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Abstract

Machine learning is vulnerable to a wide variety of attacks. It is now well under-1

stood that by changing the underlying data distribution, an adversary can poison2

the model trained with it or introduce backdoors. In this paper we present a novel3

class of training-time attacks that require no changes to the underlying dataset or4

model architecture, but instead only change the order in which data are supplied to5

the model. In particular, we find that the attacker can either prevent the model from6

learning, or poison it to learn behaviours specified by the attacker. Furthermore,7

we find that even a single adversarially-ordered epoch can be enough to slow down8

model learning, or even to reset all of the learning progress. Indeed, the attacks9

presented here are not specific to the model or dataset, but rather target the stochas-10

tic nature of modern learning procedures. We extensively evaluate our attacks on11

computer vision and natural language benchmarks to find that the adversary can12

disrupt model training and even introduce backdoors.13

1 Introduction14

The data-driven nature of modern machine learning (ML) training routines puts pressure on data15

supply pipelines, which become increasingly more complex. It is common to find separate disks16

or whole content distribution networks dedicated to servicing massive datasets. Training is often17

distributed across multiple workers. This emergent complexity gives a perfect opportunity for an18

attacker to disrupt ML training, while remaining covert. In the case of stochastic gradient descent19

(SGD), it assumes uniform random sampling of items from the training dataset, yet in practice this20

randomness is rarely tested or enforced. Here, we focus on adversarial data sampling.21

It is now well known that malicious actors can poison data and introduce backdoors, forcing ML22

models to behave differently in the presence of triggers [10]. While such attacks have been shown to23

pose a real threat, they require that the attacker can perturb the dataset used for training.24

We show that by simply changing the order in which batches or data points are supplied to a model25

during training, an attacker can affect model behaviour. More precisely, we show that it is possible to26

perform integrity and availability attacks without adding or modifying any data points. For integrity,27

an attacker can reduce model accuracy or arbitrarily control its predictions in the presence of particular28

triggers. For availability, an attacker can increase the amount of time it takes for the model to train,29

or even reset the learning progress, forcing the model parameters into a meaningless state.30

We present three different types of attacks that exploit Batch Reordering, Reshuffling and Replacing –31

naming them BRRR attacks. We show that an attacker can significantly change model performance by32

(i) changing the order in which batches are supplied to models during training; (ii) changing the order33

in which individual data points are supplied to models during training; and (iii) replacing datapoints34

from batches with other points from the dataset to promote specific data biases. Furthermore, we35

introduce Batch-Order Poison (BOP) and Batch-Order Backdoor (BOB), the first techniques that36

enable poisoning and backdooring of neural networks using only clean data and clean labels; an37
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Attack Dataset knowledge Model knowledge Model specific Changing dataset Adding data Adding perturbations
Batch Reorder 7 7 7 7 7 7
Batch Reshuffle 7 7 7 7 7 7
Batch Replace 7 7 7 7 7 7

Adversarial initialisation [9] 7 3 3 7 7 7
BadNets [10] 3 7 7 3 7 3
Dynamic triggers [23] 3 3 7 3 7 3
Poisoned frogs [27] 3 3 7 3 7 3

Table 1: Taxonomy of training time integrity attacks. In green, we highlight our attacks.

attacker can control the parameter update of a model by appropriate choice of benign datapoints.38

Importantly, BRRR attacks require no underlying model access or knowledge of the dataset. Instead,39

they focus on the stochasticity of gradient descent, disrupting how well individual batches approximate40

the true distribution that a model is trying to learn.41

To summarise, we make the following contributions in this paper:42

• We present a novel class of attacks on ML models that target the data batching procedure43

used during training, affecting their integrity and availability. We present a theoretical44

analysis explaining how and why these attacks work, showing that they target fundamental45

assumptions of stochastic learning, and are therefore model and dataset agnostic.46

• We evaluate these attacks on a set of common computer vision and language benchmarks,47

using a range of different hyper-parameter configurations, and find that an attacker can slow48

the progress of training, as well as reset it, with just a single epoch of intervention.49

