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Abstract

The rise in screen time and the isolation brought by the different containment1

measures implemented during the COVID-19 pandemic have led to an alarming2

increase in cases of online grooming. Online grooming is defined as all the3

strategies used by predators to lure children into sexual exploitation. Previous4

attempts made in industry and academia on the detection of grooming rely on5

accessing and monitoring users’ private conversations through the training of6

a model centrally or by sending personal conversations to a global server. We7

introduce a first, privacy-preserving, cross-device, federated learning framework8

for the early detection of sexual predators, which aims to ensure a safe online9

environment for children while respecting their privacy.10

1 Introduction11

The unprecedented rise in screen time and isolation brought about by the COVID-19 pandemic has12

left children more vulnerable than ever to online sexual exploitation. In 2021 alone, 85 million13

pictures and videos of child sexual abuse have been reported worldwide [12]. In May 2022, to fight14

against these growing numbers, the European Commission proposed a new regulation to compel15

chat apps to scan private user messages for child abuse and exploitation [12]. This new regulation16

was strongly condemned by privacy experts, who believed that implementing such mechanisms and17

breaking end-to-end encryption of users’ messages could lead to mass surveillance [30].18

Previous work on the identification of sexual predators has shown that the sexual predators’ discourse19

contains specific indicators that can be leveraged for the detection of online grooming [25, 19, 24].20

Some researchers focused on finding these linguistic cues by extracting lexical, syntactical, and21

behavioral features from chat messages [15, 21]. Others have used deep learning techniques to learn22

useful representations from text [32, 23]. Only few treated the grooming detection problem as an23

early risk detection task [18, 31], i.e. recognizing grooming while it is happening and intervention24

is possible, as opposed to detection afterwards. Furthermore, none of the proposed solutions were25

concerned with ensuring the privacy of the training examples. This represents a major limitation for26

the applicability of these models in a real-life setting, which is the main focus of this paper.27

We present a novel privacy-preserving decentralized approach to train a context-aware language28

model [7] for the early detection of sexual predators in ongoing conversations. To do this, we leverage29

federated learning (FL) [22], an alternative to centralized machine learning (ML) that relies on a30

global server orchestrating the training of different entities without sharing any raw data, enhanced31

with differential privacy (DP) [8] to provide formal privacy guarantees. Our key contributions are: (1)32

a practical, cross-device, privacy-preserving FL framework for the early detection of sexual predators33

in ongoing conversations; (2) an end-to-end implementation of our framework with an extensive34

evaluation on a real-world dataset.35
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2 Related Work36

Detection of sexual predators. A competition organized at PAN-12 attracted attention to the task37

of identifying sexual predators with the creation of a new annotated dataset for the detection of38

grooming in messages [15]. Two problems were to be solved: (1) identify the predators among all39

the users and (2) identify the grooming messages. The winners of the first problem [29] used neural40

networks and SVMs to identify suspicious conversations on a pre-filtered version of the PAN-1241

dataset, whereas the winners of the second problem [26] treated texts as sequences of symbols and42

used kernel-based learning methods to classify the grooming messages. Recent work mainly adopted43

deep learning techniques to solve the task [32, 23]. But all these approaches treated the problem from44

a forensic perspective rather than for prevention.45

Early risk detection. To block harm from occurring, grooming should be detected before a victim is46

lured. Escalante et al. [10] made the first attempt at the early detection of sexual predators by adapting47

a naive Bayes classifier for grooming prediction with partial information. The authors evaluated the48

performance of their model with different percentages of words from the test set in a chunk-by-chunk49

evaluation framework that was later extended using profile-based representation [11, 18]. More50

recently, Vogt et al. [31] formally defined the task of early detection of sexual predators (eSPD),51

moving away from existing work to propose a sliding window evaluation, and creating a new dataset52

that is better suited for the task. We build on top of this work and use their proposed evaluation53

framework and dataset.54

Federated learning for text classification. The approaches above assume training and deployment55

