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Abstract

Ranking algorithms find extensive usage in diverse areas such as web search,1

employment, college admission, voting, etc. The related rank aggregation problem2

deals with combining multiple rankings into a single aggregate ranking. However,3

algorithms for both these problems might be biased against some individuals or4

groups due to implicit prejudice or marginalization in the historical data. We study5

ranking and rank aggregation problems from a fairness or diversity perspective,6

where the candidates (to be ranked) may belong to different groups and each group7

should have a fair representation in the final ranking. We allow the designer to set8

the parameters that define fair representation. These parameters specify the allowed9

range of the number of candidates from a particular group in the top-k positions10

of the ranking. Given any ranking, we provide a linear time exact algorithm for11

finding the closest fair ranking for the Kendall tau metric under strong fairness, i.e.,12

when the final ranking is fair for all values of k. We also provide an exact algorithm13

for finding the closest fair ranking for the Ulam metric under strong fairness when14

there are only O(1) number of groups. Our algorithms are simple, fast, and might15

be extendable to other relevant metrics. We also give a novel meta-algorithm for16

the general rank aggregation problem under the fairness framework. Surprisingly,17

this meta-algorithm works for any generalized mean objective (including center18

and median problems) and any fairness criteria. As a byproduct, we obtain 3-19

approximation algorithms for both center and median problems, under both Kendall20

tau and Ulam metrics. Furthermore, using sophisticated techniques we obtain a21

(3− ε)-approximation algorithm, for a constant ε > 0, for the Ulam metric under22

strong fairness.23

1 Introduction24

Ranking a set of candidates or items is a ubiquitous problem arising in diverse areas ranging from25

social choice theory [BCE+16] to information retrieval [Har92]. Given a set of d candidates and a26

set of n different, potentially conflicting, rankings of these candidates, one fundamental task is to27

determine a single ranking that best summarizes the preference orders in the individual rankings. This28

summarizing task, popularly termed rank aggregation, has been widely studied from a computational29

viewpoint over the last two decades [DKNS01, FKS03, GL11, ASCPX13]. Most well-studied rank30

aggregation paradigms are median rank aggregation (or simply rank aggregation) [Kem59, You88,31

YL78, DKNS01] and maximum rank aggregation [BBGH15, BBD09, Pop07], which are based on32

finding the median and center of the given set of rankings, respectively.33

Recently, fairness and diversity have become a natural prerequisite for ranking algorithms where34

individuals are rated for access to goods and services or ranked for seeking facilities in education (e.g.,35

obtaining scholarship or admission), employment (e.g., hiring or promotion in a job), medical (e.g.,36

triage during a pandemic), or economic opportunities (e.g., loan lending). Some concrete examples37

include university admissions through affirmative action in the USA [Des05] or the reservation system38
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in jobs in India [Bor10], where we want rankings to be fair to mitigate the prevalent disparities due to39

historical marginalization. Rankings not being fair may risk promoting extreme ideology [CHRG16]40

or certain stereotypes about dominating/marginalized communities based on sensitive attributes like41

gender or race [KMM15, BCZ+16]. There has been a series of works on fair ranking algorithms,42

see [ZBC+17, AJSD19, Cas19, GSB21, GDL21, PPM+22, ZYS21] and the references therein.43

A substantial literature on algorithmic fairness focuses on group fairness to facilitate demographic44

parity [DHP+12] or equal opportunity [HPS16]: typically this is done by imposing fairness con-45

straints which require that top-k positions in the ranking contain enough candidates from protected46

groups that are typically underrepresented due to prevalent discrimination (e.g., due to gender,47

caste, age, race, sex, etc.). In many countries, group fairness constraints are being enforced by48

legal norms [Eur, USD]. For example, in Spain 40% of candidates for elections in large voting49

districts must be women [Ver10], in India 10% of the total recruitment for civil posts and services in50

government are reserved for people from Economically Weaker Society (EWS) [SIN19], etc.51

In this paper, we study group fairness, more specifically proportional fairness (sometimes also52

referred to as p-fairness [BCPV96]). Inspired by the Disparate Impact doctrine, this notion of53

fairness mandates that the output of an algorithm must contain a fair representation of each of the54

‘protected classes’ in the population. In the context of ranking, the set of candidates is considered55

to be partitioned into g groups G1, G2, . . . , Gg. For each group Gi, i = 1, 2, . . . , g, we have two56

parameters αi ∈ (0, 1], βi ∈ (0, 1]. A ranking π of the set of items is called proportionally fair if for57

every position k ∈ {1, 2, . . . , n} and for every group Gi, the following two properties are satisfied:58

(a) Minority Protection: The number of items from group Gi, which are in the top-k positions59

π(1), π(2), . . . , π(k), is at least ⌊αi · k⌋, and (b) Restricted Dominance: The number of items from60

group Ci, which are in the top-k positions π(1), π(2), . . . , π(k), is at most ⌈βi · k⌉.61

