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Abstract

Retrosynthesis is an important problem in chemistry and represents an interest-
ing challenge for AI since it involves predictions over sets of complex, molecular
graph structures. Recently, a wealth of models ranging from language models to
graph neural networks are being proposed. However, most studies evaluate over
a single dataset and split only, focus on top-1 accuracy, and provide few insight
into the actual capabilities of individual models. This prevents research from
moving forward since issues to be addressed by future work are not identified.
In this paper, we focus on the evaluation: we show that the currently used data
does not fit to test generalization, one of the main goals stated in the literature;
propose new splits of the USPTO reactions modeling various scenarios; study
representatives of the main types of models over this data; and finally present the,
to the best of our knowledge, first evaluation and comparison of these models
in the multi-step scenario. Altogether, we show that the picture is more diverse
than the results over the usually used USPTO-50k data suggest.

1 Introduction

Retrosynthesis is an important problem in chemistry (Robinson, 1917; Corey & Wipke, 1969): to
synthesize a complex molecule in the lab based on purchasable molecules, a chemist needs to
know the sequence of reactions to run. The problem represents an interesting challenge for AI
since it involves predictions over molecular graph structures as well as a search component. In
every step, a given product molecule (also, target) is split into a set of reactant molecules, the targets
for the next steps.2 Together, the steps form a retrosynthetic route, a tree structure.

The large number of models proposed for retrosynthesis prediction recently reflects the interest of
the ML research community, for a good overview of the state of the art, we refer to the discussions
in recent works (Tu & Coley, 2021; Zhong et al., 2022). The single-step models used for predicting
the individual steps can be categorized into three types: (I) Template-based approaches (Segler &
Waller, 2017) classify a target w.r.t. a set of reaction templates (i.e., rules how a target can be split if
it meets certain conditions), which are usually mined from the training data or manually encoded,
and assumed to encode valid reactions. (II) Template-free approaches (Liu et al., 2017) operate
on the data alone and usually consider the molecules in text-based SMILES representation and
the problem as a translation task (i.e., a sequence to sequence problem). (III) Semi-template
based approaches (Yan et al., 2020) apply a given atom mapping (i.e., considered as a kind of
template), relating the atoms in the targets to the corresponding ones in the reactants, during
training. Current approaches in this category model a two-step procedure first identifying the
reaction center (i.e., where to split), and then completing the obtained molecule parts to reactants.
There are a few open-source tools for multi-step synthesis planning (Genheden et al., 2020; ask;
Chen et al., 2020). They apply a template-based MLP for the single steps by default, and resort to
Retro∗ (Chen et al., 2020) (i.e., a variant of A∗ search) or MCTS for the multi-step planning.

∗Correspondence to veronika.thost@ibm.com. The work was done while S.S. was at UMass Amherst.
2In practice, there are other relevant factors, such as catalysts or reaction temperature, which are however

usually ignored in current model development, amongst others, because the data is not available.
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Studies about single-step models primarily compare on the USPTO-50k dataset (Schneider et al.,
2016), since many works report numbers only for that data, and a single (often random) split.
This dataset was extracted from the United States patent data from 1976 to 2016 (Lowe, 2017).
While the latter represents one of the few large open sources for reaction data, we note that most
reactions (about 94%) in the USPTO-50k test set match templates one can extract from the training
data and hence do not truly fit to test generalization. Yet many of the template-free proposals
consider the ability to generalize as main advantage of their approaches (Liu et al., 2017; Somnath
et al., 2021). Moreover, there is a strong focus on improving top-1 accuracy, which has been
critisized as being insufficient in the chemistry community (Schwaller et al., 2019). Generally,
few works provide insight into the actual capabilities of individual models and components, and
concrete comparisons between models (i.e., in terms of predictions) are rare, possibly because
many implementations are less accessible. The latter also often ignore practical aspects, such
that applying the models out of the box would be hard. For example, most language-based
models operate in batch mode reading and writing from files (Zheng et al., 2019; Chen et al.,
2019), and others require involved preprocessing or training procedures (Dai et al., 2019; Yan et al.,
2020). Altogether, this prevents research from moving forward since issues that are critical for
applicability are not identified, and research is rarely translated into applications.

Related Work. While we above describe the general trend, there are certainly exceptions. In
particular, several analyses in the chemistry domain provide more detail, in terms of all aspects,
data, methodology, and also in measuring effectiveness in the multi-step scenario. Data. Some
studies also evaluate over larger USPTO subsets (Dai et al., 2019) or use different splits (Seidl et al.,
2022; Chen et al., 2019). Methodology. Recently, (Lin et al., 2022) proposed to re-rank predictions
and, in the course of this, compared different single-step models and, specifically, also in terms of
their actual predictions. Further, (Chen et al., 2019; Lin et al., 2022) distinguish the predictions
in terms of reaction types. There have been further various proposals for metrics beyond top-k.
(Schwaller et al., 2019, 2020) propose round-trip accuracy, the agreement between two models
predicting the reaction in the forward and, respectively, backward direction; coverage, quantifying
for how many of the products at least one valid suggestion of the set of reactants could be found;
and diversity, the number of diverse, valid reactants after removing the buyable ones. Regarding
diversity, they further consider a metric of statistical significance. (Tetko et al., 2020) propose to
report MaxFrag, the recognition of the largest reactant, to estimate the ability of a model to deduce
the correct reaction class; note the similarity to the coverage from (Schwaller et al., 2020). Most
recently, (Lin et al., 2022) applied MRR, observing that it reflects a trend in between the ones of top-
1 and top-3 accuracy, and area under the top-k curve, which parallels top-k accuracy; while both
are similar to the latter in trend, especially MRR offers better explainability in that it summarizes
the latter for different k. Multi-step. Lastly, some works apply the proposed single-step model
in the muti-step planning setting by either chaining single-step predictions (Coley et al., 2017)
or combined with a search algorithm (Ishida et al., 2022) but, to the best of our knowledge, there
are no comparisons between models. Such a comparison has come closer, with the recently
proposed PARoutes framework (Genheden & Bjerrum, 2022), which offers tools for extracting
synthetic routes from the USPTO patent data, based on the work of (Mo et al., 2021), and for
comparing predicted routes to the extracted ones. (Genheden & Bjerrum, 2022) also propose two
route datasets, n1 and n5, and present an evaluation using template-based single-step models.
However, this route data was designed for evaluating model capabilities under rather controlled
conditions, it does not contain rare reactions and the training data is in a certain sense artificial
(exactly three reaction examples per reaction template). Therefore, we used this framework for the
creation of more general datasets, and in our evaluation of the multi-step setting. There are some
other route datasets: (Chen et al., 2020) also extracted routes from the USPTO data that do not
contain rare reactions, and (Ishida et al., 2022) manually curated routes. In summary, there are
many reasonable proposals to evaluate single-step retrosynthesis models, yet these have not been
picked up by the broader community and are not commonly used today. In the words of (Schwaller
et al., 2019), the evaluation of single-step retrosynthetic models is an overlooked research topic.

