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Abstract

Federated learning (FL) enables the building of robust and generalizable AI models
by leveraging diverse datasets from multiple collaborators without centralizing the
data. We created NVIDIA FLARE1 as an open-source software development kit
(SDK) to make it easier for data scientists to use FL in their research and real-world
applications. The SDK includes solutions for state-of-the-art FL algorithms and
federated machine learning approaches, which facilitate building workflows for dis-
tributed learning across enterprises and enable platform developers to create a secure,
privacy-preserving offering for multiparty collaboration utilizing homomorphic
encryption or differential privacy. The SDK is a lightweight, flexible, and scalable
Python package, and allows researchers to bring their data science workflows imple-
mented in any training libraries (PyTorch, TensorFlow, XGBoost, or even NumPy)
and apply them in real-world FL settings. This paper introduces the key design
principles of FLARE and illustrates some use cases (e.g., COVID analysis) with
customizable FL workflows that implement different privacy-preserving algorithms.

1 Introduction

Federated learning (FL) has become a reality for many real-world applications [22]. It enables
multinational collaborations on a global scale to build more robust and generalizable machine learning
and AI models. In this paper, we introduce NVIDIA FLARE, an open-source software development kit
(SDK) that makes it easier for data scientists to collaborate to develop more generalizable and robust AI
models by sharing model weights rather than private data. While FL is attractive in many industries, it is
particularly beneficial for healthcare applications where patient data needs to be protected. For example,
FL has been used for predicting clinical outcomes in patients with COVID-19 [6] or to segment brain
lesions in magnetic resonance imaging [26, 25]. FLARE is not limited to applications in healthcare
and is designed to allow cross-silo FL [11] across enterprises for different industries and researchers.

In recent years, several efforts (both open-source and commercial) have been made to bring FL tech-
nology into the healthcare sector and other industries, like TensorFlow Federated [1], PySyft [32],
FedML [10], FATE [16], Flower [2], OpenFL [21], Fed-BioMed [27], IBM Federated Learning [17],
HP Swarm Learning [29], FederatedScope [30], FLUTE [7], and more. Some focus on simulated FL set-
tings for researchers, while others prioritize production settings. FLARE aims to be useful for both sce-
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narios: 1) for researchers by providing efficient and extensible simulation tools and 2) by providing an
easy path to transfer research into real-world production settings, supporting high availability and server
failover, and by providing additional productivity tools such as multi-tasking and admin commands.

2 NVIDIA FLARE Overview

FLARE stands for “Federated Learning Application Runtime Environment”. The SDK enables
researchers and data scientists to adapt their existing machine learning and deep learning workflows
to a federated paradigm and enables platform developers to build a secure, privacy-preserving offering
for distributed multiparty collaboration.

FLARE is a lightweight, flexible, and scalable federated learning framework implemented in Python
that is agnostic to the underlying training library. Developers can bring their own data science
workflows implemented in PyTorch, TensorFlow, or even in pure NumPy, and apply them in a federated
setting. A typical FL workflow such as the popular federated averaging (FedAvg) algorithm [18], can
be implemented in FLARE using the following main steps. Starting from an initial global model, each
FL client trains the model on their local data for a certain amount of time and sends model updates
to the server for aggregation. The server then uses the aggregated updates to update the global model
for the next round of training. This process is iterated many times until the model converges.

Though used heavily for federated deep learning, FLARE is a generic approach for supporting
collaborative computing across multiple clients. FLARE provides the Controller programming API
for researchers to create workflows for coordinating clients for the purpose of collaboration. FedAvg is
one such workflow. Another example is cyclic weight transfer [4]. The central concept of collaboration
is the notion of “task”. An FL controller assigns tasks (e.g., deep-learning training with model weights)
to one or more FL clients and processes results returned from clients (e.g., model weight updates).
The controller may assign additional tasks to clients based on the processed results and other factors
(e.g., a pre-configured number of training rounds). This task-based interaction continues until the
objectives of the study are achieved.