To compare different rankings several distance functions have been considered defined on the62

set of permutations/rankings, such as Kendall tau distance [Ken38, DG77, Kem59, You88, YL78,63

DKNS01, ACN08, KMS07, KV10] (also called Kemeny distance in case of rank aggregation), Ulam64

distance [AD99, CMS01, CK06, AK10, AN10, NSS17, BS19, CDK21, CGJ21], Spearman footrule65

distance [Spe04, Spe06, DG77, DKNS01, KV10, BBGH15], etc. Among these, Kendall tau dis-66

tance is perhaps the most common measure used in ranking as it is the only known measure to67

simultaneously satisfy several required properties such as neutrality, consistency, and the extended68

Condorcet property [Kem59, You88]. The Ulam metric is another widely-used measure in practice69

as it is also a simpler variant of the general edit distance metric which finds numerous applica-70

tions in computational biology, DNA storage system, speech recognition, classification, etc. (e.g.,71

see [CMS01, CDK21, CGJ21]).72

One natural computational question related to fairness in ranking is, given a ranking, how to find its73

closest fair ranking under p-fairness. Celis et al. [CSV18] considered this problem and gave exact74

and approximation algorithms under several ranking metrics such as discounted cumulative gain75

(DCG), Spearman footrule, and Bradley-Terry. However, their algorithms do not extend to Kendall76

tau and Ulam metric, two of the most commonly used ranking metrics.77

Fair rank aggregation is relatively less studied. Recently, Kulman et al. [KR20] initiated the study78

of fair rank aggregation under Kendall tau metric. However, their fairness notion is based on top-k79

statistical parity and pairwise statistical parity. These notions are quite restricted. For example,80

their results only hold for binary protected attributes (i.e., g = 2) and and does not satisfy p-fairness.81

Informally, pairwise statistical parity considers pairs of items from different groups in an aggregated82

manner and does not take into account the actual rank of the items in the final ranking. See [WISR22]83

for an example on why the fairness notion in [KR20] does not satisfy p-fairness. In fact, as p-fairness84

satisfies statistical parity for all top k-positions in the ranking, it is a much stronger notion compared85

to statistical parity. Thus achieving p-fairness is a significantly more challenging problem.86

1.1 Our Contributions.87

Our first main contribution is exact algorithms for the closest fair ranking (CFR) problem under88

proportional fairness (see Definition 2.4) for Kendall tau and Ulam metrics. For the Kendall tau metric,89

we give the first exact algorithm for the closest fair ranking problem ( Theorem 3.4). Our algorithm90

is simple and based on a greedy strategy; however, the analysis is delicate. It exploits the following91

interesting and perhaps surprising fact. Under the Kendall tau metric, given a fixed (possibly unfair)92
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ranking π, there exists a closest fair ranking π′ to π such that for every group Gi, i = 1, 2, . . . , g, the93

relative ordering of elements in Gi remains unaltered in π′ compared to π (Theorem 3.3). Then, for94

the Ulam metric, we give a polynomial time dynamic programming algorithm for the closest fair95

ranking problem when the number of groups g is a constant ( Theorem 3.10). In practice, the number96

of protected classes is relatively few, and hence our result gives an efficient algorithm for such cases.97

Our second significant contribution is the study of rank aggregation problem under a very general98

notion of proportional fairness. Our main contribution is to develop a novel algorithmic toolbox for99

the fair rank aggregation that solves a wide variety of rank aggregation objectives satisfying such100

generic fairness constraints. An essential takeaway of our work is that a set of potentially biased101

rankings can be aggregated into a fair ranking with only a small loss in the ‘quality’ of the ranking.102

We study q-mean Fair Rank Aggregation (FRA), where given a set of rankings π1, π2, . . . , πn, a103

(dis)similarity measure (or distance) ρ between two rankings, and any q ≥ 1, the task is to determine104

a fair ranking σ that minimizes the generalized mean objective:
∑n

i=1 (ρ(πi, σ)
q)

1/q . We would like105

to emphasize that in general, q-mean objective captures two classical data aggregation tasks: One is106

median which asks to minimize the sum of distances (i.e., q = 1) and another is center which asks to107

minimize the maximum distance to the input points (i.e., q =∞). Without the fairness requirement,108

if ρ is defined as the Kendall tau distance between two rankings and q = 1, then our objective boils109

down to the classical Kemeny optimization [Kem59]. The rank aggregation problems (without any110

fairness constraint) are already hard to solve under certain metrics. E.g., it is known to be NP-hard111

under the Kendall tau [BTT89] (even for 4 input rankings [DKNS01]). Thus the best we could hope112

for is to provide approximate algorithms for the fair rank aggregation problem.1113