• We show that data order can poison models and introduce backdoors, even in a blackbox50

setup. For a whitebox setup, we find that the adversary can introduce backdoors almost as51

well as if they used perturbed data. While a baseline CIFAR10 VGG16 model that uses52

perturbed data gets 99% trigger accuracy, the whitebox BOB attacker gets 91%± 13 and53

the blackbox BOB attacker achieves 68%± 19.54

2 Related Work55

Attacks on integrity: Szegedy et al. [29] and Biggio et al. [5] concurrently discovered the existence56

of adversarial examples. These samples, containing human imperceptible perturbations, cause models57

to output incorrect results during inference. The original whitebox attacks require the adversary to58

access the models and use gradient information to perform conditioned optimisation to maximise the59

model loss [29, 5, 8, 18]. The attack later generalised to blackbox setups, where the adversary trains60

a surrogate model and hopes the generated adversarial samples transfer to the target model [20].61

The data-poisoning attack aims at using data manipulation to cause DNNs to fail on specific test-time62

instances [14]. Chen et al. demonstrated that manipulation of the labels of around 50 training samples63

is enough to trigger failure [7]. Gu et al. showed that attackers can associate adversarial patterns with64

labelled images and cause DNNs to overfit to this pattern [10]. Shafahi et al. launched a poisoning65

attack using instances with clean labels [24]. A number of other works have since created more66

efficient triggers [23]. It was a common belief that poisoning attacks on DNNs have to contain a67

certain level of malicious manipulation of whether the data or label at train time. However, this paper68

shows how poisoning is possible with clean data and clean labels, with the only manipulation being69

of the batching process at training time.70

Attacks on availability: Shumailov et al. first attacked the availability of computer vision and71

natural language processing models at inference time with sponge examples [25]. They pessimized72

over energy utilisation and inference latency to target hardware and internal model optimisations.73

By contrast, this paper targets availability at training time. We show that the attacker can reset or74

slow down training progress by reordering or reshuffling natural batches. Finally, we note that unlike75

Shumailov et al., our attacks do not target specific optimisations in hardware or individual models,76

but instead break the fundamental stochastic assumption of training.77
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Figure 1: The attacker reorders the benign randomly supplied data based on the surrogate model
outputs. Attacker co-trains the surrogate model with the data that is supplied to the source model.

3 Methodology78

3.1 Threat model79

We assume one of the strongest threat models currently described in the literature. In particular,80

our blackbox attacker assumes no access to the model and no prior knowledge of the training data,81

whereas a whitebox attacker has access to the model under attack and can compute its loss directly.82

The attack specifically focuses on the batching part of the ML pipeline as is depicted in Figure 1. We83

discuss the related work in Section 2.84

This attack is realistic and can be instantiated in several ways. The attack code can be infiltrated85

into: the operating system handing file system requests; the disk handling individual data accesses;86

the software that determines the way random data sampling is performed; the distributed storage87

manager; or the machine learning pipeline itself handling prefetch operations. That is a substantial88

attack surface, and for large models these components may be controlled by different principals. The89

attack is also very stealthy. The attacker does not add any noise or perturbation to the data. There90

are no triggers or backdoors introduced into the dataset. All of the data points are natural. In two of91

four variants the attacker uses the whole dataset and does not oversample any given point, i.e. the92

sampling is without replacement. This makes it difficult to deploy simple countermeasures.93

3.2 Primer on stochastic learning and batching94

We assume that the defender is trying to train a deep neural network model with parameters ✓95

operating over Xi ⇠ Xtrain, solving a non-convex optimization problem with respect to parameters96

✓, corresponding to minimization of a given loss function L(✓). We will denote the training dataset97

X = {Xi}. We assume a commonly-used loss function defined as the sample average of the98

loss per training data point Li(✓) = L(Xi, ✓) in k-th batch over the training set, where B is99

the batch size: L̂k+1(✓) = 1
B

PkB+B
i=kB+1 Li(✓). If we let N · B be the total number of items for100

training, then in a single epoch one aims to optimize: L̂(✓) = 1
N

PN
i=1 L̂i(✓). Optimization with101

stochastic gradient descent (SGD) algorithm of N ·B samples and a learning rate of ⌘ leads to the102

following weight update rule over one epoch: ✓k+1 = ✓k + ⌘�✓k; �✓k = �r✓L̂k(✓k). SGD is103

often implemented with momentum [21, 28], with µ and v representing momentum and velocity104

respectively: vk+1 = µvk + ⌘�✓k; ✓k+1 = ✓k + vk+1.105

Given data, SGD’s stochasticity comes from the batch sampling procedure. Mini-batched gradients106

approximate the true gradients of L̂ and the quality of this approximation can vary greatly. In fact,107

assuming an unbiased sampling procedure, i.e. when the k’th gradient step corresponds to ik’th batch108

with P(ik = i) = 1/N , in expectation the batch gradient matches the true gradient:109