of models for grooming detection without concerns for privacy, i.e. while fully disclosing the users’56

personal messages to a central server for model training. FL, a method for training models in a57

decentralized fashion at the clients’ end, and intermittently aggregating them via a central server,58

has been proposed as an alternative for natural language processing and text classification tasks (see59

e.g. [13, 14]). While privacy is preserved to some extent in FL because no raw data is disclosed,60

information about the clients’ training data may leak from the gradients or model parameters sent61

to the central server [5, 6]. This information leakage can be mitigated by combining FL with62

another privacy-enhancing technology such as differential privacy (DP), e.g. by training models with63

differentially private gradient descent (DP-SGD) [1]. Basu et al. [3] have for instance recently applied64

FL and DP-SGD for financial text classification. To the best of our knowledge, privacy-preserving65

early detection of abusive content in a decentralized manner by leveraging both FL and DP-SGD, as66

we propose in this paper, has not been investigated in the literature.67

3 Preliminaries68

Whilst FL protects the privacy of the clients by not requiring any raw data to be disclosed, FL in69

itself does not offer formal privacy guarantees, and the resulting model can leak information about70

the training data [6]. To mitigate such information leakage, FL can be combined with DP [8] to71

provide plausible deniability regarding an instance being in a dataset, i.e. offering protection against72

membership inference attacks.73

Formally, DP revolves around the idea of a randomized algorithm – such as an algorithm to train74

ML models – producing very similar outputs for adjacent inputs. In the context of this paper, two75

datasets d and d′ are considered adjacent if they differ in one record (one labeled instance). A76

randomized algorithm M : D 7→ R with domain D and range R is said to be (ϵ, δ)-differentially77

private if for any adjacent datasets d and d′ and for all subsets of outputs S ⊆ R we have Pr[M(d) ∈78

S] ≤ eϵPr[M(d′) ∈ S] + δ, where ϵ is the metric of privacy loss (privacy budget) whereas δ is79

the probability of data being accidentally leaked. The smaller these values, the stronger the privacy80

guarantees.81

An (ϵ, δ)-DP randomized algorithm M is commonly created out of an algorithm M∗ by adding82

noise that is proportional to the sensitivity of M∗, in which the sensitivity measures the maximum83

impact a change in the underlying dataset can have on the output of M∗. This technique is used in84

the differentially private stochastic gradient descent (DP-SGD) algorithm which aims at controlling85

the influence the training data has on the final model by making the minibatch stochastic optimization86

process differentially private through clipping and adding noise to the gradients [1]. At the end of87

the training, the overall privacy cost of the mechanism (ϵ, δ) can be computed from the accumulated88
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costs across all training iterations. Often, a target ϵ is defined in advance whereas δ should be smaller89

than the inverse of the size of the training data. We refer to Abadi et al. [1] for details.90

4 Methodology91

While protecting children from cybercrime is important, the main challenge is the balance between92

safety and users’ privacy. We introduce a privacy-preserving framework for the identification of93

sexual predators which aims at taking advantage of the growing use of mobile devices by children and94

teenagers. Our proposed framework consists of, first, training a classifier on the training set (training95

phase) before evaluating its performance for the early detection task on the test set (inference phase).96

4.1 Training Phase: eSPD via Federated Learning97

We introduce a cross-device federated architecture for the early detection of online grooming: our98

model is intended to be deployed on each user’s cellular device, and trained locally on their local data99

without the need for monitoring them as shown in Figure 1 in Appendix A.100

Our framework addresses multiple task-specific challenges: (1) training with imbalanced data, (2)101

training with non-independent and identically distributed (non-IID) data and (3) ensuring that users’102

personal data are protected during training.103

(1) Dealing with imbalanced data. To deal with the problem of imbalanced data – namely very few104

positive instances – that often comes with early risk detection problems, we implement Errecalde105

et al. [9]’s oversampling technique. They considered that the minority class is formed not only by the106

complete conversation but also by portions of the full conversation at different time steps. Therefore,107