Our study focuses on the evaluation of single-step models, applies some of these ideas, demon-
strates their relevance for applications, and complements the above works by focusing on impor-
tant aspects that have been less in focus so far, namely, prediction diversity, generalization, and
performance in the multi-step scenario. Our contributions are the following.
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• We propose new splits of the USPTO reactions. Since prediction diversity is important in view
of the incomplete reaction data (e.g., missing conditions which may restrict applicability) and
the models not being perfect, we collected products which can be synthesized from different
reactant sets and thus have multiple solutions in the test set USPTO-ms. Moreover, we create
datasets USPTO-rt and USPTO-rd containing (the reactions of) retrosynthetic routes such that
we can compare the performance in the single and multi-step scenarios by either evaluating
single-step models on the reactions with all reactions’ targets as input, or by running them
inside a synthesis planning tool with only the roots of the routes as input. This comparison
shows that there is indeed a discrepancy between the performance in the two scenarios.

• In addition, we develop the multi-step score (mss) for estimating the multi-step performance
based on the predictions on individual reactions, independently of a route search algorithm.

• We evaluate several representatives of the main models types over various datasets and present
the, to the best of our knowledge, first multi-step evaluation and comparison of these models.

• To address issue of missing comparisons, we created all our test sets such that they do not overlap
with the USPTO-50k train and validation data (based on the usually used split from (Coley et al.,
2017; Dai et al., 2019)). Hence, researchers can use the existing checkpoints and evaluate easily
over our new test sets. For the evaluation, we created a simple, abstract wrapper class for single-
step retrosynthesis models; evaluation scripts based on this wrapper; and example wrappers for
the models we evaluate in this work. Furthermore, we provide an extension of AIZynthFinder
(Genheden et al., 2020), such that it can be used directly with our wrapper interface. All assets
and code are provided at https://github.ibm.com/vthost/retroeval.

The fast adoption of Retro∗ (Genheden et al., 2020; Kim et al., 2021) has shown that the community
is open to adopt latest research outcomes if they are accessible, efficient, and effective. The goal of
our work is to ease the development of single-step models towards this direction.

2 Our Setting

Models considered in this paper.

• Template-based: NeuralSym (NPP) (Segler & Waller, 2017), a regular MLP; the Conditional
Graph Logic Network (GLN) (Dai et al., 2019), which models template applicability using a
conditional graphical model that is parameterized using a structure-based embedding; and the
recently proposed MHNreact (MHN) (Seidl et al., 2022), which uses a modern Hopfield network
(Widrich et al., 2020) to retrieve stored templates based on the input molecule embedding. Both
GLN and MHN also encode the templates and hence can exploit similarities between them.

• Template-free: Chemformer (CF) and Chemformer-Large (CFL) (Irwin et al., 2022), regular
BART language models (Lewis et al., 2020) that were pre-trained on a large molecule corpus
and only differ in size; and Graph2SMILES (G2S) (Tu & Coley, 2021), combining a graph-based
transformer encoder with a sequence-based decoder.

• Semi-template-based: GraphRetro (GR) (Somnath et al., 2021), modeling intermediate reaction
steps with GNNs.

Note that we tried to set up other models, especially from the last category, but often failed.
Further, we were able to run GLN only locally and therefore present less results for this model.

Metrics. Top-k accuracy (top-k) represents the fraction of test targets for which the correct reactant
set is among the top-k ranked predicted reactant sets. Note that the former is usually used in a
setting where a target with multiple correct reactant sets is considered as two different test points
and the model is evaluated twice w.r.t. the two solutions, respectively. We further consider the
mean reciprocal rank (MRR) and MaxFrag accuracy at k (mf-k), focusing on the recognition of
the largest reactant. In the scenario where we focus on predicting multiple solutions, we consider
recall@k (r@k), which represents the proportion of correct reactant sets among the top-k ranked
predictions averaged over all targets. Throughout the paper, we report mf and our mss at 10
(dropping “-10” due to space) since we chose 10 as cutoff value in the multi-step planning; note
that it provides a single-step model performance close to maximal and search remains feasible.
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Table 1: Results over our new USPTOms test set.