We show generic reductions of the q-mean Fair Rank Aggregation (FRA) to the problem of de-114

termining the closest fair ranking (CFR) to a given ranking. More specifically, we show that any115

c-approximation algorithm for the closest fair ranking problem can be utilized as a blackbox to116

give a (c + 2)-approximation to the FRA for any q ≥ 1 (Theorem 4.3). This result is oblivious117

to the specifics of the (dis)similarity measure and only requires the measure to be a metric. Using118

the exact algorithms for the CFR for the Kendall tau, Spearman footrule, and Ulam metrics (for119

constantly many groups), we thus obtain 3-approximation algorithms for the FRA problem under120

these three (dis)similarity measures, respectively. Further, we provide yet another simple algorithm121

that even breaks below 3-factor for the Ulam metric. For q = 1, by combining the above-stated122

3-approximation algorithm with an additional procedure, we achieve a (3− ε)-approximation factor123

(for some ε > 0) for the FRA under the Ulam, for constantly many groups (Theorem 4.11). We also124

provide another reduction from FRA to one rank aggregation computation (without fairness) and a125

CRF computation (Theorem 4.8), and as a corollary get an O(d3 log d + n2d)-time algorithm for126

Spearman footrule when q = 1 (Corollary 4.10). We summarize our main results in Table 1.1.127

128
Problem Metric #Groups Approx Ratio Runtime Reference

CFR Kendall tau Arbitrary Exact O(d) Theorem 3.4
Ulam Constant Exact O(dg+2) Theorem 3.10

Spearman footrule Arbitrary Exact O(d3 log d) [CSV18]
FRA Kendall tau Arbitrary 3 O(n2d log d) Corollary 4.5

Ulam Constant 3 O(ndg+2 + n2d log d) Corollary 4.7
Ulam (q = 1) Constant 3− ε poly(n, d) Theorem 4.11

Spearman footrule Arbitrary 3 O(nd3 log d+ n2d) Corollary 4.6

129

130

Comparison with concurrent work. Independently and concurrently to our work, Wei et131

al. [WISR22] considers the fair ranking problem under a setting that is closely related to ours.132

However, the fairness criteria in their work are much more restrictive compared to ours as follows.133

Their algorithms for CFR are only designed for a special case of our formulation where for each group134

Gi and any position k in the output ranking, αi = βi = p(i), where p(i) denotes the proportion of135

group Gi in the entire population. Further, under the Kendall tau metric, they give a polynomial time136

exact algorithm for CFR only for the special case of binary groups (g = 2). They also give additional137

algorithms for multiple groups - an exact algorithm that works in time exponential in the number138

1For a minimization problem, an algorithm A is an α-approximation (α ≥ 1) algorithm if for all input
instance I , A(I) ≤ αOPT(I). Here A(I) and OPT(I) are the cost of the solution returned by A and the optimal
algorithm, respectively, on input I .
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of groups and a polynomial time 2-approximation. In contrast, we fully resolve the CFR problem139

under the Kendall tau metric by giving a linear time algorithm for the case of multiple groups and140

any arbitrary bounds on αi and βi for each group Gi. Further, we give the first results for CFR and141

FRA under the Ulam metric as well.142

2 Preliminaries143

Notations. For any n ∈ N, let [n] denote the set {1, 2, · · · , n}. We refer to the set of all permu-144

tations/rankings over [d] by Sd. Throughout this paper we consider any permutation π ∈ Sd as a145

sequence of numbers a1, a2, · · · , ad such that π(i) = ai, and we say that the rank of ai is i. For146

any two x, y ∈ [d] and a permutation π ∈ Sd, we use the notation x <π y to denote that the rank147

of x is less than that of y in π. For any subset I = {i1 < i2 < · · · < ir} ⊆ [d], let π(I) be the148

sequence π(i1), π(i2), · · · , π(ir) (which is essentially a subsequence of the sequence represented149

by π). When clear from the context, we use π(I) also to denote the set of elements in the sequence150

π(i1), π(i2), · · · , π(ir). For any k ∈ [d] and a permutation π ∈ Sd, we refer to π([k]) as the k-length151

prefix of π. For any prefix P , let |P | denote the length of that prefix. For any two prefixes P1, P2, we152

use P1 ⊆ P2 to denote |P1| ≤ |P2|.153

Distance measures on rankings. There are different distance functions being considered to measure154

the dissimilarity between any two rankings/permutations. Among them, perhaps the most commonly155

used one is the Kendall tau distance.156

Definition 2.1 (Kendall tau distance). Given two permutations π1, π2 ∈ Sd, the Kendall tau distance157

between them, denoted by K(π1, π2), is the number of pairwise disagreements between x and y, i.e.,158

K(π1, π2) := |{(a, b) ∈ [d]× [d] | a <π1
b but b <π2

a}|.