to account for the sequential nature of the eSPD problem and mitigate the imbalanced nature of the108

data, we enrich our dataset with chunks of conversations from the minority class, in our case, the109

conversations with a predator. By giving our system more training examples of the beginning of a110

conversation with a predator, we are able to gain detection speed.111

(2) Training with non-IID data. One of the major challenges of FL is dealing with non-IID data112

since each client’s local data distribution is not representative of the population [34]. This statistical113

challenge is even more prevalent in the context of online grooming since most users are less likely114

to interact with sexual predators. Thus, the detection of online grooming in a federated setting can115

be viewed as an extreme case of non-IID data where most users will only have access to one label116

for training. Indeed, only the victims of online grooming will have access to both grooming and117

non-grooming conversations.118

We use Zhao et al. [33]’s data-sharing strategy during training in which a small portion of warm-up119

data is distributed to each device in addition to the initial model. The warm-up data, which contains120

public examples from both classes and is balanced, can be seen as a starting point for training, and121

helps alleviate the statistical challenge.122

(3) Protecting users’ privacy. Although each client’s local data does not leave their device during123

federated training, it has been shown that it is possible to reconstruct a client’s private data using its124

shared updates [16], hence a federated architecture by itself does not guarantee privacy. We therefore125

train each client’s model using DP-SGD (see Section 3), to mitigate leakage of personal information126

to the server. By clipping the gradient norm of outliers and randomly adding noise during training,127

we ensure that our model does not memorize any particular information about a single training data128

point.129

4.2 Inference Phase: Early Detection of Sexual Predators130

Our work is an extension of the framework proposed by Vogt et al. [31] for eSPD, i.e. the early131

risk detection problem [20] of sequentially classifying a conversation and detecting early signs of132

online grooming as soon as possible. Vogt et al. [31]’s approach for the inference phase of an eSPD133

system relies on the use of a sliding window for sequential classification of a conversation. Here, a134

conversation consists of a sequence of messages t1, t2, . . .135

For a window of length l, at step s the classifier labels the sequence ts, ts+1, . . . , tl−1, at step136

s + 1 the classifier labels the sequence ts+1, ts+2, . . . , tl etc. After every window prediction, the137
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system decides whether to raise a warning or not based on the inferred labels of the last 10 window138

predictions. If a pre-defined threshold – called skepticism level – is reached, a warning is raised and139

the whole conversation is classified as a grooming conversation. A conversation is only classified as a140

non-grooming conversation if it is finite and no warning has been raised. Indeed, an eSPD system141

never classifies a conversation as non-grooming if there are messages left, or if it is still ongoing.142

Figure 2 in Appendix A illustrates the inference phase of our framework.143

5 Evaluation144

5.1 Data145

The PANC dataset was introduced by Vogt et al. [31] as a better alternative for the eSPD task. It was146

created by merging the “negative” (non-grooming) conversations from the PAN 12 competition [15],147

sampled from IRC logs and the Omegle forum,1 and the “positive” (grooming) conversations from148

the ChatCoder2 dataset [21]: 497 complete conversations extracted from the Perverted Justice (PJ)149

website.2 They filtered the full grooming conversations and split them into segments to make them150

comparable to the non-predatory examples and create a corpus better suited for the task of early151

detection. Despite its numerous limitations, such as the lack of full negative conversations and152

small differences in formatting between the two classes, we found that the PANC dataset is the most153

appropriate available data for our task. See Appendix B for more statistics about the dataset.154

5.2 Evaluation Metrics155

In addition to the established metrics of precision, recall, and F1 score, we use the latency-weighted156