The API supports typical controller-client interaction patterns like broadcasting a task to multiple
clients, sending a task to one or more specified clients, or relaying a task to multiple clients sequentially.
Each interaction pattern comes with two flavors: wait (block until results from clients are received)
or no-wait. A workflow developer can use any of these interaction patterns to create innovative
workflows. For example, the ScatterAndGather controller (typically used for FedAvg-like algorithms)
is implemented with the broadcast_and_wait pattern, and the CyclicController is implemented with
the relay_and_wait pattern. The controller API allows the researcher to focus on the control logic
without needing to deal with underlying communication issues. Figure 1 shows the principle. Each
FL client acts as a worker that simply executes tasks assigned to it (e.g., model training) and returns
execution results to the controller. At each task interaction, there can be optional filters that process the
task data or results before passing it to the Controller (on the server side) or task executor (client side).
The filter mechanism can be used for data privacy protection (e.g., homomorphic encryption/decryption
or differential privacy) without having to alter the training algorithms.

Key Components NVIDIA FLARE is built on a componentized architecture that gives the flexibility
to take FL workloads from research and simulation to real-world production deployment. Some of
the key components of this SDK include:

• FL Simulator for rapid development and prototyping.

• FLARE Dashboard for simplified project management, secure provisioning, and
deployment, orchestration.

• Reference FL algorithms (e.g., FedAvg, FedProx, SCAFFOLD) and workflows (e.g.,
Scatter and Gather, Cyclic).

• Privacy preservation with differential privacy, homomorphic encryption, and more.

• Specification-based API for extensibility, allowing customization with plug-able
components.

• Tight integration with other learning frameworks like MONAI [3], XGBoost [5], and more.
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Figure 1: FLARE job execution. The Controller is a Python object that controls or coordinates the
Workers to get a job done. The controller is run on the FL server. A Worker is capable of performing
tasks. Workers run on FL clients.

High-Level Architecture FLARE is designed with the idea that less is more, using a specification-
based design principle to focus on what is essential. This allows other people to be able to do what
they want to do in real-world applications by following clear API definitions. FL is an open-ended
space. The API-based design allows others to bring their implementations and solutions for
various components. Controllers, task executors, and filters are just examples of such extensible
components. FLARE provides an end-to-end operation environment for different personas. It provides
a comprehensive provisioning system that creates security credentials for secure communications
to enable the easy and secure deployment of FL applications in the real world. It also provides
an FL Simulator for running proof-of-concept studies locally. In production mode, the researcher
conducts an FL study by submitting jobs using admin commands either on Notebook or FLARE
Console – an interactive command tool. FLARE provides many commands for system operation and
job management. With these commands, one can start and stop a specific client or the entire system,
submit new jobs, check the status of jobs, create a job by cloning from an existing one, and much more.

With FLARE’s component-based design, a job is just a configuration of components needed for the
study. For the control logic, the job specifies the controller component to be used and any components
required by the controller.

3 System Concepts

A FLARE system is a typical client-server communication system that comprises one or more FL
server(s), one or more FL client(s), and one or more admin clients. The FL Servers open two ports
for communication with FL clients and admin clients. FL clients and admin clients connect to the
opened ports. FL clients and admin clients do not open any ports and do not directly communicate
with each other. The following is an overview of the key concepts and objects available in FLARE
and the information that can be passed between them.

Workers and Controller FLARE’s collaborative computing is achieved through the Con-
troller/Worker interactions.

Shareable Object that represents a communication between server and client. Technically, the Share-
able is implemented as a Python dictionary that could contain different information, e.g., model weights.

Data Exchange Object (DXO) Standardizes the data passed between the communicating parties.
One can think of the Shareable as the envelope and the DXO as the letter. Together, they comprise
a message to be shared between communicating parties.
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FLComponent The base class of all the FL components. Executors, controllers, filters, aggregators,
and their subtypes are all FLComponents. FLComponent comes with some useful built-in methods
for logging, event handling, auditing, and error handling.

Executors Type of FLComponent for FL clients that has an execute method that produces a
Shareable from an input Shareable. FLARE provides both single- and multi-process executors to
implement different computing workloads.

FLContext One of the most important features of FLARE is to pass data between the FL components.
FLContext is available to every method of all common FLComponent types. Through FLContext,
the component developer can get services provided by the underlying infrastructure and share data
with other components of the FL system.

Filters Filters in FLARE are a type of FLComponent that have a process method to transform the
Shareable object between the communicating parties. A Filter can be used to provide additional
processing to shareable data before sending or after receiving from a peer. Filters can convert data
formats and a lot more and are FLARE’s primary mechanism for data privacy protection [15, 9]:

• ExcludeVars to exclude variables from shareable.