Model r@1 r@3 r@5 r@10 r@50

Data 48.4 98.9 99.9 100.0 100.0

Neuralsym++ 11.8 19.1 22.1 25.0 27.9
GLN 12.6 20.8 23.3 25.9 27.7
MHNreact 12.0 20.5 23.4 25.8 28.2

Chemformer 12.9 16.3 16.7 17.0 17.2
Chemformer-Large 12.8 16.2 16.7 16.8 16.9
Graph2SMILES 12.2 19.6 22.1 24.4 26.8

GraphRetro 12.5 18.6 19.9 21.0 21.0
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Figure 1: Details about USPTOms.

3 Revisiting USPTO-50k

In most experiments, we consider the models trained over USPTO-50k (or short, 50k). If available,
we used the checkpoints from the original studies within our wrappers. Some of the trends we
observe turned out to be more general (see also Sec. 6 and Appendix B):

• top-1: CF(L) is best, followed by (in no particular order) G2S and GR.
• MRR, top-5-50: Template-based models are best, followed by (in no particular order) G2S, GR.
• G2S performs more similar to GR than to CF(L). CF-L usually outperforms CL slightly.
• top-50: GLN/MHN basically reach maximal possible performance given the amount of test

reactions matching templates (see Figure 4). In particular, they are already close to that at top-
10. Note that, the template-based top-k predictions are selected from those templates that are
actually applicable (i.e., their conditions are satisfied by the target) but our NeuralSym and
MHN implementations pre-compute only the applicability of the first 200 templates; when
considering all, MHN reaches 93.2% at top-50.

• MRR is between top-1 and top-5, and mf-10 is more similar to top-50 than to top-10.

4 Prediction Diversity: The Dataset USPTO-ms

USPTO-ms. For evaluating how well the models capture diversity, we collected reactions from
the USPTO patent data (Lowe, 2017) where we have multiple solutions (i.e., multiple possible
reactant sets) into the new test set USPTO-ms. Details about the creation process can be found
in Appendix C. The data contains 3,501 different targets and 7,438 different reactions. Figure 1
shows further statistics. Note that we dropped reactions with more than six solutions since these
were extremely rare. We see that only about a quarter of the reactions match templates from the
USPTO-50k train/valid data, hence it is not only the diversity but also the novelty of the reactions
which represents a challenge for the models. It is possible that the latter is the greater challenge.
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Figure 2: Solution counts.

Results, Table 1, Fig. 2. At first glance, the picture is very different
from the one over USPTO-50k. In particular, we observe no consid-
erable differences between the models at r@1, with the exception of
NPP. Note that we include the scores on the test data to show the max-
imal r@k possible. Further, good scores at k = 1..3 are especially hard
to obtain because most targets have two or three solutions. At higher
k’s it gets again easier for the models since they allow for mistakes.
Here, the template-based models and G2S perform especially well.
Since the table shows the average across targets, Figure 2, additionally
shows how many solutions the models actually find per target among
the top 5. We see that the r@k performance can be largely attributed
to single solutions. In particular, CF(L) seems to lack diversity.
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Figure 3: Overview of our rt (top) and rd datasets; we cut all horizontal values at 10 to ease comparison.
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Figure 4: We trained over different datasets T and evaluated over various test sets E (abbrev. T / E) and show
the shares of reactions in E that match one of our templates for the train/validation sets of T.

5 On Evaluating Single & Multi-Step Prediction

Prediction in Route Context, the Datasets rt & rd, Figure 3, Table 7. We followed (Mo et al., 2021;
Genheden & Bjerrum, 2022) for extracting retrosynthesis routes from the USPTO data. However,
we did not drop rare reactions and created two custom splits. In particular, we created a time split,
the dataset USPTO-rt (or short, rt), and one where we extracted sets of very diverse routes as test
and validation data and kept all remaining routes as train data, USPTO-rd (or short, rd). Further
details about the creation are given in Appendix D. The figures show that the rt data contains
train/valid/test distributions that are very similar, while there is great diversity in rd. The latter
dataset contains more data overall because the test and validation routes are longer and we kept
the data from all other patents for training. For rt we dropped all remaining data from patents
at the test time points. We will use these full rt and rd datasets particularly to compare how the
model performance changes when trained over data beyond USPTO-50k.

Test Subsets: rt-1k & rd-1k, Figure 7, Table 7. Since the models turned out to be more resource
and especially time-intensive than the regularly used MLPs in the multi-step scenario, we extracted
subsets of the original rt and rd test sets which will be in the focus of our study. Each contains
(the reactions of) 1k routes. We additionally ensured that all reactions are unique, that we have
maximally one route per patent, and that there is no overlap with the USPTO-50k train/valid data.
The overview of our test sets compared to the ones from (Genheden & Bjerrum, 2022) in the figure
shows that the statistics are similar. For comparison, we also evaluated over subsets of n1 and n5,
but did not observe considerable differences; hence the latter lie primarily in the nature of the
training data (i.e., the n1/n5 train data is more similar to the test data).

The Multi-Step Score (mss). In a nutshell, mss counts targets only then as solved if the targets
occurring previously in the route are solved as well; see Appendix F for a formal definition. We will
see that mss nicely complements existing metrics.