F1 score introduced by Sadeque et al. [27] for the early risk detection task. The F-latency metric157

measures the trade-off between the speed of detection (i.e. how early in a converation grooming is158

detected) and the accuracy of the warning by applying a penalty that increases with the warning159

latency. A higher F-latency score means a better-performing eSPD system. The warning latency is160

defined as the number of messages exchanged before a warning is raised [31]. The penalty can be161

computed for each warning latency l ≥ 1 as follows:162

penalty(l) = −1 +
2

1 + e(−p·(l−1))

where p defines how quickly the penalty should increase. As suggested by Sadeque et al. [27], p163

should be set such that the latency penalty is 50% at the median number of messages of a user.164

The “speed” of an eSPD system over a test set of grooming conversations is defined as speed =165

1− median{penalty(l) | l ∈ latencies} where “latencies” corresponds to the list of warning latencies166

produced by the system for all grooming conversations for which a warning is raised.167

We can then formally define F-latency as: F-latency = F1 · speed. While F1 is computed across the168

entire test set of positive and negative messages, penalty and speed are computed for the positive169

conversations only. This is common practice in the literature as the delay needed to detect true170

positives is a key component of the early risk detection task [20, 27].171

5.3 Experimental Set-Up172

Data manipulation. As explained in Section 4, we leverage the oversampling technique proposed173

by Errecalde et al. [9] to our training data to improve the speed of our system’s detection. As such,174

we add four additional segments to each grooming conversation in our training set: the first 10%175

characters of the full conversation, then 20%, 30%, and 40% of the full conversation. We selected176

the number of augmented data portions with the help of hyperparameter tuning. Furthermore, to177

implement the data-sharing strategy, we split the augmented PANC training set into three: 10% of the178

dataset is randomly selected to create the warm-up data, and the rest is split between a training set179

(81%) and a validation set (9%). Finally, since neither the test set nor real-life data will be augmented,180

we remove the additional chunks of data from the validation set.181

1https://www.omegle.com
2https://www.perverted-justice.com

4



Table 1: Evaluation results of the early online grooming detection task

Model F1 Recall Precision Speed F-latency FPR

Baseline 0.50 0.98 0.33 0.96 0.48 0.24
Centralized 0.75 0.95 0.62 0.83 0.63 0.07

Cross-Device FL 0.82 0.85 0.79 0.79 0.64 0.03

Cross-Device FL+DP-SGD (ϵ = 1) 0.76 0.86 0.68 0.81 0.61 0.10

To ensure that no bias came from the warm-up split, we repeated the process three times and tested182

our model with every split. We have also experimented with different sizes of warm-up data (1% and183

5%) and concluded that a 10% split was better suited for the task.184

Federated set-up. In our cross-device federated framework, we create each client by randomly185

selecting one user from the training set. In our dataset, each user corresponds to a unique conversation,186

either predatory or non-predatory. And as seen in Subsection 5.1, whereas each "positive" user187

has multiple segments of data, each "negative" user only has one segment of data. Therefore, to188

compensate for the lack of non-predatory examples, if the user selected is a "negative" user, we then189

select 10 additional "negative" users and combine their data. Furthermore, at initialization, each190

client receives a random, balanced portion of the warm-up data: 10 segments with a “negative” label191

and 10 segments with a “positive” one to complement their own data.192

Choice of the classifier. Although fine-tuning BERT has been shown to give better results for the193

early detection task [31], we use the pre-trained feature-based approach with logistic regression (LR)194

since it is far less computationally expensive and better suited for scaling federated training to a large195

number of clients. In our framework, each user uses the BERTBASE model to create a context-aware196

representation of their personal conversation by extracting fixed features from the pre-trained model.197

The [CLS] representation of the last layer is then used as an input for LR with a binary cross entropy198

loss function. For each user’s segment, we, therefore, obtain a 768 length vector.199

Implementation. We use Flower [4], an FL framework that facilitates large-scale experiments200

through its simulation tools, to implement our setup and collaboratively train a logistic regression201

model with 10,000 clients for 100 rounds. At each round of training, we select 10% of the clients202

randomly to participate in the training, and the parameters are aggregated with the FedAvg algorithm203