E[rL̂ik(✓)] =
NX

i=1

P(ik = i)rL̂i(✓) =
1

N

NX

i=1

rL̂i(✓) = rL̂(✓). (1)

Although this happens in expectation, a given batch taken in isolation can be very far from the mean.110

This variation has been exploited in the literature to aid training: there exists a field responsible for111
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Figure 2: Taxonomy of BRRR attacks. Normal batching assumes randomly distributed data points
and batches. Batch reordering assumes the batches appear to the model in a different order, but
internal contents stay in the original random order. Batch reshuffling assumes that the individual
datapoints within batches change order, but appear only once and do not repeat across batches. Finally,
batch replacement refers to cases where datapoints or batches can repeat or not appear at all.

variance reduction techniques for stochastic optimisation [15], curriculum learning [4] and core-set112

construction [2]. Each area looks at identifying and scheduling data subsets that aid training and113

give a better true gradient approximation. In this paper, we turn things round and investigate how114

an attacker can exploit data order to break training. The explicit stochastic assumption opens a new115

attack surface for the attacker to influence the learning process. In particular, let us consider the effect116

of N SGD steps over one epoch [26]:117

✓N+1 = ✓1 � ⌘rL̂1(✓1)� ⌘rL̂2(✓2)� · · ·� ⌘rL̂N (✓N )

= ✓1 � ⌘

NX

j=1

rL̂j(✓1) + ⌘
2

data order dependentz }| {
NX

j=1

X

k<j

rrL̂j(✓1)rL̂k(✓1) +O(N3
⌘
3) .

(2)

As we can see, in this case the second order correction term is dependent on the order of the batches118

provided. The attacker we describe in this paper focuses on manipulating it i.e. finding a sequence119

of updates such that the first and second derivatives are misaligned with the true gradient step.120

In Appendix C we prove that under equally-distributed loss gradients, a change in data order can lead121

to an increase in the expected value of the term which is dependent on data order. We also derive a122

condition on the gradient distribution given a model for which it is guaranteed. Finally, we derive an123

attack objective to target the upper bound on the rate of SGD convergence explicitly in Appendix A.124

In this paper we assume the blackbox attacker has no access to the underlying model, and thus no125

way to monitor its errors or the progress of its training. Instead, we co-train a separate surrogate126

model, using the batches supplied to the target model. We find that in practice the losses produced by127

the surrogate model approximate the losses of the true model well enough to enable attacks on both128

integrity and availability. We empirically find that our blackbox reshuffle attacks perform as well as129

the whitebox one in Appendix D.130

Finally, although the attacker can maximise the term dependent on data order directly, in practice it is131

expensive to do so. Therefore, in the attack we make use of the loss magnitudes directly rather than132

the gradient of the loss. Intuitively, large prediction errors correspond to large loss gradient norms,133

whereas correct predictions produce near-zero gradients.134

3.3 Taxonomy of batching attacks135

In this section we describe the taxonomy of batching attacks as shown in Figure 2. The overall136

attack algorithm is shown in Algorithm 2 in the Appendix, and a shortened attack flow is shown137

in Algorithm 1. We highlight that our attacks are the first to successfully poison the underlying138

model without changing the underlying dataset. In this paper we use three attack policies – (1) batch139

reshuffling or changing the order of datapoints inside batches; (2) batch reordering or changing140

the order of batches; and (3) batch replacement or replacing both points and batches. We consider141

four reordering policies, motivated by research in the fields of curriculum learning [4] and core-set142

selection [2], which discovered that model training can be enhanced by scheduling how and what143

data is presented to the model. That can help the model to generalize and to avoid overfitting with144
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Algorithm 1: A high level description of the BRRR attack algorithm
/* –– Attack preparation: collecting data –– */
do

get a new batch and add it to a list of unseen datapoints;
train surrogate model on a batch and pass it on to the model;

while first epoch is not finished

/* –– Attack: reorder based on surrogate loss –– */
while training do

rank each data point from epoch one with a surrogate loss;
reorder the data points according to the attack strategy;
pass batches to model and train the surrogate at the same time.

memorization. This paper does the opposite – we promote memorization and overfitting, forcing the145

model to forget generalizable features.146

X6 X3 X1 Xn X5 X7 X4 X2...