6 Evaluation in Route Context

Single-Step Results on 1k Test Sets, Tables 2, Figure 5. Our evaluation over all test sets
generally confirms the trends outlined in Section 3 in the context of USPTO50k, including
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Table 2: Results over our 1k test sets.

rt-1k rd-1k
Model MRR top-1 top-5 top-10 mf mss MRR top-1 top-5 top-10 mf mss

NPP 43.5 33.2 57.3 63.5 70.1 47.1 39.7 30.7 51.6 56.7 62.8 31.8
GLN 46.4 36.5 59.3 65.0 70.1 48.8 40.8 31.1 53.2 59.0 64.4 34.4
MHN 45.4 35.4 58.6 64.2 69.9 47.4 41.3 31.9 53.5 58.4 63.5 33.6

CF 41.6 38.3 45.7 46.1 52.0 27.6 36.8 33.3 41.0 41.3 47.8 18.3
CFL 41.8 38.8 45.7 45.8 51.5 28.1 38.0 34.9 41.8 42.1 48.2 18.2
G2S 42.2 35.2 51.0 54.5 62.0 35.1 39.5 33.1 47.6 50.8 57.4 25.7

GR 40.3 34.1 48.6 50.7 57.6 33.9 35.2 29.0 43.6 45.6 51.7 22.9

Figure 6: Comparison on actual solutions among the top-5 predictions, in terms of pairwise agreement
between models (left) and solutions predicted by a single model only, in terms of relative percentage of those.
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Figure 5: Splitting the rt-1k
results into (non)-template-
matching parts reveals that
all models struggle on the
new reactions.

the additional results on n1 and n5 in Appendix G. Still, there are
notable differences. The numbers are much lower, showing that
the data from (Genheden & Bjerrum, 2022) as well as ours is more
challenging. More interestingly, at top-1, the template-based model
MHN is basically en par with G2S and GR. The Chemformers are
clearly winning but considerably worse at higher k’s. The results on all
datasets are in similar ranges with the ones for rd-1k being lowest. In
Figure 5, we can see that the performance can be attributed primarily
to the targets matching templates seen during training. There are only
few signals, although there are some, that the semi/non-template-
based models are capable to generalize, especially G2S and GR. Our
mss score differs considerably in magnitude. Interestingly, its trend
is very similar to top-k for k > 1, although it is interpreted differently.
Nevertheless note that it better reflects the route context, in that the
numbers are lowest on the more complex routes (rd and n5) while, for
example, top-5 on n5-1k is higher than on n1-1k; and the difference
to mss on the routes in rt is larger than, for instance, the differences
at MRR.

Comparison of Predictions, Figure 6. We conclude the analysis of the single-step models trained
on USPTO-50k by comparing the actual predictions, w.r.t. a top-5 threshold, in terms of the
pairwise agreement between models on solutions, averaged over all six datasets, and the exact
opposite, the percentage of solutions predicted by a single model only, w.r.t. the total number of
those solutions per dataset. The former shows that there seems to be a correlation within a class
of models. While the absolute results show greater similarity between G2S and GR (i.e., instead of
G2S and CF(L)), here it is slightly larger between G2S and CFL, also between the template-based
models. Note that (Lin et al., 2022) provide a similar but more fine-grained analysis comparing the
actual ranks of predictions from different models and show that these may differ. The right picture
shows that the usually best models, CFL and GLN w.r.t. top-1 and MRR/top-5, respectively, are
interestingly indeed often the ones which predict solutions that are not predicted by other models.
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Scaling Up the Train Data, Tables 11, 12. On the 1k test sets we can compare to the models
trained over USPTO-50k (see Table 2). The impact of retraining turns out to be much higher
for rd-1k than for rt-1k; for example, we have a top-1 increase of about 10%, vs. 3-5% on rt-1k.
This might be explained by the larger amount of training data in rd-1k and, in particular, by the
greater similarity between train and test data. Recall that we have strict temporal split with rt.
One very likely explanation, and consequence of the similarity, is the increase in test reactions
matching templates seen during training. Figure 4, shows that the share for rd is now larger than
the one for rt. Apparently, this impacts the performance of the template-free CF nearly as much
as the template-based models. Finally, we note that there is no gap anymore between the latter;
in fact, for larger k’s, which we consider in the multi-step setting, NPP seems to provide better
performance. The results on the full test sets are very similar and shown in Table 12.

The Multi-Step Scenario, Table 3. Our results give insights into the models’ out-of-the-box
usability. We show the top-5 accuracy w.r.t. finding the exact test route. Since this criterion is
rather strong, we also report the maximal leaves overlap with this route within the top-k predicted
routes and consider a subset of 100 routes where all steps match templates seen during training.
Note that, interestingly, there is basically no difference between the top-5 and top-10 scores,
so that we only show the former here. At first glance, we see that the performances are very
different from the corresponding single-step experiments, and our selection of datasets reveals
further differences. Over the manually picked routes where all reactions match templates seen
during training, the template-based models show much better performance than all other models.
The results for the other datasets are extremely low reflecting the struggle of the models with
distributions beyond the train data and more complex routes (esp. rd). One main, additional
problem we identified are the probabilities returned by the models, the search algorithms use those
for cost estimates. In particular the template-free models based on common NLP frameworks
return no normalized or regularized probabilities, assigning high ones to only to a few predictions,
and hence prevent the search from exploring alternatives to their top suggestions altogether.
This is problematic given that their top-1 performance is not perfect. We experimented with
normalization and obtained best results (the ones shown) for all models by applying an additional
softmax on the top-10 predictions given to AIZynthFinder. Note that (Tu & Coley, 2021) mention
that additional engineering efforts are likely needed for G2S in the multi-step scenario, but the
impact of such adaptations on both single and multi-step performance remains unclear. The
results for G2S further reveal a shortcoming of the top-k evaluation in PARoutes: the routes are
sorted including route length as one criterion but, in this way, very unlikely predictions may be
taken as top ones, especially with the template-free models. We experimented with atom mapping
or a forward-direction model as suggested in (Schwaller et al., 2020) to validate the outcomes of
the template-free models, and hence filter out unlikely predictions, but this causes considerable
overhead. In terms of metrics, we observe that the trends shown here are captured by most metrics
with the exception of top-1 accuracy, and at different magnitudes. Our mss score is similar, but
captures a different intent and some subtle difference (see previous subsection), in particular
the large gap between the routes in rt and rd. Overall, NPP performs surprisingly well and is
only outperformed by GLN; we could not find a specific reason for why it outperforms MHN
but hypothesize that it is due to better regularization capability. Lastly, in comparison to the
experiments with the template-based models in (Genheden & Bjerrum, 2022), our results are
much lower - as expected -, but also show much greater variation between the datasets. This,
again, seems to hint at a considerable impact of rare reactions, which occur more often in rd and
turn out to be critical in its longer and more complex routes.