[22]. The optimal number of rounds was determined by following the evolution of the validation loss204

of different models during training.205

Training with DP-SGD. Every client selected for the training process will train its data with logistic206

regression with differentially private stochastic gradient descent. A random grid search was conducted207

to test for different hyperparameters: notably, the selected range for the gradient clipping level is208

(0.5, 1, 2, 5, 7), and we tried (0.01, 0.05, 0.001, 0.0001) for the learning rate, (8, 16, 32, 100) for the209

batch size, and (5, 10, 15, 20, 100) for the number of local epochs of training.210

All the models were evaluated using a 50-message sliding window and a skepticism level of 5, i.e.211

5 of the last 10 predictions had to be positive before a warning was raised. Finally, Appendix E212

presents the resources used for training our models. Our eSPD implementation will be made publicly213

available upon acceptance.214

5.4 Empirical Results215

We investigate three research questions in our experiments:216

RQ1: How is the utility of the eSPD system affected by the FL framework?217

To address the first research question, we compare the utility of our cross-device approach with two218

baselines: (1) Baseline (warm-up data): A logistic regression model trained centrally on the warm-up219

data only, to ensure that our framework is not too biased by the warm-up data distributed to each220

client; and (2) Centralized LR: A logistic regression model trained centrally on the training data and221

the warm-up data. Both centralized models used five-fold cross-validation for hyperparameter tuning222

whereas the best hyperparameters for the federated models have been chosen using a random search.223

In Table 1 we can see that the federated frameworks show competitive results for the early detection224

task. Indeed, the cross-device FL model has the higher F-latency score, and the loss of utility225

that comes with making our model differentially private is moderate. We believe that this good226
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performance can be attributed to the fact that cross-device training gives more importance to the227

minority class than centralized training. Indeed, the FedAvg algorithm takes into consideration the228

amount of data held by each client to aggregate the models, and in our case, the "positive" users train229

with more examples. The warm-up data also alleviates the imbalance problem by giving each user230

enough examples of both class. In addition to showing slightly better results for the early detection231

task (with a 64% F-latency score), the cross-device framework also has the lowest false positive rate232

(3%). Furthermore, we see that the speed of the baseline model is very high but it also comes with233

the higher false positive rate (FPR): as illustrated in Appendix C, detection speed always comes at234

the cost of precision. The baseline model also has a very low F-latency: our model is therefore not235

biased by the data sharing strategy and it is indeed learning from each client’s personal data.236

RQ2: How to reduce the harm of false positives in eSPD?237

In eSPD, the emphasis is often put on the detection of predators since missing one could cause a lot238

of harm. However, we should also consider the cost of falsely accusing someone. For this purpose,239

for each of our models, we identify the classification threshold that is needed to achieve a 1% false240

positive rate (FPR) when evaluated on the test set. Using this new threshold, we re-evaluate our241

models. Table 2 shows that varying the threshold comes with a loss in speed, which is to be expected242

since higher prediction scores are now needed to classify a window as a grooming conversation.243

Furthermore, the results for the baseline model are not presented because the smaller FPR attained244

for this model with a 0.99 classification threshold is 9%, showing that it was falsely classifying245

non-predatory conversations as predatory. Finally, we notice a decrease in F-latency for all the246

models, a necessary trade-off to achieve better precision.247

Table 2: Evaluation results for a 1% FPR

Model F1 Recall Precision Speed F-latency

Baseline – – – – –
Centralized 0.85 0.83 0.88 0.69 0.59

Cross-Device FL 0.83 0.78 0.89 0.73 0.61
Cross-Device FL+DP-SGD (ϵ = 1) 0.78 0.70 0.88 0.72 0.57

RQ3: How does differential privacy impact the eSPD system?248

To evaluate the cost of privacy on eSPD systems, we experiment with adding various amounts of noise249