Another important distance measure is the Spearman footrule (aka. Spearman’s rho) which is159

essentially the ℓ1-norm between two permutations.160

Definition 2.2 (Spearman footrule distance). Given two permutations π1, π2 ∈ Sd, the Spearman161

footrule distance between them is defined as F(π1, π2) :=
∑

i∈[d] |π1(i)− π2(i)|.162

Another interesting distance measure is the Ulam distance which counts the minimum number of163

character move operations between two permutations [AD99]. This definition is motivated by the164

classical edit distance that is used to measure the dissimilarity between two strings. A character move165

operation in a permutation can be thought of as “picking up” a character from its position and then166

“inserting” that character in a different position2.167

Definition 2.3 (Ulam distance). Given two permutations π1, π2 ∈ Sd, the Ulam distance between168

them, denoted by U(π1, π2), is the minimum number of character move operations that is needed to169

transform π1 into π2.170

Alternately, the Ulam distance between π1, π2 can be defined as d−LCS(π1, π2), where LCS(π1, π2)171

denotes the longest common subsequence between the sequences π1 and π2.172

Fair rankings. We are given a set C of d candidates, which are partitioned into g groups. We call a173

ranking (of these d candidates) fair if all sufficiently large prefixes of it have certain proportion of174

representatives from each group. Formally,175

Definition 2.4 ((ᾱ, β̄)-k-fair ranking). Consider a set C of d candidates partitioned into g groups176

G1, · · · , Gg, and ᾱ = (α1, · · · , αg) ∈ [0, 1]g, β̄ = (β1, · · · , βg) ∈ [0, 1]g, k ∈ [d]. A ranking177

π ∈ Sd is said to be (ᾱ, β̄)-k-fair if for any prefix P of size at least k, of π and each group i ∈ [g],178

there are at least ⌊αi · |P |⌋ and at most ⌈βi · |P |⌉ elements from the group Gi in P , i.e.,179

∀prefix P :|P |≥k, ∀i∈[g], ⌊αi · |P |⌋ ≤ |P ∩Gi| ≤ ⌈βi · |P |⌉.

We also define a weak fairness notion that preserves the proportionate representation only for a fixed180

k-length prefix.181

2One may also consider one deletion and one insertion operation instead of a character move, and define the
Ulam distance accordingly as in [CMS01].
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Definition 2.5 ((ᾱ, β̄)-weak k-fair ranking). Consider a set C of d candidates partitioned into g182

groups G1, · · · , Gg, and ᾱ = (α1, · · · , αg) ∈ [0, 1]g, β̄ = (β1, · · · , βg) ∈ [0, 1]g, k ∈ [d]. A183

ranking π ∈ Sd is said to be (ᾱ, β̄)-weak k-fair if for the k-length prefix P of π and each group184

i ∈ [g], there are at least ⌊αi · k⌋ and at most ⌈βi · k⌉ elements from the group Gi in P , i.e.,185

∀i∈[g], ⌊αi · k⌋ ≤ |P ∩Gi| ≤ ⌈βi · k⌉.

Note, an (ᾱ, β̄)-k-fair ranking is also (ᾱ, β̄)-weak k-fair, but the converse need not be true. We186

would like to emphasize that all the results presented in this paper hold for both (ᾱ, β̄)-k-fairness and187

(ᾱ, β̄)-weak k-fairness.188

3 Closest Fair Ranking189

In this section, we consider the problem of computing the closest fair ranking of a given input ranking.190

Below we formally define the problem.191

Definition 3.1 (Closest fair ranking problem). Consider a metric space (Sd, ρ) for a d ∈ N. Given192

a ranking π ∈ Sd and ᾱ, β̄ ∈ [0, 1]g for some g ∈ N, k ∈ [d], the objective of the closest fair193

ranking problem (resp. closest weak fair ranking problem) is to find a (ᾱ, β̄)-k-fair ranking (resp.194

(ᾱ, β̄)-(weak) k-fair ranking) π∗ ∈ Sd that minimizes the distance ρ(π, π∗) .195

Unless stated explicitly, we consider the notion of (ᾱ, β̄)-k-fairness (not the weak one) in all the196

results presented in this section.197

3.1 Closest fair ranking under Kendall tau198

Closest weak fair ranking. We first show that we can compute a closest weak fair ranking under199

the Kendall tau, exactly in linear time.200

Theorem 3.2. There exists a linear time algorithm that, given a ranking π ∈ Sd, a partition of [d] into201

g groups G1, · · · , Gg for some g ∈ N, and ᾱ = (α1, · · · , αg) ∈ [0, 1]g , β̄ = (β1, · · · , βg) ∈ [0, 1]g ,202

k ∈ [d], outputs a closest (ᾱ, β̄)-weak k-fair ranking under the Kendall tau distance.203

Let us first describe the algorithm. Our algorithm follows a simple greedy strategy. For each group204

Gi, it picks the top ⌊αik⌋ elements according to the input ranking π, and add them in a set P . If P205

contains k elements, then we are done. Otherwise, we iterate over the remaining elements and add206

them in P as long as for each group Gi, |P ∩Gi| ≤ ⌈βik⌉ (each group has at most ⌈βik⌉ elements207

in P ) until the size of P becomes exactly k. Then we use the relative ordering of the elements in P208

as in the input ranking π and make it the k-length prefix of the output ranking σ. Fill the last d− k209

positions of σ by the remaining elements ([d] \ P ) by following their relative ordering as in the input210