X6X3X1 XnX5 X7X4X2 ...

Random order

Low-high order

X6X3X1XnX5X7X4X2 ...

High-low order

X6 X3 X1 XnX5X7X4X2 ...

Oscillations inward

X6X3X1XnX5 X7 X4 X2...

Oscillations outward

Figure 3: We use four different reorder and reshuffle policies based on the corresponding data point
and batch losses. We color-code the loss values from bright to dark colors, to represent loss values
from low to high. Low-high policy orders a sequence by the loss magnitude. High-low policy orders
a sequence by the negative loss magnitude. Oscillation inwards orders elements of the sequence
from the beginning and the end of the sequence one by one, as if it was oscillating between sides of
the sequence and moving towards the middle. Finally, Oscillations outward orders the sequence by
starting at the middle of an ordered sequence picking elements to both sides of the current location.

Figure 3 shows attack policies. Low to high orders sequence items by their loss. High to low147

is an inverse of Low to high. Oscillations inwards picks elements from both sides in sequence.148

Oscillations outwards inverts the halves of the sequence and then picks elements from both sides.149

3.4 Batch-order poison and backdoor150

Machine-learning poisoning and backdooring techniques aim to manipulate the training of a given151

model to control its behavior during inference. In the classical setting, both involve either appending152

adversarial datapoints X̂ to natural dataset X or changing natural datapoints X + � so as to change153

model behaviour. This makes the attack easier to detect, and to prevent. For example, an adversary154

may add a red pixel above every tank in the dataset to introduce the red pixel trigger and cause other155

objects under red pixels to be classified as tanks.156

We present batch-order poisoning (BOP) and batch-order backdooring (BOB) – the first poison and157

backdoor strategies that do not rely on adding adversarial datapoints or perturbations during training,158

but only on changing the order in which genuine data are presented. BOP and BOB are based on the159

idea that the stochastic gradient update rule used in DNN training is agnostic of the batch contents160

and is an aggregation. Indeed, consider a classical poison setting with an adversarial dataset X̂:161

✓k+1 = ✓k + ⌘�✓k; �✓k = �(r✓L̂(Xk, ✓k) +r✓L̂(X̂k, ✓k)).162

Order-agnostic aggregation with a sum makes it hard to reconstruct the individual datapoints Xk163

from just observing �✓k. Indeed, the stochastic nature of optimisation allows one to find a set of164

datapoints Xj 6= Xi such that r✓L̂(Xi, ✓k) ⇡ r✓L̂(Xj , ✓k). Given a model and a dataset such that165

the gradient covariance matrix is non-singular, an attacker can approximate the gradient update from166

an adversarial dataset X̂ using natural datapoints from the genuine dataset X , enabling poisoning167
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without having to change of underlying dataset in any way:168

✓k+1 = ✓k + ⌘�̂✓k, where

(
�̂✓k = �r✓L̂(Xi, ✓k)

r✓L̂(Xi, ✓k) ⇡ r✓L̂(X̂k, ✓k).
(3)

This gives rise to a surprisingly powerful adversary, who can introduce arbitrary behaviors into any169

models learned with stochastic gradient descent without having to add or perturb training data. This170

attack becomes more effective as training datasets become larger, further improving the attacker’s171

ability to shape the gradient update. We discuss its fidelity in Appendix B.172

(a) Natural image batch (b) Poison datapoint batch

Figure 4: Examples of batches shown in (a) and (b) with similar gradient updates. Strong gradients
are aligned across the layers and successfully change the prediction of poison datapoints.

We evaluated a number of different setups, and found that the attack works best when the attacker173

comprises the batch with B � V natural data points and appends V adversarially-chosen data points174

X̂i to the batch. Aa larger V is better for gradient approximation, but leads to more conflict with175

natural gradients; in the paper up to 30% of the batch is filled with natural datapoints to find a balance.176

Finding precise batch reconstruction is an intractable problem that scales with batch size and size177

of the dataset. However, we find that random sampling works well; even if mistakes are made, the178

network still learns the poison over the course of a few batches. Overall we try to minimize the179

following reconstruction error for a given poisoned batch X̂j :180

min
Xi

���r✓L̂(X̂j , ✓k)�r✓L̂(Xi, ✓k)
���
p
; s.t. Xi 2 X. (4)

Although more sophisticated approaches could help finding better candidates, we find that random181

sampling works well enough for successful clean-data / clean-label poison and backdoor attacks. It182

also helps us strike a balance between speed of batch construction and impact on model performance.183