• PercentilePrivacy for truncation of weights by percentile.

• SVTPrivacy for differential privacy through sparse vector techniques.

• Homomorphic encryption filters used for secure aggregation.

As an example, we show the average encryption, decryption, and upload times. We compare raw data
to encrypted model gradients uploaded in Fig. 2 and Table 1 when hosting the server on AWS2 and
connecting 30 clients. One can see the longer upload times due to the larger message sizes needed
by homomorphic encryption.

Figure 2: Running federated learning with 30 clients and the server on AWS.

Table 1: Federated learning exchanging homomorphic encrypted vs. g raw model updates.
Time in seconds Mean Std. Dev.
Encryption 5.01 1.18
Decryption 0.95 0.04
Enc. upload 38.00 71.17
Raw upload 21.57 74.23

2For reference, we used an m5a.2xlarge instance with eight vCPUs, 32-GB memory, and up to 2,880 Gbps
network bandwidth.
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Event Mechanism FLARE comes with a powerful event mechanism that allows dynamic
notifications to be sent to all event handlers. This mechanism enables data-based communication
among decoupled components: one component fires an event when a certain condition occurs,
and other components can listen to that event and processes the event data. Each FLComponent is
automatically an event handler. To listen to and process an event, one can simply implement the
handle_event() method and process desired event types. Events represent some important moments
during the execution of the system logic. For example, before and after aggregation or when important
data becomes available, e.g., a new “best” model was selected.

3.1 Productivity Features

FLARE contains features that enable efficient, collaborative, and robust computing workflows.

Multi-tasking For systems with a large capacity, computing resources could be idle most of the
time. FLARE implements a resource-based multi-tasking solution, where multiple jobs can be run
concurrently when overall system resources are available. Multi-tasking is made possible by a job
scheduler on the server side that constantly tries to schedule a new job. For each job to be scheduled,
the scheduler asks each client whether they can satisfy the required resources of the job (e.g., number
of GPU devices) by querying the client’s resource manager. If all clients can meet the requirement,
the job will be scheduled and deployed to the clients.

High Availability and Server Failover To avoid the FL server as a single point of failure, a solution
has been implemented to support multiple FL servers with automatic cut-over when the currently active
server becomes unavailable. Therefore, a component called Overseer is added to facilitate automatic
cut-over. The Overseer provides the authoritative endpoint info of the active FL server. All other system
entities (FL servers, FL clients, admin clients) constantly communicate (i.e., every 5 seconds) with the
Overseer to obtain such information and act on it. If the server cutover happens during the execution of
a job, then the job will continue to run on the new server. Depending on how the controller is written, the
job may or may not need to restart from the beginning but can continue from a previously saved snapshot.

Simulator FLARE provides a simulator to allow data scientists and system developers to easily
write new FLComponents and novel workflows. The simulator is a command line tool to run a FLARE
job. To allow simple experimentation and debugging, the FL server and multiple clients run in the
same process during simulation. A multi-process option allows making efficient use of resources,
e.g., training multiple clients on different GPUs. The simulator follows the same job execution as
in real-world FLARE deployment. Therefore, components developed in simulation can be directly
deployed in real-world federated scenarios.

3.2 Secure Provisioning in FLARE

Security is an important requirement for federated learning systems. FLARE provides security
solutions in the following areas: authentication, communication confidentiality, user authorization,
data privacy protection, auditing, and local client policies.

Authentication FLARE ensures the identities of communicating peers with the use of mutual
Transport Layer Security (TLS). Each participating party (FL Servers, Overseer, FL Clients, Admin
Clients) must be properly provisioned. Once provisioned, each party receives a startup kit, which
contains TLS credentials (public cert of the root, the party’s own private key and certificate) and system
endpoint information, see Fig. 3. Each party can only connect to the FLARE system with the startup
kit. Communication confidentiality is also achieved with the use of TLS-based messaging.