π. See Algorithm 1 in appendix for the pseudocode of the algorithm.211

By the construction of the set P , at the end, for each group Gi, ⌊αik⌋ ≤ |P ∩Gi| ≤ ⌈βik⌉. Since212

we use the elements of P in the k-length prefix of the output ranking σ, σ is an (ᾱ, β̄)-weak k-fair213

ranking. For the running time, a straightforward implementation our algorithms takes O(d) time. It214

only remains to argue that σ is a closest (ᾱ, β̄)-weak k-fair ranking to the input π. To show that, we215

use the following key observation.216

Claim 3.3. Under the Kendall tau distance, there always exists a closest (ᾱ, β̄)-weak k-fair ranking217

π∗ such that, for each group Gi (i ∈ [g]), for any two elements a ̸= b ∈ Gi, a <π∗ b if and only if218

a <π b.219

We defer the proof of the above claim and how we use it to conclude the proof of Theorem 3.2, to the220

appendix (provided in the supplementary material).221

Extension to general fairness notion. Previously, we provide an algorithm that outputs a weak fair222

ranking (see Definition 2.5 for the definition of weak fairness) closest to the input. Now, we present223

an algorithm that outputs a closest fair (according to Definition 2.4) ranking.224

Theorem 3.4. There exists anO(d) time algorithm that, given a ranking π ∈ Sd, a partition of [d] into225

g groups G1, · · · , Gg for some g ∈ N, and ᾱ = (α1, · · · , αg) ∈ [0, 1]g , β̄ = (β1, · · · , βg) ∈ [0, 1]g ,226

k ∈ [d], outputs a closest (ᾱ, β̄)-k-fair ranking under the Kendall tau distance.227
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The main challenge with this stronger fairness notion is that now we need to satisfy the fairness228

criteria for all the prefixes not just the k-length prefix as in case of weak fairness. Surprisingly, we229

show that under the Kendall tau metric, by iteratively applying the algorithm for the closest weak230

fair ranking (Algorithm 1) as a black-box, over the prefixes of decreasing length, we can construct a231

closest fair (not just the weak one) ranking. It is worth noting that here at any iteration the input to232

Algorithm 1 is a prefix of π which is not a permutation. However, Algorithm 1 only treats the input233

as a sequence of numbers (not really as a permutation). See Algorithm 2 in appendix for a formal234

description of the algorithm.235

It is worth noting that, since we iteratively apply Algorithm 1 on a prefix of π (not the whole sequence236

represented by π), it is not even clear whether the algorithm finally outputs a fair ranking (assuming it237

exists). Below we first argue that if there exists a fair ranking then the output σ must be a fair ranking.238

Next, we establish that σ is indeed a closest fair ranking to π.239

Let π∗ be a closest fair ranking to π that preserves relative orderings (of elements in [d]) maximally.240

We show that the output σ = π∗. We start the argument by considering any two prefixes of length241

k1 and k2, where k2 < k1. We argue that k1 and k2-length prefixes of σ and π∗ are the same. Since242

this hold for any k1 and k2 (with k1, k2 ≥ k), where k2 < k1, by using induction we can show that243

σ = π∗. We defer the induction argument to the appendix, and below provide the argument for the k1244

and k2-length prefixes (which is a key to prove the correctness of Theorem 3.4).245

For the sake of analysis, let us consider the following three permutations. Let π1 be the (ᾱ, β̄)-weak246

k1-fair ranking closest to π, output by Algorithm 1. Let π2 be the ranking output by Algorithm 1247

when given the k1-length prefix of π1 (i.e., the sequence π1([k1])) as input and is asked to output an248

(ᾱ, β̄)-weak k2-fair ranking closest to π1. Further, let π′
2 be the (ᾱ, β̄)-weak k2-fair ranking closest to249

π, output by Algorithm 1. In other words, π2 be the ranking produced by first applying Algorithm 1250

on π to make its k1-length prefix fair and then apply Algorithm 1 again on that output to make its251

k2-length prefix fair. Whereas, π′
2 be the ranking produced by directly applying Algorithm 1 on π to252

make its k2-length prefix fair.253

Then the next claim argues about the existence of fair ranking π2. We defer the proof of this claim to254

the appendix.255

Claim 3.5. If there is a ranking π′ such that its k1-length prefix P1 and k2-length prefix P2 satisfies256

that for each group Gi (i ∈ [g]), ⌊αik1⌋ ≤ |P1 ∩Gi| ≤ ⌈βik1⌉ and ⌊αik2⌋ ≤ |P2 ∩Gi| ≤ ⌈βik2⌉,257

then π2 exists.258

It follows from the construction that,259

Claim 3.6. The set of elements in π2([k1]) is the same as that in π1([k1]).260

Claim 3.7. π2([k2]) = π′
2([k2]).261

Proof. Consider an element a ∈ π′
2([k2]) ∩ Gi for some i ∈ [g]. If a is among the top ⌊αik2⌋262

elements (according to π) inside the group Gi, then by Algorithm 1, it would also be selected in263