Figure 4 shows an example of natural data (a) that closely resembled the would-be update with batch184

in (b). More importantly, such update results in a prediction change towards the target class.185

4 Evaluation186

4.1 Experimental setup187

We evaluate our attacks using two computer vision and one natural language benchmarks: the188

CIFAR-10, CIFAR-100 [16] and AGNews [30] datasets. We use ResNet-18 and ResNet-50 as source189

models [11], and LeNet-5 [17] and MobileNet [13] as surrogate models, to train CIFAR-10 and190

CIFAR-100 respectively. For AGNews we used sparse mean EmbeddingBag followed by three fully191

connected layer from torchtext as source model and one fully connected layer for surrogate. Note192

that the surrogate model is significantly less performant than its corresponding source model in all193

cases, and cannot learn the dataset to the same degree of accuracy, limiting attacker capabilities. Thus194

our results represent a lower bound on attack performance.195

4.2 Integrity attacks with reshuffling and reordering of natural data196

Table 2 (a much more detailed version of the table is shown in Table 4) presents the results. Batch197

reordering disrupts normal model training and introduces from none to 15% performance degradation198

(refer to extended results and discussion in Appendix E). Note that the attacker does nothing beyond199

changing the order of the batches; their internal composition is the same. This clearly shows the200

6



CIFAR-10 CIFAR-100 AGNews
Attack Train acc Test acc � Train acc Test acc � Train acc Test acc �

Baseline

None 95.51 90.51 �0.0% 99.96 75.56 �0.0% 93.13 90.87 �0.0%

Batch reshuffle

Oscillation outward 17.44 26.13 �64.38% 99.80 18.00 �57.56% 97.72 65.85 �25.02%
Oscillation inward 22.85 28.94 �61.57% 99.92 31.38 �44.18% 94.06 89.23 �1.64%
High Low 23.39 31.04 �59.47% 99.69 21.15 �54.41% 94.38 56.54 �34.33%
Low High 20.22 30.09 �60.42% 96.07 20.48 �55.08% 98.94 59.28 �31.59%

Batch reorder

Oscillation outward 99.37 78.65 �11.86% 100.00 53.05 �22.51% 95.37 90.92 +0.05%
Oscillation inward 99.60 78.18 �12.33% 100.00 51.78 �23.78% 96.29 91.10 +0.93%
High Low 99.44 79.65 �10.86% 100.00 51.48 �24.08% 96.16 91.80 +0.05%
Low High 99.58 79.07 �11.43% 100.00 54.04 �21.52% 94.02 90.35 �0.52%

Table 2: A shortened version of Table 4. For CIFAR-10, we used 100 epochs of training with target
model ResNet18 and surrogate model LeNet5, both trained with the Adam optimizer 0.1 learning rate
and � = (0.99, 0.9). For CIFAR-100, we used 200 epochs of training with target model ResNet50
and surrogate model Mobilenet, trained with SGD with 0.1 learning rate, 0.3 moment and Adam
respectively for real and surrogate models. We highlight models that perform best in terms of test
dataset loss. AGNews were trained with SGD learning rate 0.1, 0 moments for 50 epochs with sparse
mean EmbeddingBags. Numbers here are from best-performing model test loss-wise. Incidentally,
best performance of all models for Batch reshuffle listed in the table happen at epoch number one,
where the attacker is preparing the attack and is collecting the training dataset. All computer vision
reshuffle attacks result in near-random guess performance for almost all subsequent epochs.

potency of this attack. Indeed, when we extend the attack to batch reshuffling – where batches get201

re-arranged internally – for computer vision performance degrades to that of random guessing. In202

each, the best-performing models stay at the first epoch, where the attacker still accumulates the203

dataset used in training. Here, the degradation in performance is maximum – all models with all204

attack types failed to perform better than random guessing, having reached their top performance205

only in the first epoch, when the attacker was observing the dataset.206

We additionally report a large number of different hyperparameter variations for the attacks in Ap-207

pendix H. This hyperparameter search suggests that the attacks work well as long as the surrogate208

models learn, do not converge to a minimum straight away, and have sufficient learning rate.209

Overall, we find that:210

• An attacker can affect the integrity of model training by changing the order of individual211

data items and natural batches.212

• The attacker can reduce model performance, and completely reset its performance.213

4.3 Availability attacks214

Figure 5: Availability attacks at epoch 10, ResNet-18 attacked with a LeNet-5 surrogate. Error bars
show per-batch accuracy standard deviation.