Federated Authorization FLARE’s admin command system is very rich and powerful. Not every
command is for everyone. FLARE implements a role-based user authorization system that controls
what a user can or cannot do. At the time of provision, each user is assigned a role. Authorization
policies specify which commands are permitted for which roles. Each FL client can define its own
authorization policy that specifies what a role can or cannot do to the client. For example, one client
could allow a role to run jobs from any researchers, whereas another client may only allow jobs
submitted by its own researchers (i.e., the client and the job submitter belong to the same organization).
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Figure 3: High-level steps for running a real-world study with secure provisioning with FLARE.

FLARE automatically records all user commands and job events in system audit files on both the server
and client sides. In addition, the audit API can be used by application developers to record additional
events in the audit files.

Client-Privacy FLARE enhances the overall system security by allowing each client to define its own
policies for authorization, data privacy (filters), as well as computing resource management. The client
can change its policies at any time after the system is up and running without having to be re-provisioned.
For example, the client could require that all jobs running on it are subject to a set of filters. The client
could also change the number of computing resources (e.g., GPU devices) to be used by the FL client.

Federated Data Science As a general distributed computing platform, FLARE can be used for
various applications in different industries. Here we describe some of the most common use cases
where FLARE was deployed so far.

Federated Learning A go-to example dataset for benchmarking different FL algorithms is CIFAR-
10. FLARE allows users to experiment with different algorithms and data splits using different levels
of heterogeneity based on a Dirichlet sampling strategy [28]. Figure 4a shows the impact of different
alpha values, where lower values cause higher heterogeneity on the performance of the FedAvg.

Apart from FedAvg, currently available in FLARE include FedProx [14], FedOpt [20], and
SCAFFOLD [12]. Figure 4b compares an α setting of 0.1, causing a high data heterogeneity across
clients and its impact on more advanced FL algorithms, namely FedProx, FedOpt, and SCAFFOLD.
FedOpt and SCAFFOLD show markedly better convergence rates and achieve better performance than
FedAvg and FedProx with the same alpha setting. SCAFFOLD achieves this by adding a correction
term when updating the client models, while FedOpt utilizes SGD with momentum to update the global
model on the server. Therefore, both achieve better performance with the same number of training
steps as FedAvg and FedProx.

Other algorithms available in or coming soon to FLARE include federated XGBoost [5], Ditto [13],
FedSM [31], Auto-FedRL [8], and more.

Federated Statistics FLARE provides built-in federated statistics operators (Controller and
Executors) that will generate global statistics based on local client statistics. Each client could have
one or more datasets, such as “train” and “test” datasets. Each dataset may have many features. For
each feature in the dataset, FLARE will calculate the statistics and combine them to produce global
statistics for all the numeric features. The output gathered on the server will be the complete statistics
for all datasets in clients and global, as illustrated in Fig. 5.
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(a) FedAvg with increasing levels of heterogeneity
(smaller α values).

(b) FL algorithms with a heterogeneous data split
(α=0.1).

Figure 4: Federated learning experiments with FLARE.

(a) Federated statistics. Note, the data of “site-4” violates the
client’s privacy policy and therefore does not share its statistics
with the server. (b) Histogram visualization.

Figure 5: Federated statistics with FLARE.

Real-world Use Cases FLARE and its predecessors have been used in several real-world studies
exploring FL for healthcare scenarios. The collaborations between multinational institutions tested
and validated the utility of federated learning, pushing the envelope for training robust, generalizable
AI models. These initiatives included FL for breast mammography classification [23], prostate
segmentation [24], pancreas segmentation [28], and most recently, chest X-ray (CXR) and electronic
health record (EHR) analysis to predict the oxygen requirement for patients arriving in the emergency
department with symptoms of COVID-19 [6].

(a) Mammography. (b) Prostate. (c) Pancreas. (d) CXR & EHR.

Figure 6: Real-world use cases of FLARE.

4 Summary & Conclusion

We described NVIDIA FLARE, an open-source SDK to make it easier for data scientists to use FL
in their research and to allow an easy transition from research to real-world deployment. As discussed
above, FLARE’s Controller programming API supports various interaction patterns between the server
and clients over internet connections, which could be unstable. Therefore, the API design mitigates
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various failure conditions and unexpected crashes of the client machines such as allowing developers
to process timeout conditions properly. FLARE is an open-source project. We invite the community
to contribute and grow FLARE.