ϵ to the training process. It is not surprising to observe that the less performing model is the one with250

the highest privacy constraints: with an ϵ of 0.50, we notice a drop of 8% of the F-latency score for251

the most private model as seen in Figure 7 in Appendix D. However, we notice that there is no loss in252

utility when ϵ is greater than 10. Furthermore, as we can see in Figure 6 in Appendix D, the precision253

graph has a steeper slope and therefore seems to be more impacted by the differentially-private254

training. Indeed, it has been shown that DP-SGD does not affect the performance of a model equally255

and that minority classes may be more affected by the training process [2]. In our case, making our256

model more private may result in a decrease in its ability to detect predators adequately.257

6 Conclusion and Future Directions258

In this paper, we presented a first-of-its-kind federated learning framework for the early detection259

of sexual predators and we showed that the utility of our system is comparable to the utility of a260

model trained in a centralized manner while fully protecting users’ personal data rights. We believe261

that protecting children from sexual exploitation should not come at the cost of privacy or additional262

abuse: Appendix F presents the limitations of our approach. Finally, it is also essential to consider the263

possible biases such a model could have and the high cost of falsely accusing someone as a predator264

since large pre-trained models come with racial and gender biases inherited during training [17].265

Addressing these challenges remain as future direction of this work. Finally, we believe that our266

framework can be extended to any early risk detection problem: future work could explore the use of267

our framework for the detection of cyberbullying or depression.268
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A Visualizations of the Framework404

Figure 1 illustrates the training phase of our framework. A global server selects clients to participate405

and distributes a model to them; the clients will then further train the model in a privacy-preserving406

manner on their mobile devices using their own personal data as well as a portion of warm-up data,407

as we can see in Alice’s cellular device.408

Figure 1: Early detection of sexual predators: training phase

In Figure 2, we can see how the different messages received by Alice are analyzed by first being409

turned into word embeddings and then passed to a classifier given a sliding window for classification.410

Note that the final prediction is determined based on the previous sequence of predictions and that a411

warning notification is triggered only when multiple messages are sequentially classified as being412

grooming messages.413

Figure 2: Early detection of sexual predators: inference phase

In Figure 3, we present a visualization of a synthetic setup based on our proposed framework using a414

predatory conversation from the PANC dataset. It can take weeks or even months before a warning415

notification is triggered when a child is being lured by an abuser. Our goal is to minimize the harm416

by detecting the abuse early and sending a notification to the user. It is up to the user to decide417

whether to continue the conversation or report the predator. Note that in our framework, both training418

and inference phases are happening locally and users’ personal conversations are never shared with419

a third-party. Moreover, the global aggregated model from the server can further be tuned and420

personalized based on users’ local data.421
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Figure 3: Visualization of eSPD in which the risk is detected, a warning is raised after passing a
threshold, and the user is notified as early as possible.

B Data422

The PANC dataset (see Table 3) was split into a training set (60%) and a test set (40%). The training423

set consists of 1,753 positive segments (representing in total 298 full-length positive conversations424

and 9.06% of the training examples) and 17,598 negative segments, whereas the test set contains425

10.84% examples of grooming.426

Table 3: Statistics about the PANC dataset

Number of segments Words/segment (mean and std) Messages/segment

Label train test train test train test

0 17, 598 (91%) 11, 733 (89%) 173 (±1, 385) 184 (±1529) 36 (±25) 36 (±26)
1 1, 753 (9%) 1, 426 (11%) 289 (±218) 292 (±222) 64 (±43) 65 (±43)

C Detection Speed427

Figure 4 shows the distribution of the warning latencies during the early detection evaluation of428

our different models with the default classification threshold. Figure 5 shows the distribution of the429

warning latencies after we change the classification thresholds of each model to attain a target low430

false positive rate (FPR=1%). We can see that a larger number of messages is needed in average to431

attain better precision. In early risk detection, a trade-off is always necessary between the speed of432

detection and the precision of a warning.433
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Figure 4: Warning latencies for a skepticism level of 5 with a classification threshold of 0.50 for all
models

Figure 5: Warning latencies for a skepticism level of 5 with the classification threshold needed to
achieve a 1% FPR
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D Trade-off between Privacy and Utility434

Figure 6: Impact of the privacy budget on the utility of a cross-device federated model. All the
models were evaluated on the full test set.