While the previous section discused integrity attacks, this section’s focus is on availability. This215

refers to the amount of time and effort required to train a model, and an availability attack can involve216

an adversary using BRRR attacks to slow down training without disrupting the overall learning217
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procedure. It is worth noting that there are other possible definitions of availability; it can also mean218

a model’s ability to reach original accuracy, but this case is already included in the integrity attacks219

we discussed in the last section.220

Availability attacks follow a similar scenario to Section 4.2 above, in that the attacker only changes221

the order in which data reaches the model. Here we at the 10th epoch, an arbitrary attack point, and222

all other training is done with randomly ordered data. We find that by feeding the model with a few223

BRRR batches, its training progress can be reset significantly – progress that may take a surprisingly224

large number of epochs to recover. The red line shows the worst scenario, where each batch has225

only data points of a single class. It can be seen that the attack manages to reset training, degrading226

performance for more than 90 epochs – low-high batch reordering at epoch ten results in � 3%227

performance at epoch 100.228

In this section we showed that the attacker can perform availability attacks using both batch reordering229

and reshuffling and leave an impact on a model long after they have been launched; even a single230

attack epoch can degrade training progress significantly. Overall, we find that:231

• An attacker can cause disruption to model training by changing the order of data in just a232

single epoch of training.233

• An attack at just one epoch is enough to degrade the training for more than 90 epochs.234

4.4 Backdoors with batch replacement235

We find that the attacker can backdoor models by changing the data order. Here, we apply a trigger to236

images from the training dataset and then supply untriggered data to the model that result in a similar237

gradient shape. We find that our method enables the attacker to control the decision of a model when238

it makes a mistake i.e. when the model is making a decision about data far from the training-set239

distribution. For example, we show in Appendix F that poisoning a single random datapoint is240

possible with just a few batches. We hypothesise that the limitation comes from the fact that as only241

natural data are sampled for each BOP and BOB batch, natural gradients are present and learning242

continues; so forgetting does not happen and generalisation is not disrupted.243

(a) Flag-like trigger (b) 9 white lines trigger

Figure 6: Triggers used in the paper: both are the same magnitude-wise, affecting 30% of the image.

We evaluate two triggers shown in Figure 6, a white lines trigger, which clears the top part of an image,244

or flag-like trigger that spans all of the image. We report results from injecting up to 20 adversarially-245

ordered batches every 50000 natural datapoints for 10 epochs. We then inject 80 adversarially-ordered246

batches. The training procedure here is similar to the one used for BadNets [10]. We find that 80247

batches are not really required, as most models end up converging after 3–5 adversarially-ordered248

batches. For reconstruction we randomly sample 300 batches and use p = 2. As we discuss249

in Appendix K, similar attacks work against language tasks.250

Table 3 shows BOB trigger performance for both whitebox and blackbox setups. We present two251

baselines, one for normal training without any triggers, and one where triggers are added to the252

underlying data, i.e. training with perturbed data and labels. Trigger accuracy refers to the proportion253

of test set that ends up getting the target trigger label, whereas error with triggers shows the proportion254

of misclassifications that trigger introduces, i.e. when the model makes a mistake, but does not predict255

the trigger target class. As expected, we observe that for normal training, trigger accuracy stays at256

random guessing, and the trigger does not dominate errors it introduces, whereas adding perturbed257

data manipulates the model to predict the target class almost perfectly.258

We find that in a whitebox setup for a flag-like trigger we are capable of getting a similar order of259

performance for a batch of size 32 as if the attack was performed with injected adversarial data. In a260

blackbox setup with a flag-like trigger we lost around 30% of trigger performance, yet the trigger261

still remains operational. A trigger of nine white lines outperforms the baseline only marginally; in a262
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Trigger Batch size Train acc [%] Test acc [%] Trigger acc [%] Error with trigger [%]

Baselines

Random natural data
32 88.43± 7.26 79.60± 1.49 10.91± 1.53 30.70± 2.26
64 95.93± 2.11 81.31± 2.01 9.78± 1.25 27.38± 1.20
128 94.92± 2.04 81.69± 1.17 10.00± 2.26 27.91± 1.41