π1([k1]) (since k1 ≥ k2) and also in π2([k2]).264

Now consider the case where a is among the top ⌈βik2⌉ elements of Gi, but not among the top265

⌊αik2⌋ elements. This means that a is also among the top ⌈βik1⌉(≥ ⌈βik2⌉) elements of its group Gi.266

This means that if it is encountered during the execution of Algorithm 1 on π to get an (ᾱ, β̄)-weak267

k1-fair ranking, then it will be selected in π1([k1]). However, we also know that it is selected in268

π′
2([k2]) which is a shorter prefix. Since the upper bound constraints were not violated for Gi during269

the selection of the elements in π′
2([k2]), the upper bound constraints cannot be violated during the270

selection of the elements of π1([k1]) as well. Hence, a will be selected in π1([k1]).271

By a similar argument, when executing Algorithm 1 on π1 (in the later iteration) to output an (ᾱ, β̄)-272

weak k2-fair ranking, a will again be encountered and be selected in π2([k2]). Therefore, every273

element in π′
2([k2]) is also in π2([k2]). Since the sizes of both the sets are equal, the two sets are274

infact the same, and so are the rankings (by Algorithm 1).275

Claim 3.8. The set of elements in π∗([k1]) is the same as that in π2([k1]).276

Proof. Assume towards contradiction that ∃a ∈ π∗([k1]) \ π2([k1]) and ∃b ∈ π2([k1]) \ π∗([k1]). If277

a, b were in the same group, then by Algorithm 1, we know that b <π a, and hence by swapping the278

6



elements in π∗, the distance from π can only be reduced. Hence we can obtain a different solution π̄279

in which b ∈ π̄([k1]) and a ̸∈ π̄([k1]), and thus is also fair. This contradicts that π∗ is a closest fair280

ranking to π that preserves relative orderings (of elements in [d]) maximally. So, we can assume,281

a ∈ Gi and b ∈ Gj for some i ̸= j.282

Now we note that a cannot be among the top ⌊αik1⌋ elements, but is in the top ⌈βik1⌉ elements in283

Gi. Similarly, b cannot be among the top ⌊αjk1⌋ elements, but is in the top ⌈βjk1⌉ elements in Gj .284

Again, it follows from Algorithm 1, b <π a. So by swapping these two elements in π∗ we can only285

reduce the distance from π, while obtaining another fair ranking (because it has b in the k1-length286

prefix instead of a). This again contradicts that π∗ is a closest fair ranking to π that preserves relative287

orderings (of elements in [d]) maximally. The claim now follows.288

Claim 3.9. The set of elements in π∗([k2]) is the same as that in π2([k2]).289

The proof of the above is in the appendix. We apply Claim 3.8 and Claim 3.9 iteratively to complete290

the correctness of Algorithm 2 which we defer to the appendix.291

It only remains to argue that the algorithm runs in time O(d). It is easy to see that a straightforward292

implementation takes O(d2) time (since it invokes at most d calls to the subroutine Algorithm 1).293

However, with a slightly more intricate implementation (by maintaining an "active" prefix which in294

the beginning contains all the elements, and then at each iteration we remove lowest rank elements295

from specific groups, and thus avoiding re-processing of the elements again and again over the296

iterations), we can show that the algorithm runs in only O(d) time, which we defer to the appendix.297

3.2 Closest fair ranking under Ulam Metric298

Theorem 3.10. There exists a polynomial time dynamic programming based algorithm that finds a299

(ᾱ, β̄)-k-fair ranking when there are constant number of groups.300

The proof of the lemma uses an intricate dynamic program exploiting the connection between the301

Ulam distance with the Longest Common Subsequence problem. We defer the proof to the appendix.302

4 Fair Rank Aggregation303

We start this section by formally defining the fair rank aggregation problem. Then we will provide304

two meta-algorithms that approximate the fair aggregated ranking.305

Definition 4.1 (q-mean Rank Aggregation). Consider a metric space (Sd, ρ) for a d ∈ N. Given a set306

S ⊆ Sd of n input rankings, the q-mean rank aggregation problem asks to find a ranking σ ∈ Sd (not307

necessarily from S) that minimizes the objective function Objq(S, σ) :=
(∑

π∈S ρ(π, σ)q
)1/q

.308

Generalized mean or q-mean objective functions are well-studied in the context of clustering309

[CMV22], and division of goods [BKM22]. We study it for the first time in the context of rank310

aggregation. For q = 1, the above problem is also referred to as the median ranking problem or311

simply rank aggregation problem [Kem59, You88, YL78, DKNS01]. On the other hand, for q =∞,312

the problem is also referred to as the center ranking problem or maximum rank aggregation prob-313

lem [BBGH15, BBD09, Pop07]. Both these special cases are studied extensively in the literature with314

different distance measures, e.g., Kendall tau distance [DKNS01, ACN08, KMS07, Sch12, BBD09],315

Ulam distance [CDK21, BBGH15, CGJ21], Spearman footrule distance [DKNS01, BBGH15].316