Discussion.

• Generally, the identification of data aspects influencing predictions is critical for correctly inter-
preting the results. We show that the templates from the train data reveal interesting insights.

• The variety of models does not seem to lead to a large variety of predictions; in our experiments,
the models predicted few truly unique solutions (i.e., usually less than 1% of the test set).

• The main available search algorithms for the multi-step setting expect scaled and regularized
probabilities, which are not given by all models. Hence it is not clear how those can be applied
and how they perform. Similarly, we need efficient techniques to estimate the validity of the
predictions of template-free models.
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Table 3: Model comparison in the multi-step scenario.

rt-1k rd-1k rt-tpl-100
top-5 mlo-1 mlo-5 top-5 mlo-1 mlo-5 top-5 mlo-1 mlo-5

NPP 33.1 54.3 59.1 3.1 34.0 39.6 69.0 85.1 86.5
GLN 31.9 57.8 57.8 9.3 43.6 43.6 70.0 88.8 88.8
MHN 32.6 53.3 58.4 1.7 31.1 39.1 69.0 82.1 86.0

CF 15.8 42.7 44.4 4.0 35.4 37.8 33.0 60.9 62.6
CFL 16.0 43.5 45.0 3.9 37.3 39.4 34.0 62.1 64.2
G2S 12.7 28.5 49.3 0.9 22.4 38.8 29.0 38.5 68.1

GR 21.8 43.9 48.1 5.9 32.1 36.4 44.0 69.4 74.6

• Currently, the template-based models are competitive with other models and, in the multi-step
setting, the most simple and easy to use MLP still seems to provide one of the best solutions
since it is both efficient and effective. In our study, only GLN performs better.

• There is certainly major value in studying and comparing methods in a more theoretical context
in the single-step scenario only, as it is usually done today. Our work supports such studies
by showing the variation and commonalities in metrics beyond top-k accuracy. Moreover, we
propose the mss score, as a first attempt to capture other aspects relevant in route context.

• The main open problem in terms of template-based models is the improvement in ranking.
While the latter is in focus of current research, this improvement should not happen at the
expense of top-k for higher k’s given that multi-step prediction is the ultimate goal. Here, MRR
offers a good overall estimate, and the template-based models represent strong baselines.

• Generalization beyond reactions similar to the ones seen during training represents the other
major challenge and seems to be solved only partly to date. This leads to particularly low
performance in the multi-step scenario, where a single new reaction leads to an overall failure.

Our work is intended to point out critical open issues rather than as a study of the SOTA. Consider-
ing recently proposed add ons (Fortunato et al., 2020; Sun et al., 2021; Lin et al., 2022), the actual
SOTA is likely slightly better. We cannot fully generalize from our results because we focused on
representative models and data only, and the research prototypes we probed have not been opti-
mized for the multi-step setting. Note that template-free models have been successfully integrated
in tools with careful engineering (Schwaller et al., 2020), and advanced search algorithms can
overcome shortcomings of single-step models; e.g., (Chen et al., 2020; Kim et al., 2021) obtain
close to maximal performance with NeuralSym combined with an optimized cost estimate.

7 Conclusions

We provide new datasets for retrosynthesis prediction which allow for evaluating prediction
diversity, effectiveness in the multi-step context, and generalization, aspects that are usually not
addressed when evaluating over USPTO-50k. We further provide evaluation infrastructure. Our
evaluation of various single-step models suggests that the aspects our data addresses are critical
for estimating multi-step performance. Altogether, our work shows that we need to evaluate more
broadly to be able to address the challenges of retrosynthesis prediction in future research.
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Table 4: Results over USPTO-50k and USPTO-full reported in the literature, grouped by nature of approach
(template/non-template/semi-template-based) and date of appearance. Note that (Seidl et al., 2022; Irwin
et al., 2022) used random splits different from the one used in the other works.

USPTO50k USPTO-full
Model top-1 top-5 top-10 top-50 top-1 top-10 top-50

NPP 44.4 72.4 78.9 83.1 35.8 60.8 -
GLN 52.5 75.6 83.7 92.4 39.9 63.7 -
MHN 51.8 81.2 88.1 94.0 45.5 71.9 77.1

CF 53.6 61.1 61.7 - - - -
CFL 54.3 62.3 63.0 - - - -
G2S 52.9 70.0 72.9 - 45.7 63.4 -

GR 53.7 72.2 75.5 - - - -

Table 5: Results we obtained over the USPTO-50K test set from (Coley et al., 2017; Dai et al., 2019).

Model MRR top-1 top-5 top-10 mf top-50

Neuralsym++ 61.3 48.5 78.0 84.7 88.3 88.7
GLN 65.0 52.4 81.2 87.9 90.2 92.4
MHNreact 63.6 50.8 79.9 86.6 89.2 91.5

Chemformer 61.0 56.4 66.5 66.9 71.2 67.0
Chemformer-Large 61.0 57.1 65.8 66.0 70.0 66.1
Graph2SMILES 60.4 52.2 70.7 74.9 80.0 78.7

GraphRetro 58.8 51.0 69.5 72.6 76.4 72.6

A Model Configuration

Single Step Models. For all models, we used the configurations suggested by the authors in the
original works (see Section 2). The details can also be found in our repository.