We did not go into all details of exciting features available in FLARE, like homomorphic encryption,
TensorBoard streaming, provisioning web dashboard, integration with MONAI3 [19, 3], etc. However,
we hope that this overview of FLARE gives a good starting point for developers and researchers on
their journey to using FL and federated data science in simulation and in the real world. For more
information, please visit the code repository at https://github.com/NVIDIA/NVFlare.

References
[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,

M., et al. (2016). {TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX symposium
on operating systems design and implementation (OSDI 16), pages 265–283.

[2] Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., de Gusmão, P. P., and Lane, N. D. (2020). Flower:
A friendly federated learning research framework. arXiv preprint arXiv:2007.14390.

[3] Cardoso, M. J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., Murrey, B., Myronenko, A., Zhao, C.,
Yang, D., et al. (2022). Monai: An open-source framework for deep learning in healthcare. arXiv preprint
arXiv:2211.02701.

[4] Chang, K., Balachandar, N., Lam, C., Yi, D., Brown, J., Beers, A., Rosen, B., Rubin, D. L., and
Kalpathy-Cramer, J. (2018). Distributed deep learning networks among institutions for medical imaging.
Journal of the American Medical Informatics Association, 25(8):945–954.

[5] Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794,
New York, NY, USA. ACM.

[6] Dayan, I., Roth, H. R., Zhong, A., Harouni, A., Gentili, A., Abidin, A. Z., Liu, A., Costa, A. B., Wood, B. J.,
Tsai, C.-S., et al. (2021). Federated learning for predicting clinical outcomes in patients with covid-19. Nature
medicine, 27(10):1735–1743.

[7] Dimitriadis, D., Garcia, M. H., Diaz, D. M., Manoel, A., and Sim, R. (2022). Flute: A scalable, extensible
framework for high-performance federated learning simulations. arXiv preprint arXiv:2203.13789.

[8] Guo, P., Yang, D., Hatamizadeh, A., Xu, A., Xu, Z., Li, W., Zhao, C., Xu, D., Harmon, S., Turkbey, E.,
et al. (2022). Auto-fedrl: Federated hyperparameter optimization for multi-institutional medical image
segmentation. arXiv preprint arXiv:2203.06338.

[9] Hatamizadeh, A., Yin, H., Molchanov, P., Myronenko, A., Li, W., Dogra, P., Feng, A., Flores, M. G., Kautz,
J., Xu, D., et al. (2022). Do gradient inversion attacks make federated learning unsafe? arXiv preprint
arXiv:2202.06924.

[10] He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H., Wang, X., Vepakomma, P., Singh, A., Qiu, H.,
et al. (2020). FedML: A research library and benchmark for federated machine learning. arXiv preprint
arXiv:2007.13518.

[11] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles,
Z., Cormode, G., Cummings, R., et al. (2019). Advances and open problems in federated learning. arXiv
preprint arXiv:1912.04977.

[12] Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., and Suresh, A. T. (2020). Scaffold: Stochastic
controlled averaging for federated learning. In International Conference on Machine Learning, pages
5132–5143. PMLR.

[13] Li, T., Hu, S., Beirami, A., and Smith, V. (2021). Ditto: Fair and robust federated learning through
personalization. In International Conference on Machine Learning, pages 6357–6368. PMLR.

[14] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. (2020). Federated optimization
in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450.

3https://monai.io

8

https://github.com/NVIDIA/NVFlare
https://monai.io


[15] Li, W., Milletarì, F., Xu, D., Rieke, N., Hancox, J., Zhu, W., Baust, M., Cheng, Y., Ourselin, S., Cardoso,
M. J., et al. (2019). Privacy-preserving federated brain tumour segmentation. In International workshop on
machine learning in medical imaging, pages 133–141. Springer.

[16] Liu, Y., Fan, T., Chen, T., Xu, Q., and Yang, Q. (2021). Fate: An industrial grade platform for collaborative
learning with data protection. J. Mach. Learn. Res., 22(226):1–6.

[17] Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., Anwar, A., Rajamoni, S., Ong, Y., Radhakrishnan, J.,
Verma, A., Sinn, M., et al. (2020). Ibm federated learning: an enterprise framework white paper v0. 1. arXiv
preprint arXiv:2007.10987.

[18] McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282.
PMLR.

[19] MONAI Consortium (2022). MONAI: Medical Open Network for AI.

[20] Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečnỳ, J., Kumar, S., and McMahan, H. B.
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