In the fair rank aggregation problem, we want the output aggregated rank to satisfy certain fairness317

constraint. Throughout this section, for brevity, we use the term (weak) fair ranking instead of318

(ᾱ, β̄)-(weak) k-fair ranking.319

Definition 4.2 (q-mean Fair Rank Aggregation). Consider a metric space (Sd, ρ) for a d ∈ N. Given320

a set S ⊆ Sd of n input rankings/permutations, the q-mean (weak) fair rank aggregation problem321

asks to find a (weak) fair ranking σ ∈ Sd (not necessarily from S) that minimizes the objective322

function Objq(S, σ) :=
(∑

π∈S ρ(π, σ)q
)1/q

.323

It is worth noting that in the above definition, the minimization is over the set of all the (weak)324

fair rankings in Sd. When clear from the context, we drop weak and refer it as the q-mean fair325

rank aggregation problem. Let σ∗ be a (weak) fair ranking that minimizes Objq(S, σ), i.e., σ∗ =326
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argminfair σ∈Sd
Objq(S, σ). Then we call σ∗ a q-mean fair aggregated rank of S. We refer to327

Objq(S, σ
∗) as OPTq(S).328

When q = 1, we refer the problem as the fair median ranking problem or simply fair rank aggregation329

problem. When q = ∞, the objective function becomes Obj∞(S, σ) = maxπ∈S ρ(π, σ), and we330

refer the problem as the fair center ranking problem.331

Next, we present two meta algorithms that work for any values of q and irrespective of strong or weak332

fairness constraint.333

4.1 First Meta Algorithm334

Theorem 4.3. Consider any q ≥ 1. Suppose there is a t(d)-time c-approximation algorithm A,335

for some c ≥ 1, for the closest fair ranking problem over the metric space (Sd, ρ). Then there336

exists a (c+ 2)-approximation algorithm for the q-mean fair rank aggregation problem, that runs in337

O(n · t(d) + n2 · f(d)) time where f(d) is the time to compute ρ(π1, π2) for any π1, π2 ∈ Sd.338

We devote this subsection in proving the above theorem. Let us start with describing the algorithm.339

It works as follows: Given a set S ⊆ Sd of rankings, it first computes c-approximate closest fair340

ranking σ (for some c ≥ 1) for each π ∈ S. Next, output a σ that minimizes Objq(S, σ). Let us341

denote the output ranking by σ̄. See Algorithm 4 in appendix for a more formal description.342

It is straightforward to verify that the running time of the above algorithm is O(n · t(d) + n2 · f(d)),343

where f(d) is the time to compute ρ(π1, π2) for any π1, π2 ∈ Sd and t(d) denotes the running time344

of the algorithm A. So it only remains to argue about the approximation factor of Algorithm 4.345

The following simple observation plays a pivotal role in establishing the approximation factor of346

Algorithm 4.347

Lemma 4.4. Given a set S ⊆ Sd of n rankings, let σ∗ be a q-mean fair aggregated rank of S under348

a distance function ρ. Further, let π̄ be a nearest neighbor (closest ranking) of σ∗ in S, and σ̄ be a349

c-approximate closest fair ranking to π̄, for some c ≥ 1. Then ∀π ∈ S, ρ(π, σ̄) ≤ (c+ 2) · ρ(π, σ∗).350

We defer the proof of the above claim to the appendix. Now, we use the above lemma to show that351

the approximation factor of Algorithm 4 is c + 2. Let σ∗ be an (arbitrary) optimal fair aggregate352

rank of S and σ̄ be the output of Algorithm 4. The optimal value of the objective function is353

OPT = Objq(S, σ
∗) =

(∑
π∈S ρ(π, σ∗)q

)1/q
. Next, we show that Objq(S, σ̄) ≤ (c+ 2) ·OPT.354

Objq(S, σ̄) ≤

(∑
π∈S

(
(c+ 2) · ρ(π, σ∗)

)q)1/q

= (c+ 2) ·

(∑
π∈S

ρ(π, σ∗)q

)1/q

= (c+ 2) ·OPT.

where the second inequality follows from Theorem 4.4 This concludes the proof of Theorem 4.3.355

Applications of Theorem 4.3. We have shown in Theorem 3.4 that the closest fair ranking problem356

for Kendall tau can be solved exactly in O(d) time, i.e., the approximation ratio is c = 1. We also357

know from [Kni66], that the Kendall tau distance between two permutations can be computed in358

O(d log d) time. This gives us that,359

Corollary 4.5. For any q ≥ 1, there exists an O(n2d log d) time meta-algorithm, that finds a360

3-approximate solution to the q-mean fair rank aggregation problem , under the Kendall tau metric.361

It is shown in [CSV18] that the closest fair ranking problem for Spearman Footrule can be solved362

exactly in O(d3 log d) time, i.e., the approximation ratio is c = 1. Since distance under Spearman363

Footrule can be trivially computed in O(d) we have that,364

Corollary 4.6. For any q ≥ 1, there exists an O(nd3 log d+ n2d) time meta-algorithm, that finds a365