NeuralSym(++). We ran hyperparameter tuning since the original paper (Segler & Waller, 2017)
used different data; the final configuration(s) are detailed in the repository. We made some interest-
ing observations in these experiments: (1) We also experimented with the more complex Highway
network version described in (Segler & Waller, 2017), but the MLP provided better performance.
(2) We needed to add batch normalization to reach a performance comparable to the one reported
in (Dai et al., 2019); this design choice was later confirmed in communication with chemists who
have experience with template-based models and noted the importance of regularization, in
particular, for the muti-step experiments. (3) We also experimented with optimization, using the
validation loss, top-1, top-5, and top-50 as criteria, respectively; interestingly, all these scenarios
lead to basically the same hyperparameters (i.e., there was only some slight variation in the fin-
gerprint dimension, 1028 vs. 2048, and layer number, 2 vs. 3). It is left open if this is due to the
simplicity of the model or also holds for more complex ones. Lastly, note that for the experiments
over the larger rt and rd data, we disregarded templates for which there is only one instance in the
training data. This was shown to be beneficial in (Seidl et al., 2022), and we observed this as well.

Single Step Models - Influence of Beam Size. We observed some variation in performance with
changed beam sizes. However, since we could not identify a specific best value for the models - and
even not for individual models - we mostly resorted to the settings suggested by the authors; we
made an exception with G2S setting n_best=topk*3 since we experimented with larger topk than
(Tu & Coley, 2021), which used a fix value. However, we found that since we also evaluated top-50,
while some of the works considered maximally top-10. We note that this also explains that there is
no performance increase for GR in some cases from top-10 to top-50 (e.g., Table 5), but we obtained
overall worse results for larger beam sizes and therefore used the ones originally proposed, keeping
in mind that top-10 performance is likely more relevant in practice. In particular, note that our
multi-step experiments focus on maximally 10 predictions, hence this setting is in line with the
ones from the original studies.
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Multi-Step Experiments. We used the default settings suggested in AIZynthFinder (see
https://molecularai.github.io/aizynthfinder/configuration.html, ac-
cessed 08/23/2022) with the following three exceptions. We used Retro∗ as search algorithm
since we obtained extremely bad results with MCTS, probably because it uses the probabilities
returned by the models in a way that does not fit their current, mostly unregularized scale. The
suggested maximal branching (cutoff_number) of 50 resulted in infeasible runtimes with most
non-template-based models, hence we chose 10. We note that this was also due to our filtering
of invalid molecule predictions. Since the numbers of the latter were extremely high with, for
example, for CF, obtaining 50 valid reactant sets takes extremely long. Lastly, we increased the
maximal number of reactions considered (max_transforms) to 10, which matches the maximal
number in our data. These adaptations show the need for considering practical aspects in model
design and evaluation.

B About USPTO-50k and USPTO-full

Datasets. The two most commonly used datasets are USPTO-50k (Schneider et al., 2016) and
USPTO-full (Dai et al., 2019), both subsets of the US patent data (Lowe, 2017). As the names
suggest, the latter, containing about 1M reactions, is much larger than the former; it is also used in
much less works. It has been observed recently, after our experimentation, that there are a few
non-sensical data points in USPTO-50k (Lin et al., 2022); however, the split we used is still useful
in that it eases comparison to approaches we did not include in our study since it is one of ones
most commonly used. We observed overlaps between the train and test data in USPTO-full and
therefore did not experiment over this dataset.

Results, Tables 4, 5. The table gives an overview of what is known about the SOTA. Our results over
USPTO-50k (over a common split) are similar, see Table 5. Our additional analysis, presented in
this paper, completes the picture in terms of scalability and other aspects, such as generalization.

Since not all models were originally evaluated over the same split (i.e., NPP, MHN, and CF(L)),
we trained those. We re-evaluated all since this experiment served also to verify our wrapper
implementations.

MHN vs. NeuralSym, Table 6. Not surprisingly, the more complex MHN outperforms NeuralSym.
However, the comparison between these models is not entirely fair since the settings are quite
different. While NeuralSym uses rather standard features, MHN applies a 30k-dimensional vector
of different fingerprints and additionally uses the validation data during training. In order to
obtain a better estimate of the actual impact of MHN’s main feature, the template encoding,
we therefore consider two other models, NeuralSym+ (NeuralSym + MHN’s initial features) and
NeuralSym++ (NPP) (NeuralSym+ trained including the validation data). And we see that the gap
indeed shrinks.

Table 6: Results we obtained over the USPTO-50K test set from (Coley et al., 2017; Dai et al., 2019).

Model MRR top-1 top-5 top-10 mf

NeuralSym 58.7 45.7 76.0 82.3 85.9
NeuralSym+ 59.9 47.2 76.4 83.2 87.1
Neuralsym++ 61.3 48.5 78.0 84.7 88.3

C Details about USPTO-ms

We used the raw data from (Dai et al., 2019) and basically followed their data cleaning steps. In a
nutshell, we then collected all products for which there are different reactions - after dropping
reagents - , and dropped those reactions that are contained in the train/valid data of USPTO-50k
(w.r.t. the spit of (Coley et al., 2017; Dai et al., 2019)). The exact steps are documented in a notebook
in our Git repository.
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D Details about rt & rd

Datasets, Table 7, Figures 7, 8 We basically followed the procedure proposed by (Mo et al., 2021;
Genheden & Bjerrum, 2022) for extracting retrosynthesis routes from the USPTO data. The latter
was obtained from (Thakkar et al., 2020), who provide a thoroughly cleaned dataset containing a
reaction template with each reaction. We note that, in this way, a filtering was done already (i.e.,
all reactions where the template extraction failed), yet we considered the template availability as
valuable enough, especially for later analysis. However, we did not drop rare reactions (e.g., whose
template appears less often in the data) and adapted the last step, in which we created two custom
splits. Our time split is based on the year data coming with the reactions. For the split containing
especially diverse routes as test and validation data we proceeded as suggested in (Genheden &
Bjerrum, 2022).