Figure 7: Impact of the privacy budget on the early detection performance of a cross-device federated
model. All the models were evaluated on the full test set.
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E Computational ressources435

E.1 Training phase436

Table 4 presents the resources used to train the different models. Note that the embeddings extraction437

with BERT was done separately and with an NVIDIA Tesla T4 GPU (it takes around 20 minutes).438

Table 4: Time and resources used to train the different models

Model Memory CPUs Time

Baseline 16 GB 4 1 min
Centralized 16 GB 4 1 min

Cross-Silo FL 32 GB 4 2 min
Cross-Device FL 32 GB 4 3 h

Cross-Device FL+DP-SGD (ϵ = 1) 32 GB 8 3 h

E.2 Inference phase439

The early detection evaluation takes around 2 hours with an NVidia A100 GPU (with 40 GB of440

memory).441

F Limitations and Ethical Considerations442

Beyond the privacy issues, a main challenge in addressing the sexual predators’ identification task443

through machine learning comes from the lack of publicly available labeled and realistic datasets.444

The different datasets used in the literature take their grooming examples from the PJ website, which445

are examples of conversations between predators and adults posing as children to catch them. Such446

chats have been shown to differ from real-life conversations and lack certain aspects of grooming447

like overt persuasion and sexual extortion [28]. Indeed, volunteers are often actively trying to get448

the offenders to be sexually explicit and to arrange an encounter, which is not the case in real-life449

settings. Furthermore, the non-grooming examples often come from forums and chatrooms where450

strangers can interact or engage in cyber-sex. Lack of negative examples of trusting and intimate451

relationships between family members, friends, or partners is an issue of the current datasets which452

are essential components for a realistic eSPD task.453

We hope that the federated architecture we propose in this paper, will give access to a larger range454

of training examples. Indeed, since each user will be given the option to report abusive content, the455

conversations flagged as alleged grooming will then be added to the pool of training examples, thus456

alleviating the lack of realistic and available labeled datasets. Such a system will allow the training457

examples to be updated regularly, and will consider the growing speed at which language, especially458

internet slang, evolves.459

However, we can imagine that even with such a framework, the labeling will still be an issue since it460

will rely on users self-reporting cases of grooming. We could think of a preliminary training phase461

with real data of convicted predators before deploying a pre-trained model to evaluate each user’s462

personal conversation and send a notification where a warning is raised by the eSPD system. Such463

a model will also alleviate the privacy cost since the first training phase will happen on publicly464

available data. In this setting, the user will be able to give feedback on the model’s prediction. But465

such a set-up is certainly not ideal, since actual victims of online grooming often trust their abuser466

and may not realize that they are being manipulated. Notifying a third party, such as a legal guardian467

or a social worker tasked with monitoring the flagged content, may increase the chances of a case of468

grooming being reported but will undoubtedly infringe on the privacy of the victim.469

Involving law enforcement could also have disastrous consequences. As we have mentioned in470

subsection 5.4, the resulting model could be biased towards certain populations like sex workers,471

people from the LGBTQI+ community, or people prone to online dating. Evaluating and selecting the472

best model based on a classification threshold that guarantees a 1% false positive rate can be a first473
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step towards ensuring that the eSPD system does not falsely incriminate. Furthermore, pre-trained474

language models used to extract a context-aware representation of personal conversations, like BERT,475

have been shown to reproduce racial and gender biases [17]. Using such models as a basis for476

identifying potential suspects to be prosecuted could lead to unanticipated outcomes. Such a system477

should therefore never be used directly by law enforcement agencies at the risk of exacerbating478

existing social inequalities and persecuting innocents.479

Finally, the literature and datasets used for our experiments concern male predators, both heterosexual480

and homosexual, that do not know their victims. The lack of data available about female abusers does481

not allow us to assume that our model is applicable to the detection of female predators.482
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