3-approximate solution to the q-mean fair rank aggregation problem , under the Spearman footrule366

metric.367

We have shown in Theorem 3.10 that for constant number of groups, the closest fair ranking problem368

for Ulam metric can be solved exactly in O(dg+2) time, i.e., the approximation ratio is c = 1.369

From [AD99] we know that Ulam distance between two permutations can be computed in O(d log d)370

time. This gives us that,371
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Corollary 4.7. For any q ≥ 1, there exists an O(ndg+2 + n2d log d) time meta-algorithm, that finds372

a 3-approximate solution to the q-mean fair rank aggregation problem , under the Ulam metric.373

We would like to emphasize that all the above results hold for any values of q ≥ 1. Hence, they are374

also true for the special case of the fair median problem (i.e., for q = 1) and the fair center problem375

(i.e., for q =∞).376

4.2 Second Meta Algorithm377

Theorem 4.8. Consider any q ≥ 1. Suppose there is a t1(n) time c1-approximation algorithm A1378

for some c1 ≥ 1 for q-mean rank aggregation problem; and a t2(d)-time c2-approximation algorithm379

A∈, for some c2 ≥ 1, for the closest fair ranking problem over the metric space (Sd, ρ). Then there380

exists a (c1c2 + c1 + c2)-approximation algorithm for the q-mean fair rank aggregation problem,381

that runs in O(t1(n) + t2(d) + n2 · f(d)) time where f(d) is the time to compute ρ(π1, π2) for any382

π1, π2 ∈ Sd.383

The algorithm works as follows: Given a set S ⊆ Sd of rankings, it first computes c1-approximate384

aggregate rank π∗. Next, output a c2-approximate closest fair ranking σ̄, to π∗. See Algorithm 5 in385

appendix for a more formal description.386

It is easy to see that the running time of the algorithm is O(t1(n) + t2(d) + n2 · f(d)), where f(d)387

is the time to compute ρ(π, σ) for any π, σ ∈ Sd, t1(n) denotes the running time of the algorithm388

A1, and t2(d) denotes the running time of the algorithm A2. It now remains to argue about the389

approximation ratio of the above algorithm. We again make a simple but crucial observation towards390

establishing the approximation ratio for Algorithm 5.391

Lemma 4.9. Given a set S ⊆ Sd of n rankings, let σ∗ be a q-mean fair aggregated rank of S392

under a distance function ρ. Further, let π∗ be the c1-approximate aggregate rank of S and σ̄ be a393

c2-approximate closest fair ranking to π∗, for some c1, c1 ≥ 1. Then394

∀π ∈ S, ρ(π, σ̄) ≤ (c1c1 + c1 + c2) · ρ(π, σ∗).

We defer the proof of this lemma to the appendix. Once we have this key lemma in place, the395

remaining proof of Theorem 4.8, follows exactly as the proof of Theorem 4.3.396

The above algorithm can give similar approximation guarantees as Algorithm 4, but with potentially397

better running times depending on whether the rank aggregation problem is solved in a faster way398

for the particular problem in consideration. For instance consider the case for Spearman footrule.399

It is known that the rank aggregation problem for Spearman footrule can be solved in Õ(d2.5)400

[vdBLN+20]. So, using this in conjunction with Algorithm 5 we obtain the following result.401

Corollary 4.10. For q = 1, there exists an O(d3 log d + n2d) time meta-algorithm, that finds a402

3-approximate solution to the q-mean fair rank aggregation problem (i.e., the fair median problem),403

under Spearman footrule metric.404

4.3 Breaking below 3-factor for Ulam405

Theorem 4.11. For q = 1, there exists a constant ε > 0 and a polynomial time algorithm, that finds406

a (3− ε)-approximate solution to the q-mean fair rank aggregation problem (i.e., the fair median407

problem), under the Ulam metric for constantly many groups.408

We show the above result by designing a new algorithm based on the relative ordering of the elements409

(as in in majority of the input rankings). Then the final output is the best of that output by this new410

algorithm and that produced by our first meta-algorithm. We argue that when the whole optimal411

objective value is distributed among only a few elements, then the first meta-algorithm already412

achieves (3− ϵ)-approximation. Otherwise, this new relative ordering based approach will provide a413

(3− ϵ)-approximation. Although our new algorithm is also very simple, the whole analysis is quite414

delicate and involves a few important observations on the Ulam metric. We provide the description of415

our new algorithm along with the whole analysis in the appendix.416
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(e) Did you discuss whether the data you are using/curating contains personally identifiable601

information or offensive content? [N/A]602

5. If you used crowdsourcing or conducted research with human subjects...603

(a) Did you include the full text of instructions given to participants and screenshots, if604

applicable? [N/A]605

(b) Did you describe any potential participant risks, with links to Institutional Review606

Board (IRB) approvals, if applicable? [N/A]607

(c) Did you include the estimated hourly wage paid to participants and the total amount608

spent on participant compensation? [N/A]609
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