E Details about n1 & n5

Datasets, Table 8, Figures 7, 9. In order to see how general our data and results are, and to compare
to the results from (Genheden & Bjerrum, 2022), we also experimented on their n1 and n5 datasets.
Specifically, we extracted random test sets, of 1k and 5k routes for both n1 and n5, and evaluated
our models trained over USPTO-50k over those. Note that we created these datasets in the same
way as our rt and rd datasets, collecting all reactions contained in the considered routes. Table 8
shows the numbers of reactions, and Figure 9 shows the shares of reactions that match templates
from the USPTO-50k training data. In this paper, we report the single-step results only for n1
and n5. We did not observe greater differences to the results over our datasets in the multi-step
scenario and therefore did not complete the experiments, also due to the enormous resource
requirements.

F Measuring Effectiveness: The Multi-Step Score (mss)

Our multi-step score intends to complement existing metrics such as top-k accuracy by consid-
ering the route context. It is straightforward to calculate and interpret in that it captures the
multi-step performance under the assumption that the model is combined with a perfect search
algorithm. Formally, let mk denote a single-step model which, given a target molecule, predicts a
set of at most k sets of reactant molecules. For a given tree structure representing a retrosynthetic
route, with nodes representing reactions, let S denote the set of all those reactions and Si denote
all reactions at level i (e.g., S0 represents the singleton set containing the first reaction step at the
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Figure 7: Overview of our test sets compared to subsets of n1 and n5 from (Genheden & Bjerrum, 2022).
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Figure 9: Share of reactions in the test sets that match templates from the USPTO-50k train/valid data.

root node), such that S =⋃
i Si . Then we compute mss as follows:

T0 :=;

T1 :=
{

R, if S0 = { R»P }, R ∈ mk (P)

;, otherwise

Ti+1 := Ti ∪
{⋃

R»P∈Si R, if ∀ R»P ∈ Si : R ∈ mk (P) and Ti−1 ̸= Ti

;, otherwise

mssk (m,S0,S1, . . . ) := |T∞|
|S|

rt rd
train valid test train valid test

# Routes 87,673 8,000 8,000 102,369 8,000 5,000
# Reactions 238,979 20,140 20,525 259,310 19,765 19,271
# Patents 18,379 8,000 8,000 20,925 8,000 5,000

Test set # Reactions

rt-1k 2,531
rd-1k 3,802

Table 7: Overview of our USPTO-based datasets.
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Table 8: Overview of the USPTO-based test sets which are subsets from the ones proposed by (Genheden &
Bjerrum, 2022), compared to ours.

n1-5k n5-5k n1-1k n5-1k rt-1k rd-1k

# Routes 5,000 5,000 1,000 1,000 1,000 1,000
# Reactions 14,334 18,308 2,934 3,770 2,531 3,802
# Patents 5,000 4,482 1,000 976 1,000 1,000

Table 9: Results over the 1k test sets we extracted from n1 and n5.

n1-1k n5-1k
Model MRR top-1 top-5 top-10 mf mss MRR top-1 top-5 top-10 mf mss

NPP 43.7 34.1 56.2 61.7 68.0 41.2 45.9 35.9 59.1 64.5 70.3 39.6
MHN 45.2 35.2 58.5 63.2 68.6 42.6 47.8 37.9 60.4 65.7 70.6 40.1

CF 39.7 35.8 44.4 44.8 51.3 24.2 42.7 38.8 47.6 48.1 53.7 22.9
CFL 40.5 37.3 44.6 44.9 51.0 24.0 43.8 40.5 47.9 48.2 53.5 22.4
G2S 41.3 33.9 50.5 54.3 61.7 33.9 44.8 37.7 53.5 56.9 63.4 29.8

GR 38.4 32.0 47.2 49.0 55.0 29.5 41.4 34.9 50.2 52.1 58.3 27.2

Note that in our evaluation, we consider a form of micro average, considering the predictions for

all routes in the test set at once, and compute roughly
∑

T |T∞|∑
S |S| . For ease of computation, we also

regard all nodes at one level at once and do not differentiate branches. This processing can be
considered in line with an interactive setting, which explores the tree breadth-first, one level at
a time.

G Additional Results

Results, Tables 9, 10, 11, 12, Figure 10. We extracted random subsets of n1 and n5 of two sizes,
1k and 5k routes, to see how the results over the 1k sets generalize. The tables show that there
are no considerable differences for all models. Figure 10 shows that all models struggle on the
new reactions; in particular, there are no great differences between top-1 and top-10, the latter
are only slightly larger. Tables 11 and 12 are discussed in the main paper. For GR, we obtained
very disappointing numbers. For verification purposes, we therefore also ran the GR version
trained over USPTO-50k and this returned much better results; a possible reason might be that
the vocabularies constructed based on our larger training sets are too large and confuse the model
(while the vocabulary size for USPTO-50k is 174, we have 289 for rt and 307 for rd), so it might be
possible to obtain better results by dropping less common structures. Also note that we set a train
time limit of 24 hours, as it was done in (Irwin et al., 2022). In particular NPP and CF might benefit
from increasing that.
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Figure 10: Splitting the rt-1k results into (non)-template-matching parts reveals that all models struggle on
the new reactions; the results on the other test sets are similar.
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Table 10: Results over the 5k test sets we extracted from n1 and n5.

