

3.3 LARGE-SCALE GRAPHS

However, the question is whether these observations also hold true for large-scale graphs. To this end,
we evaluate the solvers on random graph instances from 500 000 to 5 000 000 vertices, and on huge
real-world graphs. Detailed results can be found in[Appendix Alin[Table 4]
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Overall, we observe similar performance characteristics on large-scale graphs. Only KAMIS and
GUROBI are able to find solutions for all scenarios. KAMIS performs best, both with respect
to solution quality and time required to find these solutions; in many cases, it is more than one
order of magnitude faster than other solvers. Compared to the INTEL-TREESEARCH, the DGL-
TREESEARCH time outs more often due to VRAM limits; the INTEL-TREESEARCH benefits from
lower-level implementation using numpy arrays and sparse adjacency matrices, while the DGL-
TREESEARCH employs the higher level Deep Graph Library graph abstraction, consuming more
memory. For LWD, we see good results for graphs up to 500 000 vertices, but cannot verify the
scalability up to 2 000 000 vertices of the original pape

3.4 WEIGHTED GRAPHS

Having analyzed the solvers on unweighted graphs, we briefly want to see how the solvers perform on
weighted graphs. Intuitively, the weighted problem is harder, because each vertex can have a different
value; hence specialized reduction techniques have to be developed. [Lamm et al.| (2019) were the
first to present such rules also for the weighted case that are implemented in KAMIS, however,
only integer weights are currently supported. We test weighted random graphs and three Amazon
MWIS data sets. The results and details on the weighted graph generation are given in[Appendix Al
in[Table 3} note that INTEL-TREESEARCH does not support the weighted case, and while|/Ahn et al.
(2020) evaluate LwWD for MWIS, they do not provide the code to do so.

We observe that on HK, WS, and HRG graphs, where KAMIS is able to utilize its reduction
techniques, it is able to instantaneously solve the weighted problem as well. However, on ER graphs,
the reduction times out, showing that the suitability of the algorithmic techniques is graph-dependent.
In the weighted case on ER graphs, the DGL-TREESEARCH with queue pruning enabled finds the
best result. GUROBI finds solutions of similar quality to KAMIS very quickly. For the Amazon data
sets, all solvers except GUROBI reach their limits. KAMIS does not support the large node weights
that are used in the Amazon instances and hence is not able to solve them. The DGL-TREESEARCH
goes out of memory and crashes while solving these instances. Overall, we see that both GUROBI as
well as the vanilla tree search have the advantage of being problem-agnostic, i.e., an extension to
the weighted case was easily possible, while for the algorithmic solver, new reductions are needed,
that currently cannot deal with some graphs. On smaller random graphs where the reductions are
successful, KAMIS finds solutions of the highest quality, showing the trade-off between general and
specialized solvers. GUROBI is the only solver that is able to solve large, weighted, real-world MWIS
instances, and shows that industry-standard optimizers are very robust towards different inputs of
different sizes, while smaller algorithmic solvers need more time to reach that level of robustness.

4 CONCLUSION AND FUTURE WORK

We present our comprehensive, open-source benchmark environment for the MAXIMUM
(WEIGHTED) INDEPENDENT SET problem. Using this environment, we run several experiments on
both real-world and synthetic graphs of different sizes. Our analysis shows that guided tree searches,
such as the INTEL-TREESEARCH by |Li et al.|(2018)), owe their good results not to the trained neural
network, but instead to the various techniques used to make a “better” brute-force algorithm. To
verify this, we show that the GCN that guides the search can be replaced by random values without a
noticeable performance impact. Furthermore, we are not able to reproduce the results of previous
work in the default configuration of the algorithm and claim that without algorithmic techniques,
the tree search algorithms are not able to solve hard MIS instances. We believe our results to be an
important insight for the community researching at the intersection of combinatorial optimization and
machine learning. The benchmark suite lays the ground fur future reproducible evaluations for new
MIS solvers, and the promising results for LEARNING WHAT T0O DEFER indicate that reinforcement
learning is superior to supervised approaches. This might be kept in mind when developing solving
techniques using machine learning in the future. For future work, further variants of the MAXIMUM
INDEPENDENT SET problem, such as the GENERALIZED INDEPENDENT SET problem (Colombi
et al., 2017; Hosseinian & Butenko, 2019), and other problems, such as TSP, should be considered, to
further understand for what kind of problem what solver architecture should be used.

1 As|Ahn et al.{(2020) do not explicitly state the hyperparameter configuration for their large-scale experiments
and random graph generation, these experiments might not be directly comparible
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