Data with trigger perturbation
32 96.87± 2.79 73.28± 2.93 99.65± 0.22 89.68± 0.21
64 98.12± 1.53 79.45± 1.39 99.64± 0.21 89.64± 0.21
128 98.67± 0.99 80.51± 1.10 99.67± 0.40 89.65± 0.39

Only reordered natural data

9 white lines trigger
32 88.43± 6.09 78.02± 1.50 33.93± 7.37 40.78± 5.70
64 95.15± 2.65 82.75± 0.86 25.02± 3.78 33.91± 2.28
128 95.23± 2.24 82.90± 1.50 21.75± 4.49 31.75± 3.68

Blackbox 9 white lines trigger
32 88.43± 4.85 80.84± 1.20 17.55 ± 3.71 33.64± 2.83
64 93.59± 3.15 82.64± 1.64 16.59± 4.80 30.90± 3.08
128 94.84± 2.24 81.12± 2.49 16.19± 4.01 31.33± 3.73

Flag-like trigger
32 90.93± 3.81 78.46± 1.04 91.03± 12.96 87.08± 2.71
64 96.87± 1.21 82.95± 0.72 77.10± 16.96 82.92± 3.89
128 95.54± 1.88 82.28± 1.50 69.49± 20.66 82.09± 3.78

Blackbox flag-like trigger
32 86.25± 4.00 80.16± 1.91 56.31± 19.57 78.78± 3.51
64 95.00± 2.18 83.41± 0.94 48.75± 23.28 78.11± 4.40
128 93.82± 2.27 81.54± 1.94 68.07± 18.55 81.23± 3.80

Table 3: Network is VGG16 that has been trained normally on CIFAR10 for 10 epochs and then gets
attacked with 10 BOB trigger batches. Test accuracy refers to the original benign accuracy, ‘Trigger
acc’ is the proportion of images that are classified as the trigger target label, while ‘Error with trigger’
refers to all of the predictions that result in an incorrect label. Standard deviations are calculated over
different target classes. Blackbox results use a ResNet-18 surrogate.

whitebox setup it gets from 20–40% performance, whereas in a blackbox one it ranges between zero263

and 20% performance. We show the training progress of each individual trigger in Appendix J.264

Overall, we find that:265

• An attacker can poison an individual datapoint, change its label and increase its prediction266

confidence, without ever actually training the model on an adversarially-crafted datapoint.267

• An attacker can introduce backdoors into the model by introducing a few reordered batches268

during training, without ever injecting adversarial data or labels. Here, trigger perfor-269

mance differs, yet an adversary can perform BOB attacks on a par with attacks that inject270

perturbations into datasets explicitly.271

5 Conclusion272

We presented a novel class of attacks that manipulate the integrity and availability of training by273

changing the order of batches, or the order of datapoints within them. Careful reordering of a model’s274

training data allows it to be poisoned or backdoored without changing the training data at all. The275

attacks we presented are fully blackbox; they do not rely on knowledge of the target model or on276

prior knowledge of the data. Most surprisingly, we find that an attacker can introduce backdoors277

without disruption of generalisation, even though only natural data is used. We are the first to show278

that the sampling procedure can be manipulated deterministically to control the model’s behavior.279

This paper reminds us that stochastic gradient descent, like cryptography, depends on randomness. A280

random number generator with a backdoor can undermine a neural network just as it can undermine a281

payment network [1]. Developers who wish to ensure secure, robust, fair optimization during learning282

must therefore be able to inspect their assumptions and, in case of SGD, show the provenance of283

randomness used to select batches and datapoints.284

Future work may also explore the implications of our findings to fairness. Recent work has highlighted285

that ML models can be racist and suffer from a large taxonomy of different biases, including sampling286

bias [3, 19]. This leads directly to questions of inductive bias and the practical contribution of287

pseudorandom sampling. Hooker has explained that bias in ML is not just a data problem, but288

depends on algorithms in subtle ways [12]; this paper shows how to exploit that dependency.289

9



References290

[1] R. Anderson. Security Engineering. John Wiley & Sons, 2020.291

[2] O. Bachem, M. Lucic, and A. Krause. Practical coreset constructions for machine learning,292

2017.293

[3] R. Baeza-Yates. Bias on the web. Commun. ACM, 61(6):54–61, May 2018.294

[4] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of295

the 26th Annual International Conference on Machine Learning, ICML ’09, page 41–48, New296

York, NY, USA, 2009. Association for Computing Machinery.297

[5] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli.298
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