n1-5k n5-5k
Model MRR top-1 top-5 top-10 mf mss MRR top-1 top-5 top-10 mf mss

NPP 43.2 33.3 56.3 61.9 68.4 42.2 44.5 34.6 57.5 63.0 69.2 39.5
MHN 44.8 34.5 58.2 63.4 69.0 43.8 46.1 35.9 59.1 64.5 69.7 41.0

CF 40.5 36.9 45.1 45.5 51.8 25.0 41.6 38.0 46.1 46.5 52.4 22.1
CFL 40.9 37.6 45.1 45.3 51.4 24.8 42.0 38.8 46.0 46.2 52.0 21.9
G2S 41.5 34.4 50.2 54.0 61.6 33.3 42.8 35.7 51.7 55.1 61.9 29.4

GR 39.1 32.7 47.9 50.0 56.6 30.6 40.0 33.7 48.8 50.8 57.0 27.5

Table 11: Results over our 1k test sets when trained over the larger rt and rd datasets (see Table 7).

rt-1k rd-1k
Model MRR top-1 top-5 top-10 mf mss MRR top-1 top-5 top-10 mf mss

NPP 49.6 37.4 66.4 73.7 78.7 57.3 53.1 41.3 68.3 76.1 80.6 51.3
MHN 50.6 38.6 66.7 73.4 77.0 55.9 52.9 40.8 69.1 75.7 79.2 50.1
CF 46.2 41.5 52.3 53.0 58.6 33.1 49.5 44.4 56.0 56.7 62.5 28.2

Table 12: Results for our new datasets.

rt rd
Model MRR top-1 top-5 top-10 mf mss MRR top-1 top-5 top-10 mf mss

NPP 50.4 37.9 66.7 74.9 79.5 58.6 53.1 40.7 69.2 76.9 81.6 52.2
MHN 51.0 39.2 66.7 73.2 77.1 55.7 53.8 41.7 69.9 76.7 80.2 52.2
CF 47.5 42.4 53.9 54.7 60.6 34.6 50.2 45.0 56.8 57.6 63.4 28.9

H Further Discussion

• We show that the templates from the train data reveal interesting insights and also
observed a slight correlation between performance on reactions matching training tem-
plates and the number of template instances in the training data for all models (15-25%
Pearson correlation, depending on the model). We also checked for a correlation be-
tween molecule complexity and prediction performance but did not observe any in our
experiments. Reaction complexity might be a factor worth to study in future work.

• One problem with the non-template-based models is that they often produce invalid
molecular structures or reactions. While the former is technically no problem because
those can be easily identified with tools such as RDKit, such a filtering step may yield
large runtime overhead. Moreover, there is few efficient technology for identifying invalid
reactions. In order to get an idea of the validity of the predicted reactions, we briefly
experimented with forward reaction prediction models as suggested in (Schwaller et al.,
2020) and atom mapping tools for post processing in the multi-step experiments, but this
was extremely time consuming as well. Given this trade-off, it is likely that non-template-
based models will only be competitive if they either optimize for validity (amongst others)
or include efficient post processing steps, to provide more efficient models; or if they
show explicit benefits over template-based models, justifying the increase in runtime.

• While the trends in the paper tend to show that the template-based models are most
effective to date, we emphasize that they are limited by nature and will never allow for gen-
eralization. Although the current models do not seem to solve this task satisfactory yet, we
see some generalization capability. It will be interesting to see, how much generalization
is possible with state-of-the-art ML technology once this aspect is considered explicitly in
future studies. We also note that there has been related work focusing on the generaliza-
tion capability of the transformer across chemical space showing promising results (Lee
et al., 2019); our study complements this type of investigation in pointing out reaction
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templates as efficient means to quantify generalization, even for non-template-based
models.

I Limitations

Our study focuses on more general aspects of evaluating retrosynthesis prediction and, in the
course of this, provides an exemplary evaluation. As it is in the nature of experimental studies,
there are various other possible and interesting settings which can and sometimes definitely
should be explored in future work. Below, we point out aspects which should be kept in mind
when interpreting our results.

• It has been noted in the past that the USPTO data is lacking certain kinds of reactions
and is biased towards certain kinds of reaction (Schneider et al., 2016), hence it may not
provide sufficient samples to train ML models useful for practice. While this is likely
the case, our study shows that the state of the art still struggles on the available data, in
particular, in terms of generalization. Hence, the USPTO data seems to provide enough
challenges for ML for the current moment.

• We considered several template-based models but only two different template-free ones,
and GraphRetro, while there are many others for each model class. It will be interesting
to see if our observations regarding these representatives are similar for other models in
future studies.

• For most experiments, we used the models trained over USPTO-50k and the (hy-
per)parameter settings suggested in the original studies, since benchmarking the SOTA
was out of the scope of this study. We experimented with some parameters, such as
beam sizes, and obtained slight variations in the results; however, for the parameters we
considered, these variations did not lead to considerable changes in the overall trends.

• In the multi-step experiments we fixed the settings using mostly the default settings
from AIZynthFinder and Retro∗ as search algorithm. We also resorted to creating the
stocks representing the buyable molecules as suggested in (Genheden & Bjerrum, 2022).
Certainly, variation in all these settings would lead to changes in the results. Nevertheless,
our evaluation often shows some considerable and more general differences between the
models, which will likely generalize to some extent.
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